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The equations of motion are conveniently expressed in the fixed reference frame. Neglecting the
aerodynamic forces, the equations of motion for inplane rotor motion in the fixed frame are

IζΩ
2{(

∗∗
ζ lc +2

∗
ζls −ζlc) + ν2ζ ζlc +C∗

ζ(
∗
ζ lc +ζls)} − SζΩ

2 ∗∗
y h= 0

IζΩ
2{(

∗∗
ζ ls −2

∗
ζlc −ζls) + ν2ζ ζls +C∗

ζ(
∗
ζls −ζlc)}+ SζΩ

2 ∗∗
xh= 0
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h
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yζ
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ls

The νζ is the rotating lag frequency and the C∗
ζ is the damping coefficient in the rotating frame

due to aerodynamic, structural and mechanical damping. In actuality, the nature of mechanical
damping from lag and support dampers is quite nonlinear. For mathematical convenience, these
dampings are represented as equivalent viscous dampings and are calculated equating the energies
dissipated in one cycle of motion.

Iζ =
∫ R
e r2 dm mass moment of inertia about lag hinge

Sζ =
∫ R
e r dm first moment of mass about lag hinge
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Let us assume that Mx and My the effective masses of body hanging on the springs in the x
and y directions respectively. The rotor forces excite the body, and the equations of motion for the
body are

Mxẍh + kxxh +Cxẋh = H

Myÿh + kyyh +Cy ẏh = Y

The blade inplane forces are

Sr = −2Ωζ̇

∫ R

e
mr dr − (ẍh cosψ + ÿh sinψ)

∫ R

e
mdr = −2Sζ Ωζ̇ −M(ẍh cosψ + ÿh sinψ)

Sx = −ζ̈

∫ R

e
mr dr +Ω2ζ

∫ R

e
mr dr − (ẍh sinψ − ÿh cosψ)

∫ R

e
mdr

= −Sζ ζ̈ + SζΩ
2ζ −M(ẍh sinψ − ÿh cosψ)
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where H and Y are the hub forces due to the rotor and these are expressed as

H = Total resultant drag force =

N∑
(Sx sinψm + Sr cosψm)

H =

N∑
m=1

sinψm[−Sζ ζ̈
(m) +MΩ2ζ(m) −M(ẍ sinψm − ÿh cosψm

+

N∑
m=1

cosψm[−2SζΩζ̈
(m) −M(ẍh + ÿh sinψm)]

= −SζΩ
2N

2
(
∗∗
ζ ls −2

∗
ζ lc −ζls) +MΩ2N

2
ζls −Mẍh

N

2

− 2SζΩ
2N

2
(
∗
ζ lc +ζls)−Mẍh

N

2

= −SζΩ
2N

2

∗∗
ζ ls −NMbẍh

= −N

2
Sζ ζ̈ls −NMbẍh

Y = Total Edge Force

Y =
N∑

m=1

(−Sx cosψm + Sr sinψm)

=

N∑
m=1

− cosψm[Sζ ζ̈
(m) +MΩ2ζ(m) −M(ẍh sinψm − ÿh cosψm)]

+

N∑
m=1

sinψm[−2SζΩζ̇
(m) −M(ẍh cosψm − ÿh sinψm)]

= SζΩ
2N

2
(
∗∗
ζ lc +2

∗
ζ ls −ζlc)−MΩ2N

2
ζlc −Mÿh

N

2

− 2SζΩ
2N

2
(
∗
ζ ls −ζlc)−Mÿh

N

2

= SζΩ
2N

2

∗∗
ζ lc −MbNÿh

where N is the number of blades and Mb is the total blade mass. The Cx and Cy are the damping
coefficients of the supporting structure.

The body equations can be rewritten as

ẍh(Mx +NMb) + Cxẋh + kxxh +
N

2
Sζ ζ̈ls = 0

ÿh(My +NMb) + Cyẏh + kyyh − N

2
Sζ ζ̈lc = 0

Imagine that there are no coupling terms, then one can calculate natural frequencies of support
as

ω2
x =

kx
Mx +NMb
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ω2
y =

ky
My +NMb

Also, defining

C∗
x =

Cx

Ω(Mx +NMb)

C∗
y =

Cy

Ω(My +NMb)

The equations of motion expressed in nondimensional form

⎡⎢⎢⎢⎢⎢⎣
1.0 0 0 −S∗ζ
0 1.0 S∗ζ 0

0 1
2

S∗ζ
M∗

x

1 0

1
2

S∗ζ
M∗

y

0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
∗∗
ζ lc∗∗
ζ ls∗∗
xh
∗∗
y h

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎣
C∗
ζ 2 0 0

−2 C∗
ζ 0 0

0 0 C∗
x 0

0 0 0 C∗
y

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

∗
ζlc∗
ζ ls∗
xh
∗
yh

⎤⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎣
ν2ζ − 1 C∗

ζ 0 0

−C∗
ζ ν2ζ − 1 0 0

0 0 ω2
x

Ω2 0

0 0 0
ω2
y

Ω2

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

ζlc
ζls
xh
yh

⎤⎥⎥⎦ = 0

where

S∗ζ =
RSζ

Iζ
∼= RSζ

Ib
= 3

2 for uniform blades

Ib is blade inertia =Mb
R2

3 for uniform blade

M∗
x = (Mx+NMb)R

2

NIb

= 3
(

Mx

NMb
+ 1
)
for uniform blades

M∗
y =

(My+NMb)R
2

NIb

= 3
(

My

NMb
+ 1
)
for uniform blades

NMb = Total rotor mass

For uniform blades

S∗ζ
M∗

x

=
1

2(
My

NMb
+ 1)

∼= 1

2

Rotor mass

Support mass
(Support mass = My +NMb)

S∗ζ
M∗

y

=
1

2( Mx

NMb
+ 1)

∼= 1

2

Rotor mass

Support mass

The support mass is much larger than the rotor mass. In the above equations, the hub dis-
placement xh and yh are also nondimensional with respect to rotor radius R.

xh = xh
R

yh = yh
R
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The governing equations are four second order differential equations. These can be solved either
through determinate expansion or through the eigen analysis. Let us examine the first approach of
determinate expansion. The stability determinant is

∣∣∣∣∣∣∣∣∣∣∣∣

(s2 +C∗
ζs+ ν2ζ − 1) (2s +C∗

ζ) 0 −s∗ζs
2

−(2s+C∗
ζ) (s2 +C∗

ζs+ ν2ζ − 1) s∗ζs
2 0

0 (12
s∗ζ

M∗

ζ

)s2 (s2 +C∗
xs+

ω2
x

Ω2 ) 0

−(12
s∗ζ

M∗

ζ

)s2 0 0 (s2 +C∗
ζs+ ν2ζ − 1)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

This is an eighth order polynomial. The solution gives eight eigenvalues, which means four
complex conjugate pairs. From the physics, the divergence instability is not possible. The ground
resonance is a dynamic instability where one of the modes becomes unstable, i. e. , zero damping
condition.

For divergence stability

[(ν2ζ − 1)2 +C∗ 2
ζ ](

ωx

Ω
)2(

ωy

Ω
)2 > 0

This is always satisfied. Let us first consider the uncoupled dynamics, obtained by setting S∗ζ
equal to zero. The blade lag motion is damped and its eigenvalue in the rotating frame is

sR = −C∗
ζ

2
± i

√
ν2ζ −

(
C∗
ζ

2

)2

and in the fixed frame, the eigenvalue is

s = sR ± i (n = 1)

This consists of two types of modes
(a) High frequency mode s = sR + i

Frequency = ImsR + 1 per rev.
Frequency of oscillation is always greater than the rotational speed, and corresponds to a pro-

gressive whirling motion of the rotor cg.
(b) Low frequency mode s = sR − i

Frequency = ImsR − 1 per rev.
There are two possibilities. For stiff lag rotors (ImsR > 1), it results into a regressive whirling

motion of the rotor cg at a frequency of (ImsR − 1) per rev. For soft lag rotors (ImsR < 1), it
results into a progressive whirling mode of the rotor cg at a frequency of (1 − ImsR) per rev. The
last possibility is a typical example of an articulated rotor.

Let us examine the uncoupled inplane support eigenvalues in x and y directions.

s = −C∗x
2 ± i

√(
ωx
Ω

)2 − (C∗x2 )2
s = −C∗y

2 ± i

√(ωy

Ω

)2 −(C∗y
2

)2

These are two complex conjugate pairs in the fixed reference frame. In total, these are four
conjugate pairs. Looking at the real parts, one finds that the uncoupled rotor and support motion
is stable. Therefore, the ground resonance instability is a possibility due to inertial coupling s∗ζ .
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For a configuration with zero damping and zero inertial coupling, there are four frequencies,
high frequency lag νζ + 1, low frequency lag 1− νζ , longitudinal support frequency ωx and lateral
support frequency ωy. With the inclusion of coupling terms, the different modes coalesce resulting
in instability. This is a dynamic instability and is of catastrophic type.

In the first figure the Coleman diagram is plotted for an articulated rotor with soft inplane
frequency. The Coleman diagram consists of a plot of dimensional frequencies as a function of
rotational speed. The frequencies corresponding to different modes in the fixed frame are obtained
either from the eigen-solutions or from the roots of the eighth order polynomial. The following
data is used for calculations.

S∗ζ = 1.5 C∗
ζ = C∗

x = C∗
y = 0

M∗
x = 68.175 M∗

y = 29.708

νζ = .285/rev ωx = 12.148 rad/sec, ωy = 18.402 rad/sec

There are two instability bands, caused by coalescence of rotor and body modes. For a stable
condition, there are four distinct eigenvalues. For an unstable condition, two frequencies merge
resulting in three distinct eigenvalues. Also the real part of the eigenvalue which represents damping
of the mode becomes positive. In the next figure, the damping ratio of the unstable mode is
presented. The value of damping ratio of 0.1 is quite large and represents violent instability. This
also shows that a large lag damping is required to stabilize this instability.

In the next figure, the Coleman diagram is plotted for an articulated rotor with stiff inplane
frequency. The following data are used for calculations.

S∗ζ = 3.19 C∗
ζ = C∗

x = C∗
y = 0

M∗
x = 178.77 M∗

y = 77.902

νζ = 1.3/rev ωx = 12.148 rad/sec, ωy = 18.402 rad/sec

There is no instability condition for stiff inplane rotors.
For a case of no-damping

C∗
ζ = C∗

x = C∗
y = 0

The stability determinant becomes∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s2 + ν2ζ − 1 2s 0 −s∗ζs
2

−2s s2 + ν2ζ − 1 s∗ζs
2 0

0 1
2

(
s∗ζ

M∗

x

)
s2 s2 + ω2

x
Ω2 0

−1
2

(
s∗ζ

M∗

y

)
s2 0 0 s2 +

ω2
y

Ω2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

This gives

[(s2 + ν2ζ − 1)2 + 4s2](s2 + ω2
x

Ω2 )(s
2 +

ω2
y

Ω2 )− (s2 + ν2ζ − 1)
s∗ 2ζ

M∗

xM
∗

y

×s4[M∗
y(s

2 + ω2
y) + M∗

x(s
2 + ω2

x)] +
s∗ 4ζ

M∗

xM
∗

y

s8 = 0

The critical condition of zero system damping can be calculated by substituting s = iω in the
above equation. The numerical solution of the polynomial represents the boundary line between
stable and unstable conditions.

Deutsch Stability Criteria
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Using an approximate stability criteria, a simple expression for damping required to stabilize
ground resonance is obtained.

Longitudinal mode:

Assumed
ω

Ω
∼= ωx

Ω
= 1− νζ and ωx �= ωy For stability

C∗
ζC

∗
x >

(1− νζ)

4νζ

(ωx

Ω

)2 s∗ 2ζ
M∗

x

Lateral mode:

Assumed
ω

Ω
∼= ωy

Ω
= 1− νζ and ωx �= ωy For stability

C∗
ζC

∗
y >

(1− νζ)

4νζ

(ωy

Ω

)2 s∗ 2ζ
M∗

y

For a stiff-lag rotor, (νζ > 1), the right hand side is negative and the system is always stable.
For a soft-lag rotor, (νζ < 1), the product of lag damping and support damping must be greater
than the critical values given above for longitudinal and lateral modes. A larger lag damping is
required for

(a) small lag frequency (typical of articulated rotors)

(b) large support frequency (ωx or ωy)

(c) large inertial coupling s∗ 2ζ /M∗
x or s∗ 2ζ /M∗

y (∼= 3
4

rotor mass
support mass)

For an isotropic support condition (ωx = ωy). For stability

C∗
ζC

∗
y >

(1− νζ)

2νζ

(ωy

Ω

)2 s∗ 2ζ
M∗

y

One requires twice the damping needed for an anisotropic case (ωx �= ωy). This is because the
longitudinal and lateral support frequencies become equal resulting in the whirling motion of the
hub which couples well with the whirling motion of the low-frequency lag mode.

Ex. The shake test was performed on the helicopter on its landing gear and the natural fre-
quencies were obtained as 1.2 and 1.8 Hz respectively in longitudinal and lateral directions. The
damping ratios were calculated as 2% of critical value for both the modes. The helicopter rotor
was four-bladed, articulated with 6% hinge offset. The blades are uniform and form about 10% of
the total weight. You would like to check whether the rotor is stable from ground resonance at an
operating speed of 360 RPM. Write the stability equation in the form of determinant.

ω = 6Hz

ωx =
1.2

6
= .2/rev

ωy =
1.8

6
= .3/rev

ζx = ζx = .02
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C∗
x = 2ζxωx = .008

C∗
y = 2ζyωy = .012

ν2ζ = .09 νζ = .3

I∗
ζ
= 1

sζ =
mR2

2 Ib =
mR3

3 s∗ζ =
3
2

M∗
x =

R2(Mx +NMb)

N Ib
=

Mx +NMb

NMb
1
3

= 30 = M∗
y

Stability determinant∣∣∣∣∣∣∣∣
s2 + .09 − 1 2s 0 −3

2s
2

−2s s2 + .09 − 1 3
2s

2 0
0 3

2s
2 60(s2 + .008s + .04) 0

−3
2s

2 0 0 60(s2 + .012s + .09)

∣∣∣∣∣∣∣∣ = 0

Expansion of the determinant will give 8th order polynomial. Solution will be 4 complex
conjugate pairs. Nature of the roots tells us whether the system is stable or not.

6.2 Ground Resonance of Two-Bladed Rotors

Let us consider the ground resonance stability of a two-bladed rotor. Again, assume the rotor is
fully tracked and the blade undergoes lag degree of motion.

Rotating frame:

ζ(1) = lag motion of blade 1

ζ(2) = lag motion of blade 2

Fixed frame:

ζo = collective lag motion

= 1
2

(
ζ(2) + ζ(1)

)
ζ1 = differential collective lag motion

= 1
2

(
ζ(2) − ζ(1)

)
Also,

ζ(1) = ζo − ζ1

ζ(2) = ζo + ζ1

Let us examine the influence of lag motion on rotor cg.
ζo motion cg stays at center

cg



6.2. GROUND RESONANCE OF TWO-BLADED ROTORS 331

ζ1 motion Assuming

ζ(1) = ζo − ζlc cosψ − ζls sinψ

ζ(2) = ζo + ζlc cosψ + ζls sinψ

This gives

ζ1 = ζlc cosψ + ζls sinψ

Two cases.
(a) ζ1 = ζlc cosψ

cg

2

1

A lateral shift of rotor cg in positive x-direction.
(b) ζ1 = ζls sinψ

cg

A longitudinal shift of cg in negative x-direction.
Therefore, the differential collective lag motion ζ1 coupled with support motion to cause ground

resonance instability for the 2-bladed rotor.
The uncoupled lag equations for blades in the rotating frame are

∗∗
ζ
(1)

+C∗
ζ

∗
ζ
(1)

+ν2ζ ζ
(1) = 0

∗∗
ζ
(2)

+C∗
ζ

∗
ζ
(2)

+ν2ζ ζ
(2) = 0

Transformed rotor equations in fixed frame are

∗∗
ζ o +C∗

ζ

∗
ζo +ν2ζ ζo = 0

∗∗
ζ 1 +C∗

ζ

∗
ζ1 +ν2ζ ζ1 = 0

Now, if there is a hub motion of xh and yh superimposed on lag motion, the lag equations
become
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r

Iζ(
∗∗
ζ
(2)

+C∗
ζ

∗
ζ
(2)

+ν2ζ ζ
(2)) + Sζ(

∗∗
xh sinψ− ∗∗

y h cosψ) = 0

Iζ(
∗∗
ζ
(1)

+C∗
ζ

∗
ζ
(1)

+ν2ζ ζ
(1))− Sζ(

∗∗
xh sinψ− ∗∗

y h cosψ) = 0

and the rotor equations become

∗∗
ζ o +C∗

ζ

∗
ζo +ν2ζ ζo = 0

Iζ(
∗∗
ζ 1 +C∗

ζ

∗
ζ1 +ν2ζ ζ1) + Sζ(

∗∗
xh sinψ− ∗∗

y h cosψ) = 0

The first collective lag equation is unaffected by hub motion. The differential collective equation
however gets modified with the hub motion. Again, assuming vehicle is supported by two sets of
springs and dampers represented by kx, Cx, ky, Cy. The body equations of motion are

Mxẍh +Cẋh + kxxh = H

Myÿh +Cẏh + kyyh = Y

The inplane hub forces H and Y are obtained from blade shear forces

Sr = −2Ωζ̇Sζ −Mb(ẍh cosψ + ÿh sinψ)

Sx = Sζ(Ω
2ζ − ζ̈)−Mb(ẍh sinψ − ÿh cosψ)

and

H =
2∑

m=1

(S(m)
x sinψm + S(m)

r cosψm)

= −2Mbẍh + 2Sζ [(Ω
2ζ1 − ζ̈1) sinψ − 2Ωζ̇1 cosψ]

Y =

2∑
m=1

(−S(m)
x cosψm + S(m)

r sinψm)

= −2Mbÿh + 2Sζ [(ζ̈1 − Ω2ζ1) cosψ − 2Ωζ̇1 sinψ]
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Again using the previous definitions, the coupled rotor-body equations for a two-bladed rotor
can be written as⎡⎢⎢⎢⎢⎣

1.0 S∗ζ sinψ −S∗ζ cosψ

S∗ζ
M∗

ζ

sinψ 1.0 0

− S∗ζ
M∗

ζ

cosψ 0 1.0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

∗∗
ζ 1∗∗
xh
∗∗
y h

⎤⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
C∗
ζ 0 0

2
S∗ζ
M∗

x

cosψ C∗
x 0

2
S∗ζ
M∗

y

sinψ 0 C∗
y

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

∗
ζ1∗
xh
∗
yh

⎤⎥⎥⎦

+

⎡⎢⎢⎢⎢⎣
ν2ζ 0 0

− S∗ζ
M∗

x

sinψ ω2
x

Ω2 0

S∗ζ
M∗

y

cosψ 0
ω2
y

Ω2

⎤⎥⎥⎥⎥⎦
⎡⎣ ζ1

xh
yh

⎤⎦ = 0

These are three second order differential equations and can be solved either through determinant
expansion or through the eigen-analysis.

6.3 Air Resonance

An air resonance is similar to ground resonance but occurs on an airborne vehicle. It is caused by
coupling of low frequency blade flap and lag modes and rigid body airframe modes. Aerodynamic
forces are needed to determine this instability. Air resonance is primarily a problem for soft-inplane
hingeless and bearingless rotors.

In general, hingeless and bearingless aeromechanical stability is more difficult to predict com-
pared to articulated rotors. The frequencies of rotor flap coupled with body angular motions
coalesce with the rotor lag frequency. Due to the presence of the flap motion, aerodynamic forces
become important. For hingeless and bearingless rotors, flap, lag, and torsion can be highly cou-
pled, and the torsion motion can affect ground and air resonance. The damping and frequency
characteristics of coupled hingeless rotor-body modes often make the associated instabilities a mild
phenomena.

Compared to ground resonance, where the body modes are relatively clear, in air resonance
they are more complex. In ground resonance the body modes are determined by the rotor-body
mass reacting against the fixed ground. In air resonance there is offcourse no fixed ground against
which the rotor-body mass can react. Here, the body modes are the fundamental free-free modes of
the rotor-body reacting against each other through the interposed blade flap spring (mechanical or
virtual) stiffness. Hence the body modes are determined by the flap spring stiffness, rotor inertia,
body inertia, and rotor aerodynamics. The modes and frequencies are not well defined and show
great variety from one rotor to another. The coalescences are also more obscure.

The basic mechanism of air resonance involves flap, lag, body pitch and body roll motions. For
a simple analysis, blades are assumed rigid and undergo flap and lag motions about hinges. The
body is also assumed rigid and undergoes pitch and roll motion about the body center of gravity.
Body translation degrees of freedom are not included since they do not significantly influence air
resonance stability. Let us study the behavior of the isolated modes in a step-wise manner.

The body pitch and roll degrees of freedom are shown in Fig. 6.1. If IY is the fuselage (or
body) mass moment of inertia about the pitch axis, MF is the fuselage mass, then the square of
the body mass radius of gyration about the pitch axis, nondimensionalized with the square of the
rotor radius, is given by

K2
y =

MF

IyR2
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�

�

φ

θ

�

Figure 6.1: Body pitch and roll degrees of freedom

Similarly the square of the body mass radius of gyration about the roll axis, nondimensionalized
with the square of the rotor radius, is given by

K2
x =

MF

IxR2

Typical values are

K2
y =

square of body mass radius of gyration

R2
≈ 0.1 to 0.4

K2
x ≈ 0.025

The body pitch and roll frequencies, nondimensionalized with respect to the operating rotational
speed Ω0 typically varies between

body pitch frequency = ω̄θ = 0 to 0.8/rev

body roll frequency = ω̄φ = 0 to 0.4/rev

The mass ratio and distance of rotor hub above the rotor-body c.g. are typically

rotor mass

total mass
= 0.1

h

R
= 0.2

The characteristic plots shown in the subsequent sections correspond to the following values, where
applicable.

νζ = 0.7/rev

νβ = 1.1/rev

γ = 5−−15

σ = 0.05

clα = 5.73

cd0 = 0.01

The lag and flap frequencies above are typical values for soft inplane hingeless rotors.
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6.3.1 Body Pitch and Roll with a Rigid Spinning Rotor

Consider a two degree of freedom system, as shown in Fig. 6.1, with body pitch and roll modes.
Consider a spinning rotor attached at the top. When the rotor is rigid, i.e. has no flapping, the
frequencies in vacuum represent those of a 2 degree of freedom gyroscope. The four eigenvalues of
the system are

η = 0, 0,±j
ΩJ√
IθIφ

The zeroes represent the unconstrained rigid body pitch and roll motions. The imaginary pairs
are the well known nutation frequency of a gyroscope. Iθ and Iφ are the rotor-body pitch and roll
inertia about the rotor-body center of mass.

Iθ = Iy +
1

2
NbIb + 3NbIbh

2

Iφ = Ix +
1

2
NbIb + 3NbIbh

2

J = rotor polar mass moment of inertia = NbIb

If the body vanishes, we have

Iθ = Iφ =
1

2
NbIb

and

η = 0, 0,±j2Ω

A well known result, where the gyroscopic nutation frequency is twice the rotational speed. The
above results were in vacuum. In air, the spinning rigid rotor acts as a damper and the four
eigenvalues of the system become

η = 0, 0, σ ± jω

where

σ =−
(
Iθ + Iφ
IθIφ

)
Jγ

32
Ω

ω =
ΩJ√
IθIφ

√
1 +
( γ

16

)2 [1
2
− 1

4

(
Iθ
Iφ

+
Iφ
Iθ

)] (6.1)

Iθ is greater than Iφ, hence the term associated with (γ/16)2 in the expression for frequency is
negative. For very high values of γ, the frequency can become imaginary and produce two real
eigenvalues.

6.3.2 Rotor Flap and Lag

Consider the flapping motion in the rotating frame. Assuming an offset e/R and non-rotating
frequency of ωβ0 rad/s, and rotational speed Ω, the rotating flap frequency νβ is given by

ν2β = 1 +
3

2

e

R
+

ω2
β0

Ω2
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Another useful way of writing the frequency expression is to first denote the flap frequency at the
operating RPM as p. That is

p2 = 1 +
3

2

e

R
+

ω2
β0

Ω2
0

Then

ω2
β0 =

(
p2 − 1− 3

2

e

R

)
Ω2
0

The rotating flap frequency expression can now be written as

ν2β = 1 +

(
p2 − 1− 3

2

e

R

)
Ω2
0

Ω2

where the flap frequency at the operating RPM, p, occurs explicitly. We shall drop the term
3e/2R at this point, as it adds no new physics, inclusion of this term by interested readers will be
straight-forward. Thus we have

ν2β = 1 +
(
p2 − 1

) Ω2
0

Ω2

Recall that the flap perturbation equation in hover was

∗∗
β +

γ

8

∗
β +ν2ββ = 0

with characteristic stability roots

− γ

16
± i

√
ν2β −

( γ

16

)2
in /rev

In dimensional form was

β̈ +
γ

8
Ωβ̇ + ν2βΩ

2β = 0

with characteristic stability roots

σ ± iω = − γ

16
Ω± iΩ

√
ν2β −

( γ

16

)2
in rad/s

Using the expression for flap frequency given above we can write

σ =− γ

16
Ω

ω =Ω

[
1 +
(
p2 − 1

) Ω2
0

Ω2
−
( γ

16

)2]1/2 (6.2)

Nondimensionalized with respect to the operating RPM, Ω0, we have

σ̄ =
σ

Ω0
= − γ

16
Ω̄

ω̄ =
ω

Ω0
= Ω̄

[
1 +
(
p2 − 1

)
/Ω̄2 −

( γ

16

)2]1/2 (6.3)
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The frequencies in the fixed frame are simply shifted by integer multiples of the rotational speed.
Consider for the sake of discussion we have a three or a four bladed rotor. Then the frequencies of
the fixed frame cyclic flapping modes, β1c and β1s, are given by

ωF = |ω ± Ω| in rad/s or, in nondimensional form ω̄F = |ω̄ ± Ω̄|
The high frequencies, obtained using the positive sign, is always positive. The low frequencies,
obtained using the negative sign, decreases with increase in Ω, and in air (i.e. for a non-zero Lock
number) eventually hits zero. With further increase in Ω it continues to become more and more
negative, however, because the physical frequency of oscillation is the absolute value of this number,
the absolute value is plotted, showing an increase with increase in Ω. Figure 6.2(a) plots the fixed
frame frequencies in rad/s. Figure 6.2(b) is an identical plot, only this time in nondimensional
form. Figure 6.2(a) uses the expression in eqn. 6.2. Note that for Ω = 0

ωF = Ω±
[
Ω2 +

(
p2 − 1

)
Ω2
0 − Ω2

( γ

16

)2]1/2
=
[(
p2 − 1

)
Ω2
0

]1/2
= ωβ0

Figure 6.2(b) uses the expression in eqn. 6.3. Note that for Ω̄ = 0

ω̄F = Ω̄±
[
Ω̄2 + p2 − 1− Ω̄2

( γ

16

)2]1/2
=
[(
p2 − 1

)]1/2
=

ωβ0

Ω0

The magnitudes of β1c and β1s define the angular motion of the rotor disc plane with respect
to the body. Note that, β1c − θ and β1s − φ define the angular motion of the rotor disc plane with
respect to a fixed-space reference frame, for the simple case when the motions are in phase. For
example, if β1c = θ implies that the spinning rotor remains fixed in space due to gyroscopic inertia
as the body pitches beneath it.

Vaccuum   γ = 0

Vaccuum   

   γ = 0

Air   γ = 5

ω
β0

frequency,  ωF

Ω

(a) Frequencies in radians /sec

Vaccuum   γ = 0

Vaccuum   

   γ = 0

Air   γ = 5

frequency,  ωF = ω /Ω0

Ω = Ω / Ω0

Ω0

ω
β0

(b) Frequencies nondimensionalized

    with respect to operating RPM  Ω0

Figure 6.2: Rotor Flap Frequencies in the Fixed Frame

Consider the lagging motion in the rotating frame. The rotating lag frequency νζ is given by

ν2ζ =
3

2

e

R
+

ω2
ζ0

Ω2

If the lag frequency at the operating RPM is q, then

q2 =
3

2

e

R
+

ω2
ζ0

Ω2
0
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Air   γ = 5

frequency,  ωF = ω /Ω0

Ω = Ω / Ω0

ω
β0

 / Ω0

(a) Flap and Lag frequencies nondimensionalized

      with respect to operating RPM  Ω0

ω
ζ0

 / Ω0

LagFlap
damping, σ

Ω = Ω / Ω0

unstable

stable

(b) Flap and Lag damping

Figure 6.3: Rotor Flap and Lag Frequencies, and damping in the Fixed Frame

It follows(
q2 − 3

2

e

R

)
Ω2
0 = ω2

ζ0

ν2ζ =
3

2

e

R
+

(
q2 − 3

2

e

R

)
Ω2
0

Ω2

where the lag frequency at the operating RPM, q, occurs explicitly. Dropping the term 3e/2R, we
have

ν2ζ = q2
Ω2
0

Ω2

The frequencies in the fixed frame, of the 1st cyclic lag modes ζ1c and ζ1s, are then simply shifted
by the rotational speed. In /rev they are

1 + νζ =1 +

[
3

2

e

R
+

ω2
ζ0

Ω2

]1/2
high frequency

|1− νζ | =
∣∣∣∣∣∣1−

[
3

2

e

R
+

ω2
ζ0

Ω2

]1/2∣∣∣∣∣∣ low frequency

(6.4)

In rad/s they are

Ω + ωζ =Ω+

[
3

2

e

R
Ω2 + ω2

ζ0

]1/2
high frequency

|Ω− ωζ | =
∣∣∣∣∣Ω+

[
3

2

e

R
Ω2 + ω2

ζ0

]1/2∣∣∣∣∣ low frequency

(6.5)
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which shows the variation with RPM Ω. A convenient form is to nondimensionalize with the
operating RPM Ω0. Divide the above expressions by Ω0 to obtain

Ω̄ + ω̄ζ =Ω̄ + Ω̄

[
3

2

e

R
+

ω2
ζ0/Ω

2
0

Ω̄2

]1/2
high frequency

|Ω̄− ω̄ζ | =
∣∣∣∣∣∣Ω̄− Ω̄

[
3

2

e

R
+

ω2
ζ0/Ω

2
0

Ω̄2

]1/2∣∣∣∣∣∣ low frequency

(6.6)

For Ω = 0 (or Ω̄ = 0), the high and low frequencies are the same and equal ωζ0 (or ωζ0/Ω0). To
have the operating lag frequency q explicitly, use

ω2
ζ0 =

(
q2 − 3

2

e

R

)
Ω2
0

to obtain the fixed frame frequencies as

Ω̄ + ω̄ζ =Ω̄ + Ω̄

[
3

2

e

R
+

(
q2 − 3

2

e

R

)
/Ω̄2

]1/2
high frequency

|Ω̄− ω̄ζ | =
∣∣∣∣∣Ω̄− Ω̄

[
3

2

e

R
+

(
q2 − 3

2

e

R

)
/Ω̄2

]1/2∣∣∣∣∣ low frequency

(6.7)

Dropping e/R we have

Ω̄ + ω̄ζ =Ω̄ + q high frequency

|Ω̄− ω̄ζ | =
∣∣Ω̄− q

∣∣ low frequency
(6.8)

For Ω̄ = 0, the frequencies are q = ωζ0/Ω0. The lag frequencies do not change in hover, because
unlike flap there is no significant source of aerodynamic damping in lag. Characteristic trends for
the fixed frame lag frequencies are shown in Fig. 6.3(a). Figure 6.3(b) shows the typical trends in
flap and lag damping.

6.3.3 Rotor Flap and Body Pitch

Three DOF system: β1c, β1s, and θ.
Six roots:

2 zero frequency real roots.

1 pair of complex conjugate high frequency flap.
1 pair complex conjugate low frequency flap-pitch coupled modes.

Figure 6.4 shows the two pairs of complex conjugate roots in vacuum. The dashed lines are the
isolated flap frequencies. The plots correspond to K2

y = 0.1, p = 1.1/rev. Figure 6.5 shows the
same frequencies in air γ = 5. Again, the dashed lines are the isolated flap frequencies. The pair
of low frequency pitch-flap modes degenerate into 2 unequal real roots with increase in rotational
speed before becoming oscillatory again.

6.3.4 Rotor Flap and Body Pitch and Roll

Four DOF system: β1c, β1s, θ, and φ.
Eight roots:

2 zero frequency real roots.

1 pair of complex conjugate high frequency flap.
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Vaccuum   

   γ = 0

frequency,  ωF

Ω0

ω
β0

Ω

Flap Progressive

 Flap-Pitch

 Regressive

Figure 6.4: Coupled Flap and Body Pitch Frequencies in Vaccuum

Air   γ = 5

frequency,  ωF

Ω

Ω0

ω
β0

Flap Progressive

 Flap-Pitch

 Regressive

Figure 6.5: Coupled Flap and Body Pitch Frequencies in Air

2 pairs of complex conjugate coupled low frequency flap-pitch-gyroscopic modes.
Figure 6.6 shows the frequencies of the three oscillatory complex conjugate modes for the values
K2

x = 0.025, K2
y = 0.1, and p = 1.1/rev. The uncoupled roll and pitch frequencies (non-rotating)

are simply due to the fuselage inertia reacting against the blade flap springs. The expressions given
in the figure correspond to a four bladed rotor. Figure 6.7 shows the same frequencies including
aerodynamic forces in hover for Lock number γ = 5.

6.3.5 Rotor Flap and Lag and Body Pitch in Vacuum

To avoid confusion with blade pitch angle during the derivation of aerodynamic forces, the body
pitch angle will be denoted henceforth as αy.

Blade Equations

Rotating frame:

∗∗
β −2β0

∗
ζ +ν2ββ−

∗∗
αy cosψ + 2

∗
αy sinψ = 0
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ωF

Ω

Nb kβ

2 Iφ

1

Ω0

Nb kβ

2 Iθ

1

Ω0

Uncoupled roll

 (non-rotating)

Uncoupled pitch

  (non-rotating)Gyroscopic

     mode

Figure 6.6: Coupled Flap Body Pitch Roll Frequencies in Vaccuum

∗∗
ζ +2β0

∗
β +gL

∗
ζ +ν2βζ+

∗
Sζ

h

R

∗∗
αy sinψ = 0

where h is hub center above body cg.
Fixed Frame:

β1c :
∗∗
β 1c +2

∗
β1s −β1c − 2β0(

∗
ζ1c +ζ1s) + ν2ββ1c−

∗∗
αy= 0

β1s :
∗∗
β 1s −2

∗
β1c −β1s − 2β0(

∗
ζ1s +ζ1c) + ν2ββ1s + 2

∗∗
αy= 0

ζ1c :
∗∗
ζ 1c +2

∗
ζ1s −ζ1c + 2β0(

∗
β1c +β1s) + gL(

∗
ζ1c +ζ1s) + ν2ζ ζ1c = 0

ζ1s :
∗∗
ζ 1s −2

∗
ζ1c −ζ1c + 2β0(

∗
ζ1s −ζ1c) + gL(

∗
ζ1s +ζ1c) + ν2ζ ζ1s+

∗
Sζ

h

R

∗∗
αy= 0

Body Equation

Iyα̈y + cyα̇y +Kyαy = My + hH

Iy is pitch inertia and cy is the pitch damping coefficient. My is the rotor pitch moment and H is
the rotor drag force.

My = −
N∑

m=1

Mβ cosψm

Mb = flap moment at root

= −
∫ R

0
r(mdr)r(β̈ − ¨alphay cosψm − 2β0Ωζ̇ + 2Ωα̇y sinψm +Ω2β)
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  ωF

Ω

Flap Progressive

Coupled Flap-Pitch
Gyroscopic

θ

φ

Figure 6.7: Coupled Flap Body Pitch Roll Frequencies in Air

= −IbΩ
2(

∗
β − ∗∗

αy cosψm − 2β0
∗
ζ +2

∗
α sinψm + β)

Radial shear:

SR = −2Ω
∗
ζ

∫ R

0
mr dr − hα̈y cosψm

∫ R

0
mdr

= −2SζΩ
∗
ζ −hMbα̈y cosψm

where Mb is blade mass.
Inplane shear:

Sx = −(ζ̈ − Ω2ζ)

∫ R

0
mr dr − hα̈y sinψm

∫ R

0
mdr

= −(ζ̈ − Ω2ζ)Sζ − hMbα̈y sinψm

Hub drag force:

H =

N∑
(Sr cosψm + Sx sinψm)

=

M∑
(−2SζΩζ̇ cosψm − hMbα̈y − ζ̈Sζ sinψm +Ω2ζSζ sinψm)

= −hMbα̈y − Sζ
N

2

∗∗
ζ 1s Ω

2

My = IbΩ
2

N∑
m=1

(
∗∗
β
(m)

− ∗∗
α cosψm − 2β0

∗
ζ
(m)

+2
∗
αy sinψm + β) cosψm + hH
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= IbΩ
2N

2
[
∗∗
β 1c +2

∗
β1s −

∗∗
αy −2β0(

∗
ζ1c +ζ1s)]

Body equation becomes (setting cy = Ky = 0)

∗∗
αy (Iy +

NIb
2

+Nh2Mb)− (
∗∗
β 1c +2

∗
β1s −2β0

∗
ζ1c −2β0ζ1s)(Ib

N

2
) + Sζh

N

2

∗∗
ζ 1s= hH

Setting
∗
Iy= (Iy +

NIb
2

+Nh2Mb)/
NIb
2

Body equation becomes

∗
Iy

∗∗
αy −

∗∗
β 1c −2

∗
β1s +2β0

∗
ζ1c +2β0ζ1s+

∗
Sζ

h

R

∗∗
ζ 1s= 0

Rotor/Body Equations:

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 −1
0 1 0 0 0
0 0 1 0 0

0 0 0 1
∗
Sζ

h
R

−1 0 0
∗
Sζ

h
R

∗
Iy

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∗∗
β 1c∗∗
β 1s∗∗
ζ 1c∗∗
ζ 1s∗∗
αy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡⎢⎢⎢⎢⎣
0 2 −2β0 0 0
−2 0 0− 2β0 2
2β0 0 gL 2 2β0
0 2β0 −2 gL 0
0 −2 2β0 0 0

⎤⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∗
β1c∗
β1s∗
ζ1c∗
ζ1s∗
αy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡⎢⎢⎢⎢⎢⎣
ν2β − 1 0 0 −2β0 0

0 ν2β − 1 2β0 0 0

0 2β0 ν2ζ − 1 gL 0

−2β0 0 −gL ν2ζ − 1 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

β1c
β1s
ζ1c
ζ1s
αy

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = 0

6.3.6 Rotor Flap and Lag coupled to Body Pitch and Roll in Air

Six DOF system: β1c, β1s, ζ1c, ζ1s, θ, and φ.
The body pitch and roll angles θ, and φ are henceforth denoted by αy and αx to avoid confusion
with blade pitch angle.
Twelve roots:

2 zero frequency real roots.
5 complex conjugate pairs: 2 pairs corresponding to β1c, β1s; 2 pairs for ζ1c, ζ1s; and 1 pair for

αy and αx (the other two roots of the fuselage modes are real).
Figure 6.8 shows the frequencies of the five oscillatory roots. The regressive lag mode has the

danger of coalescing with two modes: the regressive flap coupled body pitch-roll and the regressive
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flap coupled gyroscopic nutation mode. When it does, it produces air resonance. The damping
in regressive lag mode is shown in the bottom diagram. The character of the two regressive flap
coupled body modes changes with collective angle, hence the thrust level. For example, figure 6.9
shows the same frequencies at an collective pitch angle of 10o. The damping of the regressive lag
mode becomes further negative, increasing air resonance instability.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −1
0 1 0 0 1 0

0 0 1 0
∗
Sζ

h
r 0

0 0 0 1 0
∗
Sζ

h
r

0 −1
∗
Sζ

h
r 0

∗
Ix 0

−1 0 0
∗
Sζ

h
r 0

∗
Iy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∗∗
β 1c∗∗
β 1s∗∗
ζ 1c∗∗
ζ 1s∗∗
αx
∗∗
αy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 −2β0 0 2 0
−2 0 0 −2β0 0 2
2β0 0 gL 2 0 2β0
2β0 0 gL 2 0 2β0
0 2β0 −2 gL −2β0 0
2 0 0 −2β0 0 2
0 −2 2β0 0 −2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∗
β1c∗
β1s∗
ζ1c∗
ζ1s∗
αx
∗
αy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ν2β − 1 0 0− 2β0 0 0

0 ν2β − 1 2β0 0 0 0

0 2β0 ν2ζ − 1 gL 0 0

−2β0 0 gL ν2ζ − 1 0 0

0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

β1c
β1s
ζ1c
ζ1s
αx

αy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
= γ

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Mβ1c

Mβ1s

M ζ1c

M ζ1s

cmx

cmy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
Aerodynamic forces are broken into stiffness and damping contributions.

γ

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Mβ1c

Mβ1s

M ζ1c

M ζ1s

cmx

cmy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
= KA

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

β1c
β1s
ζ1c
ζ1s
αx

αy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+ CA

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∗
β1c∗
β1s∗
ζ1c∗
ζ1s∗
αx
∗
αy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where the components of KA and CA are as follows.
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Figure 6.8: Coupled Flap, Lag, Pitch, Roll Air-Resonance Modes; Collective angle = 0o

6.4 Experimental Data on Aeromechanical Stability

A comprehensive experimental test program to measure the aeromechanical stability of a hingeless
rotor was undertaken by Bousman [3]. The model was a 1.62-m diameter, three-bladed rotor
mounted on a static mast. The mast was bolted to a transmission and two electric drive motors,
together constituting the model. The model was supported on a gimballed frame which allowed
pitch and roll motions. The blades were rigid with flexibility concentrated at the root end flexures.
The flexures created virtual lag and flap hinges. From the center of the hub, the lag hinge flexure
was located inboard, followed by the flap hinge flexure outboard. When assembled, the flap and
lag hinge were coincident. The lag stiffness was greater than the flap stiffness, as in conventional
rotors. The flexure representing the lag hinge could be substituted with a skewed flexure to produce
negative pitch lag coupling of Kpζ = −0.4. The flexure representing the flap hinge could be
substituted with another with eight times the stiffness to produce the same non-rotating flap and
lead-lag frequencies were equal with the blade set at zero pitch angle. The blade pitch angle could
be changed manually, either outboard or inboard of the flexures. Five configurations were tested.
They are given in table 6.1.
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Figure 6.9: Coupled Flap, Lag, Pitch, Roll Air-Resonance Modes; Collective angle =
10o

The nominal rotor speed was 720 rpm. The rotor dimensionless lead-lag frequency at this rpm
was 0.70/rev. The low frequency lead-lag regressing mode in the fixed coordinates was therefore at
0.30/rev. The body frequencies were controlled by cantilevered springs mounted across the gimbal
flexural pivots. The springs were selected to provide body pitch and roll frequencies of 0.12/rev
and 0.28/rev (2 Hz and 4 Hz at 720 rpm). The pitch mode is lower than the lead-lag regressive
mode, while the roll mode is quite close and represents a critical design condition. The placement
of frequencies was representative of air resonance conditions for a number of full-scale soft inplane
rotor helicopters [4, 5, 6, 7]. The structural properties are given in table 6.2.

The blade properties are mean of three blades. The blade frequency and percentage critical
damping are given in table 6.3. The structural properties of the body are given in table 6.4.

The gimbal frame acted as a part of the body during pitch motions, hence the difference in
mass and c.g. location in pitch and roll. The vertical c.g. location is above the gimbal plane. The
rotor disk was 24.10 cm above the gimbal plane. The body pitch and roll mode damping in terms
of percentage critical were

ξα = 3.200% ξφ = 0.929%




