Interphase mass transfer I:
Diffusion



Interphase mass transfer

 What we will do
— Focus on the air-water interphase
— Discuss factors that affect mass transfer rates
— Consider the interfacial region

— Consider models that attempt to predict mass transfer rates
* Some background
* Some examples

* Considerable empiricism involved

— Difficult/impossible to directly measure certain parameters of interest
* Employ models with a fundamental underpinning
* Get constants from correlations



Mass transfer is:

* Net change in a compound’s mass, concentration, and/or fugacity
within a specific volume, compartment, phase
— Non-equilibrium process
— Movement is from high to low fugacity
* Within a single phase, this means from high to low concentration

* A consequence of random behavior, motion



Molecular diffusion

 Moles of drunks meandering through space

— Random walk (Brownian motion)

€

* Consider the (ground level) atmosphere

— Molecules
* Take up ~0.1% of available space
* Zip around at ~450 m/sec (average)
e Have ~2 x 1019 collisions/sec

— Mean free path (mfp) ~20 nm (2 x 108 m); characteristic travel distance is:
» ~6 mm in one second
» ~5cmin one minute
» ~40 cmin one hour



Molecular diffusivity D; & Flux J, ;
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Specific flux (J): net mass (or
molecules) crossing unit area of
boundary per unit time
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Fdx [M/L2/T] or [mole/L2/T]
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Rough estimates of diffusivities in air and
water @ 20 °C

D;, m?/s
MW Water Air

Oxygen 32 2%x107° 2x10°

Phenol 94 1x107° 1x10°

TCE 131 1%x107° 1x10~°

Lindane 291 6x1010 6x10°®
D; x ix or i
m vy

m: molecular weight; V: molecular volume

x, yin the range of 0.6 t0 0.8




Molecule transport owing to diffusion only

CO, mole fraction (x¢(,) change in stagnant air mass?

Time Penetration distance, z (cm)
(t) 0.001  0.01 0.10 1.00 10.0
1s 0.0657 0.0654 0.0606 0.0326  0.0300
1 min 0.0658 0.0657 0.0651 0.0592  0.0307
1h 0.0658 0.0658 0.0657 0.0649 0.0574

2Simulation results; used D¢, (air) = 0.153 cm?/s @ 20 °C, 1 atm.

O, concentration (Cp,; in mg/L) change in stagnant water®

Time Penetration distance, z (cm)
(t) 0.001 0.01 0.10 1.00 10.0
5 min 0.069 0.70 6.1 9.17 9.17
10 h <0.001 0.064 0.64 5.69 9.17
2d <0.001  0.028 0.29 2.87 9.17

b Simulation results; used Dy, (water) = 1.80x10"> cm?/s @ 20 °C.

Source: Thibodeaux et al. (2018)

xCOZ = 0.0300 Z
@ t=0, >0

Xco, = 0.0658 @ 2=0, t20

Co, =0.00 mg/L @ z=0, t20
wpI % t=0

Co, =9.17 mg/L
@ t=0, z>0




Interphase mass transfer — D; is not enough

* Observed air/water transfer rates are too fast to be explained by
molecular diffusion across a flat interphase from/into a quiescent
phase

— Regions where diffusion controls are very thin
* Because of turbulence
— Actual interfacial areas may be >> than nominal

e Difficult to measure



Air/water interface: smooth
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Air/water interface: rough
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Molecular diffusion — example 1

Let’s consider a model system with:

e 1-dimensional movement Ji;= —Dz%
e Att=0s

— For 0 cm < x < 25 cm; Concentration (C) = 0 umol/cm3
e Atanyt

— For x=0cm; C, =1000 pumol/cm3
— For x=25cm; C. =0 pumol/cm3
* At boundaries there is continuous replenishment/scavenging
* Forany time step
— Chemical A: D, = 0.5 cm?/s
— Chemical B: D, =1 cm?/s
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Concentration vs. Distance (1)
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Concentration vs. Distance (2)
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Flux (@ x=0cm) VS. Time
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Flux ratios (,/1,, @ x=0 cm)
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Molecular diffusion — example 2

50% of molecules shift position in time 6t
Equal probability of shifting right or left
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Model system results

* Initially
— Concentration profile changes rapidly
— Flux out changes rapidly

— System with high D = concentration gradient decreases faster at the
outlet

]in * ]out ]_B= &
Ja D,

e After alongtime

— Linear concentration profile

Jin = Jout ]_B _ %
Ja Dy
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Interphase mass transfer Il:
Theories on gas/liquid interface



Gas/liquid interfaces: film theory

bulk liquid Films bulk gas .
(turbulent) (laminar) (turbulent) Assumptions

G _ L
Cint — Hcc ) Cint
(equilibrium at the interface)
* gl =1Ll
(No accumulation at the interface)
* “Permanent” films developed
e Sufficient time for linear conc.
gradients to develop in each
film
Chuik * ChangesinC,,, are slow

compared to gradient response
rates
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Caution!!

For interphase mass bulk liquid Films bulk gas
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Caution!!

For interphase mass bulk liquid
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Gas/liquid interfaces: film theory

Flux in the films for phase i

D. . . . .
Ji = F_l(cbulkl — Cint') = ki(Cpuirc" — Cine")
l

k; = D;/6;, mass transfer

(+) flux when bulk =2 interface coefficient [L/T]

Since |Jg| = /.1,

Jtor = ki (CbulkL - CintL)

set (+) flux when liquid = gas

—ke(Cour® — Cint")

kG (HccCintL _ CbulkG)

k;, = D, /8;, mass transfer coefficient at the liquid film [L/T]
ke = D;/8;, mass transfer coefficient at the gas film [L/T]
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K, — overall mass transfer coefficient

_ L
Jior = Couik

) oo
— = K, —
HCC )

Liquid phase as a
reference

“As Is”: the current bulk
liquid phase concentration

“To Be”: the liquid phase
concentration that would
be in equilibrium with the
current bulk gas phase
concentration




How to set a reference phase?

bulk liquid Films bulk gas
L G G G (turbulent) (laminar) (turbulent)
. * ~ — H
If Vowie” < Vpuie™: Coute” = Cpure " (t = 0) while /
H 1
Coure™" is significantly different from Cpy;" (t = 0) Cour i
H ]
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IbeulkG < VbulkL: CbulkL* = CbulkL(t = 0) while CbulkG* is Signlficantly dlfferentfrom CbulkG(t = 0)
Then, our interest is the change in Cy,,;,° over time

E> Use gas phase as a reference



k, & k. to K;; resistance concept

c. G
Jtot = KL, (CbulkL — )
HCC

= K} {(CbulkL - th) + (Cmt Cbu”‘G)}

1 _kL+kGHCC_1+ 1 R AR =R
KL_ kLkGHcc _kL kGHcc_ g ¢ Tt

The behavior is exactly analogous to having 2 resistors in series in
an electric circuit

. kLkGHcc
K, =
kyp + kgH,




Controlling resistance

1 1
RtOt :RL+RG :kL+kGH
cc

If k; K kgH..then R; > Rg; liquid phase boundary layer controls flux

Typically: 1 < k_G < 300 Gas phase D >> liquid (by ~10%)
kL Film thickness: 6. > 6,

If assume >95% resistance refers to phase control & k./k, = 100, then:

H_ > 0.19: liquid phase controls
H_.. < 0.0005: gas phase controls
0.0005 < H_. < 0.19: both phases are significant




Controlling resistance

Compound H,_ R/Rg" Controlling resistance’
o, 30 3000 Water
TCE 0.38 38 Water
Arochlor 1212 0.027 2.7 Intermediate
Lindane 1.4 x 104 0.014 Gas
Phenol 3 X 10° 0.03 Gas
H,0 2.2 X 10° N/A Gas

* ks/k,=100 assumed
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Film theory, summary, limitations

* Assumes fully developed, time invariant interfacial regions

— Linear concentration gradient within the boundary layer

* |If resistance in one phase dominates, overall mass transfer
coefficient then
— K; « D;, i=phase of dominant resistance

* Experimental studies have shown
— K; « D;*
* 0.55a¢<1
— Film theory not always consistent with experimental data
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Surface renewal theory

Suppose turbulence goes all the way to the interface.

Assume:

— Some fraction “s” of the fluid elements in the interfacial region
(“surface chunks”) is replaced with the bulk fluid during a unit period
of time

— The replacement of “surface chunks” is random

In mathematical terms:

C;_IZ=_5N B) N =Nye st

N = number of surface chunks that remains not to be replaced at time t
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Surface renewal: random replacement
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Applying surface renewal theory

It has been shown that: k; = (D;s;)°®

s. = surface renewal rate, [T]

cf) film theory: k; = D;/§;

* Other relationships still hold:

Jtor = i = iki(cbulki — Cinti)

G
Couik

HCC

Jtor = K}, <CbulkL — ) = K. (Cputr” — Courr™")

1 _kitkeHe 1 1
KL_ kLkGHcc _kL kGHcc_ g ¢ Tt
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Boundary layer theory

e The Sherwood number:

k;d
(Sh)i= 7~ = a1 + a(Re)® (Sc);™*
i

D, = molecular diffusion [L?/T]

k; = mass transfer coefficient [L/T]
d = characteristic length (particle diameter, stream depth, etc.)

a; = constants, often empirical

Dimensionless numbers:

Re = Reynolds #, ratio of inertial force to viscous forces
Sc = Schmidt #, ratio of momentum diffusivity to mass diffusivity
Sh = Sherwood #, ratio of mass transport to mass diffusivity

Mathematical form analogous to momentum and heat transfer models

- Incorporates effects of mixing on mass transfer
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Boundary layer theory: coefficients

Re =

dXxu dXuXp
—=

U

kl‘d a Ay
—— = (Sh)=ay + a,(Re)*(Sc);

l

(S¢); = —~
Cl_Di

If a, =0, then:
_ (Sh);D; _ a,(Re)®(v)®D;' ™%
a,:0.01to 1.0

a;: 0.33 (laminar flow) to 0.8 (turbulent flow)
a,: 0to 0.5 (~0.33 is common)

______

a;=0.33;a,=0 k; = azd_0'67u°'33v‘0'33 X! Dil.O:
L

______

a;=0.8,a,=0.5 k; = a,d=02u08y =03 5xa p,05!
L

— azd(a3_1)ua3v(a4_a3)Di(1_a4)
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