Slide#17 solution

$$S = \frac{K_{s}(1+k_{d}\theta_{c})}{\theta_{c}(\mu_{m}-k_{d})-1}$$

$$10.0 \ mg/L = \frac{100 \ mg/L \times (1+0.050 \ day^{-1} \times \theta_{c})}{\theta_{c}(2.5-0.050) \ day^{-1}-1}$$

$$10.0 \ mg/L \times 2.45 \ day^{-1} \times \theta_{c} - 10 \ mg/L = 100 \ mg/L + 100 \ mg/L \times 0.050 \ day^{-1} \times \theta_{c}$$

$$19.5 \ mg/L - day \times \theta_{c} = 110 \ mg/L$$

$$\theta_{c} = 5.6 \ days$$

Slide#18 solution

$$X = \frac{\theta_c Y(S_0 - S)}{t_0 (1 + k_d \theta_c)}$$

$$t_0 = \frac{\theta_c Y(S_0 - S)}{X(1 + k_d \theta_c)} = \frac{5.6 \, days \times 0.50 \times (84 - 10) \, mg/L}{2000 \, mg/L \times (1 + 0.050 \, day^{-1} \times 5.6 \, days)} = 0.081 \, day$$

$$t_0 = \frac{Q}{V'} \, V = Q t_0 = 0.150 \, m^3/s \times 86400 \, s/day \times 0.081 \, day = 1050 \, m^3$$

Wastewater treatment II

- Secondary wastewater treatment
 - Kinetics of microorganism growth
 - Activated sludge process: concept
 - Activated sludge process: applying reactor analysis!
- Wastewater as a resource

Kinetics of microorganism growth

Monod equation

$$\mu = \frac{1}{X} \frac{dX}{dt} \bigg|_{growth} = \frac{\mu_m S}{K_s + S} = \mu_m \left(\frac{S}{K_s + S}\right)$$

 $\mu = specific growth rate (d^{-1})$ X = biomass concentration (mg/L) $\mu_m = maximum specific growth rate (d^{-1})$ S = food (substrate) concentration (mg/L) $K_s = half saturation constant (mg/L)$

Kinetics of microorganism growth

Net biomass growth rate

- Overall change in biomass concentration
 - Microorganisms not only grow, but also die or get eaten! (this is called as "decay")
 - So:

(net biomass growth rate)

= (rate of growth by substrate utilization) – (rate of decay)

$$r_{g} = \frac{dX}{dt} = \frac{\mu_{m}S}{K_{s} + S}X - k_{d}X$$
growth
decay

 r_g = net biomass growth rate (mg/L/d) k_d = decay rate constant (d⁻¹)

Kinetics of substrate degradation

- Substrate utilization (=degradation) rate
 - Microorganisms utilize food (substrate) to grow
 - A fraction of the utilized substrate is converted to biomass (microorganisms are not 100% efficient!)

$$r_{su} = -\frac{dS}{dt} = \frac{1}{Y} \frac{\mu_m S}{K_s + S} X$$

r_{su} = substrate utilization rate (mg/L/d)
Y = yield coefficient (mg biomass/mg substrate)

Activated sludge process – concept

- A biological wastewater treatment technique using suspended microorganisms (dispersed growth)
- Aeration tank: a mixture of wastewater and microorganisms is agitated and aerated
- Wastewater BOD is removed by active microorganisms

Activated sludge process – concept

- Secondary clarifier: the microorganisms (also called biosolids or sludge) are separated from water by gravity
- Most of the settled sludge is returned to the aeration tank (Why? - We need a high population of microorganisms)
- A fraction of the settled sludge is wasted (Why? microorganisms grow!)

Solids retention time (SRT)

- Recall hydraulic retention time
 t₀ = the time that fluid elements stay in the system
 = V/Q
- Solids retention time (or mean cell residence time) θ_c = the time that <u>microorganisms</u> stay in the system
- t₀ ≠ θ_c if sludge is returned to the aeration tank (Why??)

Suspended solids in AS process

• TSS

 A measure of the amount of all suspended solids

• VSS

- For activated sludge process, a measure of the amount of microorganisms
- Microorganisms are suspended solids which volatilize at 500°C

TSS: Total Suspended Solids VSS: Volatile Suspended Solids FSS: Fixed Suspended Solids TDS: Total Dissolved Solids

Analyzing activated sludge process

- Let's analyze the activated sludge process using two basic knowledge:
 - Monod kinetics (the reaction)
 - The system configuration (mass balance)
- We have two substances to analyze:
 - BOD (=substrate=food): the performance of the activated sludge process to treat wastewater
 - Microorganisms (measured as VSS): those that consume BOD; also related to sludge production

Control volume and assumptions

Assumptions:

 X, X_e, X_r : microorganism concentrations in aeration tank, effluent, and return sludge (measured as VSS)

- i) Steady-state
- ii) The aeration tank is a CMFR
- iii) All reactions occur in the aeration tank

Mass balances

• Mass balance for substrate:

$$QS_0 - V \frac{\mu_m SX}{Y(K_s + S)} = (Q - Q_w)S + Q_w S$$
(A)

• Mass balance for microorganisms:

$$QX_0 + V\left(\frac{\mu_m SX}{K_s + S} - k_d X\right) = (Q - Q_w)X_e + Q_w X_r$$

Solving the mass balance equations

<u>Additional assumption</u>: The influent and effluent VSS is negligible

• Mass balance for microorganisms

$$QX_0 + V\left(\frac{\mu_m SX}{K_s + S} - k_d X\right) = (Q - Q_w)X_e + Q_w X_r$$

$$\frac{\mu_m S}{K_s + S} = \frac{Q_w X_r}{VX} + k_d \tag{B}$$

Representation of SRT

When the effluent VSS is negligible, we find:

$$\theta_c = \frac{VSS \text{ in the aeration tank}}{VSS \text{ mass flow out of the system}} = \frac{VX}{Q_w X_r}$$

(B):
$$\frac{\mu_m S}{K_s + S} = \frac{1}{\theta_c} + k_d$$

(A):
$$\frac{\mu_m S}{K_s + S} = \frac{QY}{VX}(S_0 - S)$$
 $\stackrel{\frown}{\longrightarrow}$ $\frac{1}{\theta_c} + k_d = \frac{Y}{t_0 X}(S_0 - S)$

Solutions

Effluent substrate concentration

Aeration tank VSS concentration

$$S = \frac{K_s(1 + k_d\theta_c)}{\theta_c(\mu_m - k_d) - 1} \qquad \qquad X = \frac{\theta_c Y(S_0 - S)}{t_0(1 + k_d\theta_c)}$$

- SRT (θ_c) is a key design and operation parameter
- The effluent substrate concentration, S, is independent of the influent substrate concentration, S₀
- Higher $S_0 \rightarrow$ higher VSS in the aeration tank \rightarrow more substrate biodegradation \rightarrow same S

Analyzing activated sludge process

Q1: A completely mixed activated sludge process receives a primary effluent at a flowrate of 0.150 m³/s with a BOD₅ of 84.0 mg/L. Calculate the solids retention time required to meet a secondary effluent standard of 10.0 mg/L BOD₅.

Following microbial growth parameters apply:

 $K_s = 100 \text{ mg/L BOD}_5$ $\mu_m = 2.5 \text{ day}^{-1}$ $k_d = 0.050 \text{ day}^{-1}$ $Y = 0.50 \text{ mg VSS/mg BOD}_5$

Analyzing activated sludge process

Q2: For the given activated sludge process, calculate the volume of the aeration tank to maintain VSS concentration of 2000 mg/L in the aeration tank.

Wastewater as a resource

- A new paradigm: wastewater is not a WASTE, but a valuable RESOURCE
- Wastewater
 - = water + organic matter (energy) + nutrients (N/P) + α

Water reuse

- Non-potable reuse: cooling water, irrigation, recreational use, toilet water, etc.
- Potable reuse
 - Produce high-quality water from
 wastewater by (tertiary + α) treatment
 - Indirect potable reuse: discharge treated water to reservoir/aquifer that is used as drinking water source
 - Direct potable reuse: supply the treated water directly as drinking water

🕖 연합뉴스

창원시, 10개 공공시설 버리는 물 재활용...중수도 설치

고시간 | 2019-05-09 11:23

오수 모아 정화한 뒤 청소·화장실용 사용

창원시 중수도 시설 설치 공공기관 [창원시청 제공]

(창원=연합뉴스) 이정훈 기자 = 경남 창원시는 공공기관을 중심으로 한번 쓴 물을 재활용하는 물 순환시스템인 중수도를 구축한다고 9일 밝혔다.

올해부터 2023년까지 국비와 시비 200억원을 들여 창원스포츠파크, 마산회원구청, 마산종합운 동장, 창원축구센터 등 10개 공공건물에 중수도 시설을 설치한다.

Wastewater as an energy source

- Wastewater treatment is a high energy process: accounts for ~2% of the national energy consumption
- Make the process "energy neutral" or "energy positive"
 → lots of energy savings!
- Several ways to use energy in wastewater
 - CH_4 gas production from wastewater \rightarrow heat / electricity generation
 - Electricity generation directly from wastewater (microbial fuel cells)
 - Using heat value of wastewater

Nutrient recovery from wastewater

- Use effluent of primary/secondary treatment for irrigation
- Recover N/P from wastewater to produce fertilizers

Suggested readings

```
[ENG] pp. 557 – 570, 592 – 594
```

```
[KOR] pp. 542 – 556, 581 – 582
```

Next class

Air pollution I

- Units of measurement
- Types of air pollutants
- Indoor air pollution, smog

Wastewater treatment I

- Wastewater characteristics
- Wastewater treatment process overview
- Wastewater treatment unit processes
 - Pretreatment: bar racks, grit removal, flow equalization
 - Primary treatment
 - Secondary treatment
 - Tertiary treatment

Significance of wastewater contaminants

- **Biodegradable organics**: can cause anaerobic conditions in the environment
- **Suspended solids**: can cause sludge deposits and anaerobic conditions in the environment
- Pathogens: transmit disease
- Nutrients: can cause eutrophication
- Heavy metals: toxicity to biota and humans
- **Refractory organics**: toxicity to biota and humans
- **Dissolved solids**: interfere with reuse, damage the aquatic ecosystem

Characteristics of domestic wastewater

Typical Composition of Untreated Domestic Wastewater

Constituent	Weak	Mediur (all mg · L ⁻¹ except se	n Strong ettleable solids)
Alkalinity (as CaCO ₃) ^a	50	100	200
BOD ₅ (as O ₂)	100	200	300
Chloride	30	50	100
COD (as O ₂)	250	500	1000
Suspended solids (SS)	100	200	350
Settleable solids (in mL \cdot L ⁻¹)	5	10	20
Total dissolved solids (TDS)	200	500	1000
Total Kjeldahl nitrogen (TKN) (as N)	20	40	80
Total organic carbon (TOC) (as C)	75	50	300
Total phosphorus (as P)	5	10	20

^aThis amount of alkalinity is the contribution from the waste. It is to be added to the naturally occurring alkalinity in the water supply. Chloride is exclusive of contribution from water-softener backwash.

Industrial wastewater

- Significant variation in wastewater characteristics
- Some industry may generate certain toxic pollutants

Industry	Pollutant	Concentration $(mg \cdot L^{-1})$
Coke by-product (steel mill)	Ammonia (as N)	200
코크스 제조 부산물(제강 공정)	Organic nitrogen (as N)	100
	Phenol	2000
Metal plating 금속 도금	Chromium (VI)	3-550
Nylon polymer	COD	23,000
	тос	8800
Plywood-plant glue waste 합판 접착제 폐액	COD	2000
	Phenol	200-2000
	Phosphorus (as PO ₄)	9–15

Examples of Industrial Wastewater Concentrations for Nonconventional Pollutants

 May need pretreatment to prevent high loading to the wastewater treatment plant

Municipal wastewater treatment

- Major goal: remove BOD and suspended solids (SS)
 - US (1970's): "fishable and swimmable water", 30/30 rule
 - Currently we are also concerned with protecting aquatic ecosystem
 - Current Korean standard: BOD \leq 10 mg/L, SS \leq 10 mg/L
- Additional goal: remove N, P, pathogens, total dissolved solids (TDS), trace pollutants (heavy metals, EDCs, PPCPs, ...)

Municipal wastewater treatment

Municipal wastewater treatment process

- Pretreatment: removes materials that can cause operational problems, equalization optional
- Primary treatment: remove ~60% of SS and ~35% of BOD
- Secondary treatment remove ~85% of BOD and SS
- Tertiary (advanced) treatment additional removal of BOD & SS, N & P, and others

Bar racks (screens)

 Goal: to remove large objects that would damage or foul pumps, valves, and other mechanical equipment

Grit chamber

- Goal: remove "grit"
- Grit
 - Inert dense material such as sand, broken glass, silt, and pebbles
 - Abrades pumps and other mechanical devices in the following treatment processes
 - Relatively high density →
 settles down easily

"Vortex type" grit chamber

Flow equalization

- The flow rate and strength of wastewater varies from hour to hour
- High flow rate and strength in the morning, low at night; high flow rate and low strength during storm events
- Flow equalization is to achieve nearly constant wastewater flow rate and strength → better performance of wastewater treatment and reduce the size and cost

In-line (a) vs. off-line (b) flow equalization

(b)

Primary sedimentation basins

- Removal of suspended solids by settling
- This removes some BOD as well!
- Removes ~60% of SS and ~35% of BOD
- Sludge (= mass of settled solids) is produced
- Floating materials such as oil and grease are also removed
- Design parameters (recall water treatment!): retention time (~2 hr), overflow rate

Primary sedimentation basins

• Rectangular or circular

Primary sedimentation basins

Secondary treatment

- Goal: provide BOD removal beyond what is achieved in primary treatment
 - Removal of soluble BOD
 - Additional removal of SS
- How??
 - Use microorganisms to convert organic wastes into stabilized compounds
 - → Bring the naturally-occurring process (self-purification) into an engineering setting
 - \rightarrow Provide more favorable condition so that things occur much faster

Favorable conditions for biodegradation

- Availability of high density of microorganisms
- Good contact between organisms and wastes
- Favorable temperature, pH, nutrients, carbon source (food)
- Oxygen (or other electron acceptors)
- No or little toxic chemicals present

Dispersed vs. fixed growth

- Dispersed (suspended) growth
 - Activated sludge
 - Oxidation ponds
- Fixed (attached) growth
 - Trickling filters
 - Rotating biological contactors (RBCs)

Dispersed growth systems

- Activated sludge
 - Most common
 - Large plants

- Oxidation pond
 - For small communities
 - Low energy & maintenance cost

Fixed growth systems

- Trickling filter
 - Water trickles through the porous media
- Rotating biological contactor
 - The water gets oxygen when exposed to the air

Conventional activated sludge plant

Tertiary (advanced) treatment

- Goal: to improve the quality of the secondary treatment effluent
- Many of the Korean wastewater treatment plants now have tertiary treatment process
- Further BOD and SS removal, nutrient removal, TDS removal, or the removal of refractory organic compounds
- Different processes can be used depending on the major target

Tertiary (advanced) treatment

- Available advanced treatment processes
 - Granular filtration
 - Additional removal of SS (including microorganisms)
 - Similar to water treatment

Membrane filtration

- Additional removal of SS
- Microfiltration is mostly commonly used for advanced treatment of wastewater

Tertiary (advanced) treatment

Carbon adsorption

- Removal of non-biodegradable organic compounds (contributes to COD, but not to BOD)
- Activated carbon is most commonly used as an adsorbent

Chemical phosphorus removal

Use chemical precipitants such as ferric chloride (FeCl₃), alum (Al₂(SO₄)₃), lime (Ca(OH)₂)

Suggested readings

```
[ENG] pp. 541 – 557, 576 – 580
```

[KOR] pp. 525 – 543, 563 – 568

Next class

Wastewater treatment II

- Activated sludge process
- Sludge treatment and disposal
- Thinking differently wastewater as a resource