
Precision Machine Design- Flexure Hinge Design 

Flexure hinge mechanism is one of high effective and precise 

mechanism within the limed range of motion. 

An effective method for achieving a motion having small range 

but with most precise control is to apply a force to an elastic 

mechanism of known stiffness. This is a different concept from 

techniques using kinematic design or elastic averaging design  

for achieving the high precision, because the driving force is 

never applied directly against the stiffness in them, although 

the driving force needs to overcome the friction.  

The pros and cons of the flexure hinge or the elastic 

mechanism are as follows; 

Pros; (Advantage) 

1) Ideal for ultra-precision motion of small stroke with fine 

resolution; the flexure hinge uses the elasticity for motion 

generation, thus very high precise motion can be 

obtained up to angstrom level resolution depending on 

actuator. 

2) Friction free motion: friction is one of difficulties when 

very precise motion is required, even with well lubricated 

rolling bearings. The flexure hinge provides the elastic 



motion due to the elastic deformation that is coming 

from the distance change between atoms, without giving 

any friction forces noticeable. 

3) Smooth and continuous motion: this is another 

characteristics of friction free motion, because it does not 

make any stick-slip or discontinuity during the motion. 

4) Wear free motion: because there is no sliding or rolling 

parts, this flexure hinge provides wear free, thus 

lubrication, replacing of worn parts are not needed, thus 

service free operating is possible. 

Cons; (Disadvantage) 

1) Limited range of motion: very small range of motion 

within the elastic range, typically from few tens of 

microns to few millimeters. 

2) Limited force and stiffness in the driving direction: 

Because the elastic deformation of flexure is engaged, 

the stiffness and force in the driving direction are 

relatively small when compared to other actuating 

methods of high rigidity. Thus force and stiffness in the 

driving direction are quite small, and it can be quite weak 

to the external vibrations of disturbing. 



3) Lifetime or durability can be low; because it uses the 

repeated elastic deformation utilizing the full elastic 

range, thus it is exposed to fatigue and catastrophic 

failure, where the allowable fatigue strength should be 

carefully chosen as quite low, accommodating the 

relatively large strain and stress concentration factor. 

Thus the allowable stress or strain can be reduced further. 

4) Motion is much depending on material characteristics 

such as Young’s modulus, work-hardening, and they are 

also varying with temperatures of operation. 

 

Leaf type linear spring 

The cantilever of thin plate is one of the simple flexure 

mechanism; 

                F 

         L             

                 δ=FL3/3EI and θ=FL2/2EI at end 

 

where E=Young’s modulus,  

I=area moment of inertial=bt3/12, and b is width, t is the 



thickness of plate,  

Stiffness, K, is 

K=F/δ=3EI/L3 

The arch shape of deflected cantilever is very strange to use 

for motion control due to the nonlinearity, and the angle θ 

experienced at the end is never desirable because it may 

generate undesirable Abbe error when a device or instrument 

is attached at the end. In order to minimize or cancel the angle 

deformation. Thus a coupled force can be applied to negate 

the nonlinearities at the offset of S as in the fig. 

 

        L 

        F             δ=FL3/12EI and θ=0 at end 

            S=L/2 

Thus the rotation angle θ is cancelled by the superposition of 

moment, FL/2, at the end, and the stiffness, K is, 

K=F/δ=12EI/L3 

It is four times increased than the cantilever case. This 

mechanism is enhanced, but it may have still instability 

because small misalignment of force in direction or location 



may lead large parasitic deflection that is a kind of unwanted 

motion. 

This situation can be improved if one or more plates are 

symmetrically superposed in parallel as in fig. 

Due to the symmetrically superposed plates, the y rotation 

angle at the end becomes zero due to the fixing of parallel 

plates; and the torsional stiffness of z rotational axis is greatly 

increased due to the increased polar moment of inertia of 

plates. This mechanism is a type of parallelogram motion 

spring, and sometimes is called as the single leaf type linear 

spring. Also, the stiffness in x direction becomes as twice as 

the previous one, assuming the split section is small. 

K= F/δ=24EI/L3 

Please note there exists a parasitic motion, h, in the z direction, 

which is a kind of unwanted motion. 

 



 

Single leaf type linear spring  

(source: Smith’s Ultra precision mechanism design) 

 

The unwanted parasitic motion also can be removed by 

symmetric superposition of leaf spring in compound form as 

in the fig., where the parasitic motion becomes zero or very 

little, as the top and bottom cancel each other for the parasitic 

motion. The superposition leads to decrease the stiffness in 

the driving direction by half when compared to the single leaf 

type linear spring, as they are serially connected. Thus, 

K= F/δ=12EI/L3 

 



 

Compound leaf type linear spring  

(source: Smith’s ultra precision mechanism design) 

 

This mechanism is called as compound leaf type linear spring, 

and are commonly used for single axis drive mechanism using 

the leaf type springs, as it can provide virtually no parasitic 

error motion. 

 

Notch hinge structure 

An alternative mechanism for flexure hinge is to use the notch 

spring or notch hinge, in which several notch holes are 

manufactured onto the solid structure to have functioning as 

the flexure mechanism. 

Comparisons can be made between the notch hinge and the 



leaf spring. 

For the notch hinge; 

1) It is well suited to monolithic structure for higher 

precision due to simple manufacturing holes or notches 

onto the monolithic structure; while the bolting, screwing, 

welding, etc. are required during the assembly for the 

leaf spring. 

2) It has very good agreement between the theoretical 

analysis and experiment for the flexure characteristics; 

while about 30% discrepancy is typically observed 

between the theory and experiment for the cantilever 

parts. 

3) Easy manufacturing via EDM, drilling, or turning; while 

screwing, bolting, welding, fastening for leaf spring; thus 

the notch hinge is of cost efficiency with compact/simple 

design. 

4) Stronger bucking resistance due to shorter length in thin 

section when compared to the leaf spring 

5) Notch location equals to the flexing position, while only 

the notch part is flexing and the rest section is quite flat 

for the leaf spring.Notch hinge gives more flexible design. 



  t 

 

A Notch Hinge 

                 R                         b 

  M                             M              h=2R+t 

 

                        L 

When E is the young’s modulus of elasticity for the material, 

1) h≒2R+t ; when the notch is close to half circle 

Rotation angle, θ= 9πR1/2M/[2Ebt5/2] 

Thus Angular stiffness, λθ 

λθ=M/θ=2Ebt5/2/[9πR1/2] eq(1) (by Paros and Weisbord) 

2) t<R<5t 

Angular stiffness, λθ=M/θ=Ebt3/[24KR]  eq(2) 

where K=0.565t/R=0.166 (by Smith etal.) 

Maximum stress, σmax, is observed at the top part of hinge, 

σmax = KtM(t/2)/[bt3/12]=KtM/[bt2/6] 

where Kt is the stress concentration factor for the circular notch 

shape, and Kt=0.325+[2.7t+5.4R]/[t+8R] 



For the allowable maximum stress, σmax , the allowable 

maximum moment, Mmax, is 

Mmax=bt2σmax/[6Kt] 

Thus the maximum allowable angle, θmax, is 

θmax=Mmax/λθ 

= 9πR1/2Mmax/[2Ebt5/2] for h≒2R+t 

= 24KRMmax/[Ebt3] for t<R<5t 

The right tip of the notch hinge will experience the maximum 

deflection qmax relative to the left end of the notch hinge, 

qmax=Lθmax 

where L is the distance from the notch centre to the right tip. 

 

Multi directional flexure hinge 

The notch flexure hinge can generate the angular motion in 

the perpendicular direction to the plane of force. Thus when 

multi directional motion is desired, the notch flexure of 

another axis can be superposed or added to give the desired 

motion as in fig. 

The circular flexure hinge can be used for the universal 



  t 

direction of motion as in the fig. 

 

 

 

Two axis notch hinge and universal circular hinge 

(source: Smith’s ultraprexision mechanism design) 

 

Circular flexure hinge, or, Flexure for universal direction 

                 R                          

  M                             M              D=2R+t 

 

 

When monolithic material is cylinder instead of cuboid, the 

circular notch can be manufactured by turning. Then direction 

of bending can be any direction as it just follows the direction 

of force. This is called as circular notch flexure hinge or 

universal flexure hinge due to its all directional bending. This 



flexure is useful to the situation where actuation is required 

under which some misalignments are occurring such as in 

driving section by PZT actuator, thus the misalignment can be 

compensated by the universal flexure hinge like universal joint 

for the power transmission. 

In this case, the rotation angle and moment relationship can 

be similarly derived as, 

θ=20MR1/2/[Et7/2], and angular stiffness λθ is 

λθ=Et7/2/[20R1/2] 

 

Sensitivity analysis for notch hinge 

It is of interest to assess the sensitivity analysis for the notch 

hinge. When there are variations in the dimensions or material 

property for the hinge, it affects to the stiffness of hinge, and 

it can be derived from eq(1) 

λθ=M/θ=2Ebt5/2/[9πR1/2] eq(1) 

δλ=(∂λ/∂E)δE+(∂λ/∂b)δb+(∂λ/∂t)δt+(∂λ/∂R)δR eq(10) 

As ∂λ/∂E=λ/E, ∂λ/∂b=λ/b, ∂λ/∂t=(5/2)λ/t, ∂λ/∂R=(-1/2)λ/R; 

Thus from eq(10), 

δλ/λ=δE/E+δb/b+(5/2)δt/t-(1/2)δR/R 



As a maximum case, the total contribution is from the sum of 

absolute value of individual factors, thus 

|δλ/λ|=|δE/E|+|δb/b|+(5/2)|δt/t|+(1/2)|δR/R| 

 

Or a most probable case, the total contribution is from the 

square root of sum of squares of the individual factors. Thus, 

δλ/λ=[(δE/E)2+(δb/b)2+(5/2)2(δt/t)2+(1/2)2(δR/R)2]1/2 

 

The thickness variation, δt/t, greatly affects to the stiffness 

variation of the hinge, thus strict dimensional control for the 

thickness is needed. 

 

Energy Method for Static Analysis 

As the flexures are of purely elastic motion, the energy method 

can be applied to give the static analysis such as stiffness. 

Let U be the total elastic energy stored in structure or 

mechanism, and it is a function deflection qi such that 

U=U(q1,q2..qn ), where  qi (for i=1,2..n) are the deflections(or 

angles) at the ith location of structure, and Fi (for i=1,2..n) are 

the external forces(or moments) applied to give qi deflection. 



  Load 

     F   C=ΣqiδFi=∫qdF 

                     U=ΣFiδqi=∫Fdq 

                         q 

                     Deflection 

 

C=Complementary energy=∫qdF; thus q=∂C/∂F 

: by Engesser(1889), no physical meaning,  

but just for mathematical convenience 

U=Strain energy=∫Fdq; thus F=∂U/∂q 

: Physical strain energy stored 

For linear, elastic material; C=U 

∴No difference between them,  

Thus completely interchangeable such that  

q=∂U/∂F (Castigliano’s theorem), or 

F=∂U/∂q (Virtual Work or Energy method) 

The energy method gives the relationship between the 

deflection and the forces such as, 



Fi=∂U/∂qi  for i=1,2..n  

Thus stiffness λi at the Fi location can be obtained as  

λi =Fi/qi  for i=1,2..n 

The energy method can provide a very efficient tool for the 

calculation of stiffness comprising of complex 

structures/mechanism behaving in the elastic region. 

 

Mobility or Kinematic analysis for DOFs 

A kinematic system can consist of N elements with J joints, 

where the elements are not deforming thus rigid, and joints 

provide constraints to restrict the DOF(Degree of Freedom) of 

the system.  

One free element can have maximum 6 DOFs in a space, and 

one element should be fixed for reference of motion, thus the 

maximum DOFs what the system can have is 6(N-1) for N 

elements.  

The joint is for constraining the system, and the number of 

constraints for the joint, c, will be the 6 minus the number of 

freedom of that joint, f,  such that ci=6-fi for i=1 to J joints 

The total DOFs what the kinematic system can have will be; 



Total DOFs=6(N-1) - Σci (for i=1 to J) 

=6(N-1) – Σ (6- fi) (for i=1 to J) 

The above equation provides very useful for the mobility 

analysis of general kinematic structures. For the plane 

mechanism, this equation reduces to 

DOFs in 2D=3(N-1)-2J   

This is called as Grubler’s equation, and is because the 

maximum DOFs what the plane mechanisn can have will be 3 

for each element, and number of constraints will be 2 for each 

joint such that δx, δy are constrained while θ is free for a hinge 

joint. For example four bar linkage system, N=number of 

elements=4, J=number of joints=4; the DOFs what the four 

bar linkage can have will be 3(4-1)-2(4)=1, and thus it is only 

for one DOF free. The Grubler’s equation is very useful to 

analyze the mobility whether the system is kinematically 

constrained, over-constrained, or under-constrained. 

 

Dynamic analysis 

Dynamic analysis is required to give the dynamic 

characteristics such as natural frequency of the mechanism. 

There are mainly two reasons for dynamic analysis: 



1) Fast servo time, or fast response of system is desirable to 

give the high precision motion control, because the 

smallest increment of motion can be run during the 

shortest time interval, Δt. The time interval, Δt, can be 

usually chosen as 1/2-1/3 of the fundamental period (or 

the inverse of natural frequency) of the system, in order 

to avoid biasing.  

2) The system capability of isolation from the vibration 

disturbance is very important to the ultra-precision 

motion control. When the natural frequency is quite high, 

and the disturbing vibration frequency is lower than the 

natural frequency, the system will not experience the 

resonance. When the disturbing frequency is high and is 

close to the natural frequency of the system, the energy 

of disturbing frequency is very low, thus the resonance 

cannot happen easily. Thus it is very good practice to 

have the system’s natural frequency higher. Thus the 

higher the natural frequency, the higher the capability of 

vibration isolation. It is the golden rule for the precision 

mechanism of higher performance, being isolated from 

external vibration disturbance. 

 



For the system having potential energy and kinetic energy, the 

Lagrangean principle can be applied to give the efficient 

dynamic analysis. 

Let Fi , qi (i=1,2..n) be the force and displacement experienced 

at the sub-system i, and mi is the mass of the sub-system in 

the mechanism. 

The Kinetic energy, T, is the sum of kinetic energy of sub-

syetem of mass, mi 

T=Σmi(dqi/dt)2/2, for i=1,2..n eq(20) 

The potential energy or elastic energy, U, is the sum of the 

elastic energy of sub-system, whose stiffness is Ki in the qi 

direction. 

U=ΣKiqi
2/2, for i=1,2..n eq(21) 

The Lagrangean, L, is derived as T-U such as  

L=T-U  eq(22) 

Then the motion of equation of the each sub-system is given 

by the Lagrangean equation; 

 

d[∂L/∂(dqi/dt)]/dt - ∂L/∂qi=Fi  for i=1,2..n eq(23) 

 



Eq(20) and (23) lead to the motion of equations for every sub-

system in the mechanism. 

 

 

Simple notch type spring 

When the notches are symmetrically superposed like the 

simple leaf type linear spring as in fig, it becomes a simple 

type notch spring, providing smooth motion into qi direction 

under the force applied to the direction. Please also note that 

it can give some parasitic motion in the vertical direction due 

to the rotations of four hinges. 

 

 

Simple notch type linear spring  

(source: Smith’s Ultraprecision mechanism design) 

 



Mobility analysis 

Considering the number of elements=4, and the number of 

joints equals to the number of notches=4. Thus allowable 

DOFs=3(4-1)-2(4)=1. Therefore this mechanism provides 1 

DOF, and it is kinematically constrained for the 1 DOF motion 

into the q1 direction. 

Static analysis 

Assume F is applied to the mechanism along the q1 direction, 

then the moment of FL is input to the mechanism, and the 

moment is assumed as equally allocated to each hinge (or 

notch) due to the symmetry. Thus the moment of FL/4 is 

applied to each notch, giving the angular deflection, θ=M/λθ, 

giving the elastic energy storage of 0.5λθθ2. Thus the total 

elastic energy, U, stored in the mechanism will be four times 

of this, thus 

U=4(0.5)λθθ2=2λθθ2=2λθ(q1/L)2 

Applying the energy method, 

F=∂U/∂q1=4λθq1/L2 

Thus stiffness in the q1 direction, K1, is 

K1=F/q1=4λθ/L2  [N/m] 



where λθ is the angular stiffness of one notch given by 

eq(1),eq(2). 

This simple notch spring generate the parasitic motion in the 

vertical direction, and it would be δ=L(1-cosθ) downward, 

where θ is the angle of rotation experienced at a notch.  

 

Dynamic analysis 

Kinetic energy: 

When m is the mass of the notched element of length, L , the 

kinetic energy of the mechanism can be considered as sum of 

kinetic energy of top part of mass, M and two hinge parts of 

mass, m, respectively, while the base is stationary. 

Thus kinetic energy, T, is 

T=M(dq1/dt)2/2+ I(dq1/dt/L)2/2 + I(dq1/dt/L)2/2 

Where I=mass moment of inertia of hinge part about the axis 

of bottom hinge=mL2/12+m(L/2)2 = mL2/3 

Thus T= M(dq1/dt)2/2+I(dq1/dt/L)2/2+ I(dq1/dt/L)2/2 

=[M+2m/3](dq1/dt)2/2 

The potential or strain energy, U 



U=sum of elastic energy equally stored in the four hinges 

=λθθ2/2+ λθθ2/2+ λθθ2/2+ λθθ2/2 

=2λθ(q1/L)2 where λθ is defined as above. 

The Lagrangean, L 

L=T-U= [M+2m/3](dq1/dt)2/2 - 2λθ(q1/L)2 

∂L/∂(dq1/dt)=[M+2m/3](dq1/dt) 

d[∂L/∂(dq1/dt)]/dt=(M+2m/3)d2q1/dt2 

∂L/∂q1=-4λθq1/L2 

Thus the motion of equation for q1 is 

(M+2m/3)d2q1/dt2 +4λθq1/L2 = F  

When F=0, it gives the fundamental response of q1 of the 

mechanism. Thus 

(M+2m/3)d2q1/dt2 +4λθq1/L2=0 

Therefore the natural frequency, ωn, of the mechanism can be 

obtained as follows; 

 

ωn=[4λθ/L2/(M+2m/3)]1/2  [rad/sec]  

 



Compound notch type spring 

 

 

Compound notch type linear spring (source: Smith’s Ultraprecison 

mechanism design) 

 

The notched hinge structure can be added (or symmetrically 

superposed) as shown in fig, then it can give improved flexure 

hinge structure that is much similar to the compound leaf type 

linear spring, giving zero parasitic motion, but with the less 

stiffness in the driving direction when compared to the simple 

notch type linear spring. 

 

Mobility analysis 

There are 7 elements including base fixed, and 8 joints (hinges); 

thus N=7, J=8  



From Grubler’s equation for plane mechanism, 

DOF=3(N-1)-2J=3(7-1)-2(8)=18-16=2 

This mechanism provides 2 DOFs such as q1 and q2;  

Although there exists 2 DOFs along the driving direction, they 

can be related by q1=q2/2 if the applied force F1 becomes zero 

due to the symmetric structure, as it is explained in the static 

analysis 

 

Static Analysis 

Stiffness Calculation 

 

Let F1 , F2 be the forces applied to the q1, q2 displacement, 

respectively. 

For the hinges connected between the top parts and base, the 

angle of rotation, θ1, due to the q1 displacement become 



θ1=q1/L, where L is the length of hinged part. 

For the hinges connected between the top parts and bottom 

parts, the angle of rotation, θ2, become 

θ2=(q2-q1)/L 

The total elastic energy, U, stored the in the mechanism is the 

sum of the elastic energy stored in the 8 hinges. 

U= λθθ1
2/2 X 4+ λθθ2

2/2 X 4 

=2λθq1
2/L2 + 2λθ(q2-q1)2/L2 

Applying the energy method to obtain the force F1 and F2; 

F1=∂U/∂q1=4λθq1/L2 + 4λθ(q2-q1)(-1)/L2 

=4λθ(2q1-q2)/L2=0 if there is no force applied to the q1 

Thus q1=q2/2, and it is the same result as we expect, due to 

the symmetry of structure. 

F2=∂U/∂q2=4λθ(q2-q1)/L2=4λθ(q2/2)/L2=2λθq2/L2 

Thus the Stiffness, K2, in the driving direction of q2 , becomes 

K2=F2/q2=2λθ/L2  

Thus the stiffness in the driving direction becomes half of the 

simple notch spring, but the vertical parasitic motions are 

cancelled for the bottom moving part, when compared to the 



simple notch spring case. 

 

Dynamic Analysis 

 

Let M1, M2 be the mass of top part and bottom part, 

respectively, and m is the mass of hinged part. 

Kinetic Energy 

Top part: M1(dq1/dt)2/2 

Bottom part: M2[dq2/dt]2/2 

 

For the one hinged part connected between base and top: 

m[dq1/dt/2]2/2 + I[dq1/dt/L]2/2 eq(30) 

where I=mass moment of inertial of one hinged part about 

axis of rotation centered=mL2/12 



Eq(30) becomes 

=(m/4+m/12)(dq1/dt)2/2=(m/3)(dq1/dt)2/2  

and the kinetic energy for the two hinged parts 

=(2m/3)(dq1/dt)2/2=(m/3)(dq1/dt)2 

 

 

One hinged part connected between the top moving part and 

bottom moving part: 

m[d{q1+(q2-q1)/2}/dt]2/2 + I[d(q2-q1)/dt/L]2/2 

=m[d(q1+q2)/dt]2/8 + m[d(q2-q1)/dt]2/24 

Thus for two hinged parts 

=m[d(q1+q2)/dt]2/4 + m[d(q2-q1)/dt]2/12 

 

Thus the total kinetic energy, T 

= M1(dq1/dt)2/2+M2[dq2/dt]2/2 

+(m/3)(dq1/dt)2+m[d(q1+q2)/dt]2/4 + m[d(q2-q1)/dt]2/12 

 

 



Potential or strain energy, U 

Potential energy, U, is the same as the static analysis, and 

U=2λθq1
2/L2 + 2λθ(q2-q1)2/L2 

Lagrangean, L=T-U 

 

For q1 displacement, 

∂L/∂(dq1/dt)=M1(dq1/dt) 

+(2m/3)(dq1/dt)+(m/2)[d(q1+q2)/dt]+(m/6)[d(q2-q1)/dt(-1)] 

=M1dq1/dt+4m/3(dq1/dt)+(m/3)(dq2/dt) 

∂L/∂q1=-[4λθq1+4λθ(q2-q1)(-1)]/L2=-4λθ(2q1-q2)/L2 

Thus 

(M1+4m/3)d2q1/dt2+(m/3)d2q2/dt2+4λθ(2q1-q2)/L2 

=F1=0 if homogeneous solution eq(31) 

 

For q2 displacement; 

∂L/∂(dq2/dt)=M2dq2/dt+(m/2)[d(q1+q2)/dt] 

+(m/6)[d(q2-q1)/dt]=(M2+2m/3)dq2/dt+m/3dq1/dt 

∂L/∂q2=-4λθ(q2-q1)/L2 



Thus 

(m/3)d2q1/dt2+(M2+2m/3)d2q2/dt2-4λθ(q2-q1)/L2 

=F2=0 if homogeneous solution; eq(32) 

Eq(31),(32) give the motion of equations, and they are the 

second  order differential equations. 

Let q1=c1exp( jωt), q2=c2exp( jωt);  

then d2q1/dt2=-ω2q1 and d2q2/dt2=-ω2q2 

From eq(31) 

(M1+4m/3)d2q1/dt2+(m/3)d2q2/dt2+4λθ(2q1-q2)/L2 

=[-(M1+4m/3)ω2+8λθ/L2]q1+[-(m/3)ω2-4λθ/L2]q2=0 eq(33) 

From eq(32) 

[-(m/3)ω2-4λθ/L2]q1+[-(M2+2m/3)ω2+4λθ/L2]q2=0 eq(34) 

In order to have nontrivial solution for q1 and q2, the 

determinant of eq(33),(34) are zero;  

The characteristics equations are; 

[-(M1+4m/3)ω2+8λθ/L2][-(M2+2m/3)ω2+4λθ/L2] 

-[-(m/3)ω2-4λθ/L2]2=0 

 



Thus 

ω4[(M1+4m/3)(M2+2m/3)-(m/3)2]  

–ω2[4M1+8M2+40m/3] λθ/L2+16(λθ/L2)2=0 

 

Therefore the natural frequency of the mechanism, ω, can be 

obtained. Also, the mode shape, or eigen vector can be 

obtained for the q1, q2 displacement.  

 

Multi DOF mechanism 

The multi DOF mechanism can be designed by fully utilizing 

the symmetry and superposition of hinge elements. Fig shows 

the 3DOF stage, and 6 DOF stage, respectively. The stress 

analysis and design analysis are very much essential for the 

stiffness, vibration isolation capability, allowable range and 

lifetime. These analysis is quite complex thus, it is much 

efficient to use the FEM during the design stage. 

 



 

3 DOFs stage designed (source: SNU Metrology Lab) 

 

 

6 DOFs Stage Designed  

(source: Mun and Pahk, Int.J.Advanced Manuf. Tech) 

 

Notch hinge 

Circular hinge for 

actuator 



Angular motion flexure hinge: 

In order to generate the angular motion, there are also some 

angular flexure hinges such as crossed strip hinge, monolithic 

torsional hinge, etc., as in fig, where the bending modes or 

the torsion modes of the thin sections or notched parts are 

fully utilized. 

 

 

 

Cross strip hinge and Torsional hinge  

(source: Smith’s Ultraprecision Mechanism Design) 

 


