Chapter 10

Cells Differentiate

1. 발생 생물학 (Developmental Biology)

Developmental Biology

Development

The process of transformation from fertilized egg to adult

History of developmental biology

- Until 20th century : Observation
- 20th century : Identification of underlying mechanism using genetics and molecular biology

Developmental Biology

Model systems

- Fruit fly (Drosophila melanogaster)
 - Small, a short life cycle, well characterized, many mutant strains
 - Thomas H. Morgan
- Nematode worm (Caenorhabditis elegans)
 - Sydney Brenner (1965, UK)
 - Trace the lineage of all the cells (<1000 cells)
- Vertebrate
 - Frogs, chicken, fish (zebrafish)
 - Develop in eggs outside the mother's body
 - Mouse
 - Identifying the gene function using genetically modified mice

Fundamental Developmental Processes

Development

- Differentiation
 - Generation of different specialized kinds of cells from zygote (fertilized egg) or other precursor cells
 - Generate blood cells, muscle cells, neurons ...
- Morphogenesis
 - Creation of form and structure
 - Generate the shape of legs, eyes, wings, skin, organs, tissues, and structures

2. 분 화 (Differentiation)

Differentiation

Totipotent

- Fertilized egg : can form all the cell types in a body, plus the extraembryonic, or placental, cells.
- Embryonic cells within the first couple of cell divisions after fertilization are the only cells that are totipotent.
- Pluripotent
 - Inner cell mass : can give rise to all of the cell types that make up the body
 - Embryonic stem cells are considered pluripotent.
- Multipotent
 - Can develop into more than one cell type, but are more limited than pluripotent cells
 - Adult stem cells and cord blood stem cells are considered multipotent.
- Terminally (or fully) differentiated
 - A cell with specialized properties of a particular cell type
 - Usually no reproduction

Differentiation

※ 출처: commons.wikimedia.org

Differentiation of Blood Cells

Differentiated Cells

- Same set of genes
- Different expression pattern
 - Common expression of essential genes : housekeeping genes
 - Differential expression of cell-specific genes
 - Cellular differentiation is the process of turning on and off of specific genes

Cell type	Specialized product	Specialized function
Keratinocyte (skin cell)	Keratin (protein)	Protection against abrasion and drying out
Erythrocyte (red blood cell)	Hemoglobin (protein)	Transport of oxygen
Melanocyte	Melanin (pigment)	Pigment production
Myocyte (muscle cell)	Actin and myosin (proteins)	Muscle contraction
Pancreatic islet cells	Insulin (peptide)	Regulation of glucose metabolism
Hepatocyte (liver cell)	Numerous enzymes (proteins)	Glycogen storage and breakdown; fatty acid synthesis; gluconeogenesis; other metabolic functions
Neuron (nerve cell)	Neurotransmitters (various)	Transmission of nerve signals

Table 10.1 Specialized products of differentiated cell types

3. 줄기세포 (Stem Cell)

Stem Cell

- Stem Cell: less differentiated cell
- Embryonic Stem Cell
 - From inner cell mass
 - Pluripotent
- Adult Stem Cell
 - From adult body
 - Multipotent
- Induced Pluripotent Stem Cell (iPS cell)
 - Dedifferentiation of differentiated cells
 - Pluripotent

The Nobel Prize in Physiology or Medicine 2012

Sir John B. Gurdon

Shinya Yamanaka

"for the discovery that mature cells can be reprogrammed to become pluripotent"

--- iPS cell (induced Pluripotent Stem cell)

Milestones of Reprogramming

- 1962, J. Gurdon
 - Cloning of a tadpole
- 1997, I. Wilmut
 - First cloned mammal: Dolly
- 1998, J. Thomson
 - Human embryonic stem cell
- 2006, S. Yamanaka
 - Induced pluripotent stem cell

배아줄기세포 (Embryonic Stem Cell)

생체 시계를 거꾸로 돌릴 수 있을까?

유도만능 줄기세포

2012년 노벨상

 iPS Cell
 역분화 줄기세포 (유도만능 줄기세포)
 교토대 야마나카 교수 4개 유전자

※ 출처: Nobel Prize, wikimedia.org

유도만능 줄기세포

4. 형태형성 (Morphogenesis)

Morphogenesis

Morphogenesis

- Movement, migration, proliferation, and death of cells
- Triggered by communication between cells
- Morphogenesis in vertebrate
 - Generation of neural tube \rightarrow brain and spinal cord
 - Cells in the neural tube
 - \rightarrow migration and generate neural circuits
 - Formation of limbs
 - Migration of bone and muscle precursor cells
 - \rightarrow Formation of limb buds under the outer layer of embryo

Morphogenesis

- Cell migration and fur pigmentation
 - Cells migrate outward from the region of spinal cord and differentiates into different types of cells including melanocytes.
 - No melanocytes in the hair follicle
 → white hair
- Apoptosis in morphogenesis
 - Apoptosis: programmed cell death
 - Apoptosis in development
 - Webbed foot vs. nonwebbed foot
 - Development of male or female sexual organs

