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e.g. X={X,,X,} uniform (0,1), s.i

= 4 samples

Brute force MCS:

Samples are generated independently

No memory

Latin Hypercube

There is only one sample in each row and column

(w/ memory)

Sampling:

Orthogonal Sampling: 1

LHS + subspace

w/ same frequen

sampled

cy X2

Example: Y.S. Kim et al. (2009)
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Latin Hypercube Sampling (Mckay et al. 1979)

Extension of “Latin Square” — appearing exactly once in each row and
exactly once in each column)

(<) 7x7 Latin Square stained glass honoring R.A. Fisher’'s work on DOE

Evenly distribute sampling points to promote early convergence
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Possible LHS combination?

M-1
[Jor-o | "ot
n=0

~ 24 cases

choose LHS combination
that satisfy orthogonal
sampling conditions

— Seismic Performance Assessment of Interdependent Lifeline Systems

= Generated random samples of post-disaster conditions of network components
using LHS
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Markov Chain Monte Carlo (MCMC) Simulation

— MCS method generating random samples as a Markov chain
according to transitional probabilities p(z™*D|z(™)

— Good for high-dimensional problems

@D Metropolis-Hastings algorithm

Generate a random sample using the proposal distribution q(z|z(™) and then
accept or reject with the pre-determined probability.

Metropolis algorithm (Metropolis et al. 1953)

Works for the symmetric proposal distribution, i.e. q(z4|zg) = q(zg|z4)

The candidate sample z* proposed by q(z|z(®) is accepted with the probability

A(z",z™9) = min (1,%)

Metropolis-Hasting algorithm (Hastings, 1970)

Works even if the proposal distribution is not symmetric > generalized version

The candidate sample z* proposed by q(z|z(T)) is accepted with the probability

on [ PE)aED))
Al#,27) = min <1'ﬁ(z(f>)q(z*|z<f>)>

Note: The evaluation of the acceptance criterion does NOT require knowledge of
the normalizing constant Z, in the probability distribution p(z) = p(z)/Z, - Good

for Bayesian updating f(0) = cL(0)p(0)

Example: Generating samples of a bi-variate Gaussian distribution using
Metropolis algorithm (Bishop 2006)

A simple illustration using Metropo-
lis algorithm to sample from a
Gaussian distribution whose one
standard-deviation contour is shown 5 5|
by the ellipse. The proposal distribu-
tion is an isotropic Gaussian distri-
bution whose standard deviation is
0.2. Steps that are accepted are
shown as dgreen lines, and rejected
steps are shown in red. A total of |5}
150 candidate samples are gener-
ated, of which 43 are rejected.

[Be]
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@ Gibbs sampling (Geman & Geman 1984)

Sample “one” element each time based on conditional distribution given the
outcomes of the other elements

eg. P(Z,.2,,Z,)

sample  Z/" by P(Zl‘ZvaZ§)
;" by P(Z,]2{,Z)
Zi* by P(Z4|2},Z5)

Can show this is a special case of Metropolis-Hasting algorithm

Example: Generating samples of a bi-variate Gaussian distribution using Gibbs
sampling

lllustration of Gibbs sampling by alter- =24
nate updates of two variables whose L
distribution is a correlated Gaussian.
The step size is governed by the stan-
dard deviation of the conditional distri-
bution (green curve), and is O(1), lead-
ing to slow progress in the direction of
elongation of the joint distribution (red
ellipse). The number of steps needed
to obtain an independent sample from
the distribution is O((L/1)?).
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Subset Simulation (Au & Beck, 2001)

FoF o---oF,=F eventofinterest
P(F)=P(F,) too low

eg. F={D>C}

C <(C,<---<C, =C

P(F)=P(F,)=P()F)

Fy iz
m-1 m-1 X x e
=P(RIR)-P(1R) o [ X
i-1 S o %X X
=P(F,| f.)-P((F) | \ g
i=1
= P(F)x P(F, |F)x---xP(F,|F, -+ F, ) P(F,) P(F;|F,)

Each larger than P(F)

Identify intermediate failure domains adaptively for a given probability p, = P(F;j+1|F;)

(figure credit: Dr. lason Papaioannou)
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Example: Hamiltonian Monte Carlo methods for Subset Simulation (Wang, Broccardo and
Song, 2019)

The location of the next sample is determined by a moving particle described by
Hamiltonian mechanics - more efficient

H(q,p) =V(q) + K(p)

The potential energy V(q) is defined by the probability density function while the kinetic
energy K(p) represents the proposal distribution

a) o component a) y component
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Fig. 3. Marginal complementary CDFs obtained from CW-MH and HMC.
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Fig. 11. a) The elliptical limit-state function in the space of the banana-shaped distribution; b) initial sampling; c) first subset; d) second subset.
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Extrapolation-based MCS (Naess et al. 2009)
g =9-p,1-2) A=0:  gM)=9g-p, Pr=05
0<Ai<1 A=1: g\) =g Pr~1.0

Generate samples {g,,---,0,} and use to estimate

~ N, (A
Pf(}\')z fN()

while varying A
Fitted to lzlq(k)-exp{—a(X—b)c} (can assume constant g), i.e.
P = d"-exp{-a (A -b")"}

Find a, b, c, q by fitting and extrapolate as I5f A) as A—>1

= Has been applied to component/system (Naess et al. 2009)

and large-size system problems (Naess et al. 2010)

p2)
1070°

1071
10728

10 35 L

10—4.5

Fig. 9. Plot of log pr(4;) for Example 4: Monte Carlo (-); fitted optimal curve (--),
reanchored empirical confidence band (--.); fitted confidence band (--).
logg=-0.303, a=16.231, b=0.252, c= 1.591.
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VIl. Random fields

~ Random quantity distributed over field (space or time)

Ex1) Spatial Distribution of Random Ground Motion Intensity)

o = =1
e s

Legend
El
a

(Song & Ok, 2010)

Ex2) Spatial distribution of material property (Young’s Modulus)

random process, stochastic process

= ( ) # of random variables

= ( ) representation is required
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Discretization of Random field — Random vector

> V=,
Random n-vector

M, = E[vl={x,}
X, =E[(v-M,)(v-M,)]
=D,R,,D, covariance matrix
where D, = diag[o, ]
Ry =[Py, 1
f,(v) — joint PDF of v

Theoretical Representation of R.F
v(x), X e Q random field in domain Q
V(x)

Partial descriptors:

1(X): mean function E[v(X)]
o?(X) : variance function E[v?(X)]— °(X)

p(x,X): correlation coefficient function 0,

[y

For Gaussian R.F. the above gives a complete specification

For Nataf R.F., also specify F,(V;X)

For general RF’s, specify joint PDF of ( ) and ( )
for, x,x'eQ, f (v(x),v(x")

e.g. Random field

~ does not change over the domain Q

v(x), xeQ
[u(X)=

o’(X) =

p(X,x)=

I

LF(vix)=
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Note; This doesn’t mean Vv(X) =V (not constant over the domain)

O X

Scenario 1 2 1 2 2
X1 X2 X1 X2
Scenario 2 11 5 11 ll
-’;1 X2 -’;1 -’;2
M, =15pu =15
' ? v(X) =V
u(X)=pu=15
V(x)
Q: Correlation Function p(X,X) <meaning? V(z);! .....................

How to capture this from p(X,X) ?

Correlation length

correlation exist
in longer distance

L
r g

Ax = ||lx—x||

|4

[ 4

0= T P(AX)dx

can be considered

~ measure of the distance over which significant loss of correlation occurs
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AX

o= -2)
a
Q:J‘exp(—gjdAx
5 a
( ij .
=-—aexp| —— ‘o =a
a

« p(AX) =exp[—%j

© 2
0= J'exp[—AizjdAx
5 a

17 AX?
= EJ. eXp(—?jdAX

:%«/;a Oca

Instructor: Junho Song
junhosong@snu.ac.kr
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Discrete Representation of RFs (Summary: Sudret & ADK 2000; 2002 PEM)
@ Mid-point method

V(X) = V(X)
=V(X,), XeQ,

(constant in each Q) /,v&) H
~a, ” V(x)
20
‘\h& 20
H H E\_ 'e -
* Represented by a constant r.v. N N
= -3 . . L
Ef x( c x( K

over each RF element

* Positive definiteness problem of R ... if RF element size is small relative to &

Recommended size of RF element size

£~££ RF size SQ~Q
10 15 3 5
Numerical stability Accurate
(Positive definiteness) representation

@ Spatial averaging method

j v(x)dQ
~ Q
V(X)=—=————, XeQ
[do ) o
QE
* Represented by a single r.v per Q, 0, 0., 0, 0, i
* Variances are ( ) — -estimate P,

* Positive definiteness problem
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@ Shape function method (<—motivated by FE people)

V) =0()= T N,(V(x)

nodes

* Represented by continuous function

V() .

'V (x)

A\

N, (Xj) = 5ij
to guarantee V(X;) =V(X;)
@ Karhunen-Loéve (KL) expansion (Gaussian RFs)
— Describe RF in terms of finite # of shape functions
defined over domain
(no geometric discretization)
— Discretization based on

structure  p(X, X') p(x X!)
)
Goal: Want to descrive p(x,X") by

P FS A X R X

i=1

/ \Orthogonal shape (base) functions
Canfind A, ¢ by solving an integral eigenvalue problem, i.e.
Ip(x,x')goi (x)dx'= 4@ (X) (Fredholem integral egn — 2" kind)
o
Note p(x,Xx") is bounded, symmetric, (+) definite.
If so, one can find

®.(X) : orthogonal I¢i (X)p; (X)dx = &

A, : real & positive
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Candrop 4's if A4, =0
Then using ¢.(X), and 4, i=1,...,r, one can describe Gaussian RF v(x) by

v
V(X):V(X)=,Ll(X)+O'(X)Zr:(Ui\/Z(Di(X)), xeQl = v(x) = {u,-,u}

KL expansion of Gaussian RF

u, = N(0,1), u; s.i
Let’s check!

i. Gaussian? Yes, function of u,'s
i E[V()]=w(X)? E[N(X)]=

ii.  Var[o(x)] = E[( )]

-0y Y. JiE0.(00,(x)

(because p(X,X) = = )

V. pe(X)=p(X)
— B[00 - 100)I(X) — (XN o () (x)
—E[Y. Y u Ao 0u,F e, ()]

SYE WEEARe )
Y 20,09,(x)

i=1

= (X, X)
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[« #o0fRV's:
* Represented by function
4 * No necessary
* Most efficient (in terms of # of )
L * Requires solution of an integral eigenvalue problem.

(® Orthogonal expansion (eigen-expansion, but correlated rv’s)

©

Optimal linear estimation (OLE)~ linear regression

(@ Expansion OLE

: See Sudret & ADK (2000)

Nataf RF

v(X) = F(v,X), p,;(X,X’)

v(X) = EHO(Z (X))}, Z(X) ~ N(0, p,, (X,X")) (Z(X) - Gaussian RF)
= Construct Z(x) and discrete to Z(X)

> v(x) = F{O(Z(X)}
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