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 Latin Hypercube Sampling (Mckay et al. 1979) 

Extension of “Latin Square” – appearing exactly once in each row and 

exactly once in each column) 

(←) 7x7 Latin Square stained glass honoring R.A. Fisher’s work on DOE 

Evenly distribute sampling points to promote early convergence 

 

 

e.g. 
1 2{ , }X XX  uniform (0,1), s.i 

⇒ 4 samples 

• Brute force MCS: 

Samples are generated independently 

No memory 

 

• Latin Hypercube Sampling: 

There is only one sample in each row and column 

(w/ memory) 

 

• Orthogonal Sampling:  

LHS + subspace sampled 

w/ same frequency 

 

 

Example: Y.S. Kim et al. (2009) 

→ Seismic Performance Assessment of Interdependent Lifeline Systems 

⇒ Generated random samples of post-disaster conditions of network components 

using LHS 

𝑥1 

𝑥2 

0 1 

1 

𝑥1 

𝑥2 

0 1 

1 

𝑥1 

𝑥2 

0 1 

1 

Possible LHS combination? 

ෑሺ𝑀 − 𝑛ሻ𝑁−1

𝑀−1

𝑛=0

 
𝑀 = 4,  𝑁 = 2 

∴ 24 cases 

choose LHS combinations 
that satisfy orthogonal  
sampling conditions 
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 Markov Chain Monte Carlo (MCMC) Simulation 

→ MCS method generating random samples as a Markov chain 

according to transitional probabilities 𝑝ሺ𝐳ሺ𝑚+1ሻ|𝒛ሺ𝑚ሻሻ 

→ Good for high-dimensional problems 

① Metropolis-Hastings algorithm  

Generate a random sample using the proposal distribution 𝑞ሺ𝐳|𝐳ሺτሻሻ and then 

accept or reject with the pre-determined probability. 

Metropolis algorithm (Metropolis et al. 1953) 

Works for the symmetric proposal distribution, i.e. 𝑞ሺ𝐳𝐴|𝐳𝐵ሻ = 𝑞ሺ𝐳𝐵|𝐳𝐴ሻ 

The candidate sample 𝒛∗ proposed by 𝑞(𝐳|𝐳ሺτሻ) is accepted with the probability 

𝐴(𝒛∗, 𝒛ሺ𝜏ሻ) = min (1,
𝑝̃ሺ𝒛∗ሻ

𝑝̃ሺ𝒛ሺ𝜏ሻሻ
) 

Metropolis-Hasting algorithm (Hastings, 1970) 

Works even if the proposal distribution is not symmetric  generalized version 

The candidate sample 𝒛∗ proposed by 𝑞(𝐳|𝐳ሺτሻ) is accepted with the probability 

𝐴(𝒛∗, 𝒛ሺ𝜏ሻ) = min (1,
𝑝̃ሺ𝒛∗ሻ𝑞ሺ𝒛ሺ𝜏ሻ|𝒛∗ሻ

𝑝̃ሺ𝒛ሺ𝜏ሻሻ𝑞ሺ𝒛∗|𝒛ሺ𝜏ሻሻ
) 

Note: The evaluation of the acceptance criterion does NOT require knowledge of 

the normalizing constant 𝑍𝑝 in the probability distribution 𝑝ሺ𝒛ሻ = 𝑝̃ሺ𝒛ሻ/𝑍𝑝  Good 

for Bayesian updating 𝑓ሺ𝛉ሻ = 𝑐𝐿ሺ𝛉ሻ𝑝ሺ𝛉ሻ 

Example: Generating samples of a bi-variate Gaussian distribution using 

Metropolis algorithm (Bishop 2006) 
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② Gibbs sampling (Geman & Geman 1984) 

Sample “one” element each time based on conditional distribution given the 

outcomes of the other elements 

e.g. 1 2 3( , , )P Z Z Z  

sample  
1

1Z 
 by 

1 2 3( , )P Z Z Z 
  

 
1

2Z 
 by 

2 1 3( , )P Z Z Z 
 

 
1

3Z 
 by 

3 1 2( , )P Z Z Z 
 

Can show this is a special case of Metropolis-Hasting algorithm 

Example: Generating samples of a bi-variate Gaussian distribution using Gibbs 

sampling 
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 Subset Simulation (Au & Beck, 2001) 

1 2 mF F F F     event of interest 

( ) ( )mP F P F  too low 

e.g. { }i iF D C    

1 2 mC C C C      

1

( ) ( ) ( )
m

m i

i

P F P F P F


   

1 1

1 1

1

1

1

1 2 1 1 1

( ) ( )

( ) ( )

( ) ( ) ( )

m m

m i i

i i

m

m m i

i

m m

P F F P F

P F f P F

P F P F F P F F F

 

 









 

 

   

 

Each larger than ( )P F  

Identify intermediate failure domains adaptively for a given probability 𝑝0 = 𝑃ሺ𝐹𝑖+1|𝐹𝑖ሻ  

(figure credit: Dr. Iason Papaioannou) 

  

   

𝑷ሺ𝑭𝟏ሻ 𝑷ሺ𝑭𝟐|𝑭𝟏ሻ 

𝑭𝟏 
𝑭𝟐 

…
 

𝐹𝑚 = 𝐹 

𝐹1 
𝐹2 
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Example: Hamiltonian Monte Carlo methods for Subset Simulation (Wang, Broccardo and 

Song, 2019) 

The location of the next sample is determined by a moving particle described by 

Hamiltonian mechanics  more efficient 

𝐻ሺ𝒒, 𝒑ሻ = 𝑉ሺ𝒒ሻ + 𝐾ሺ𝒑ሻ 

The potential energy 𝑉ሺ𝒒ሻ is defined by the probability density function while the kinetic 

energy 𝐾ሺ𝒑ሻ represents the proposal distribution 
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 Extrapolation-based MCS (Naess et al. 2009) 

(λ) μ (1 λ)gg g     λ 0 :    (λ) μgg g    𝑃𝑓 ≈ 0.5  

0 λ 1   λ 1 :    (λ)g g   𝑃𝑓 ≈ 1.0 

Generate samples 
1{ , , }ng g  and use to estimate 

(λ)
(λ)

f

f

N
P

N
  while varying  

Fitted to 
1

(λ) exp{ (λ ) }cq a b

     (can assume constant q), i.e. 

** * *

1
(λ) exp{ (λ ) }c

fP q a b

     

Find a, b, c, q by fitting and extrapolate as (λ)fP  as λ 1   

⇒ Has been applied to component/system (Naess et al. 2009) 

   and large-size system problems (Naess et al. 2010) 
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In-Class Material: Class 24 

 

VII. Random fields 

~ Random quantity distributed over _______________ field (space or time) 

 

Ex1) Spatial Distribution of Random Ground Motion Intensity) 

 

 

 

 

 

 

Ex2) Spatial distribution of material property (Young’s Modulus)   

  

 

Ex3) Ground acceleration time history ( )gx t  

 

e.g.   

 random process, stochastic process 

 

 

⇒ (                ) # of random variables 

⇒ (                ) representation is required 

  

𝒙̈𝒈 (𝒕) 

(Song & Ok, 2010) 

𝒕 

( , )E x y
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 Discretization of Random field → Random vector 

 

→   
1{ , , }Tnv vv   

                                          Random n-vector 

[ ] { }

[( )( ) ]

                                 covariance matrix
?

where           diag[ ]

                   [ ]

( ) joint PDF of 

i

i

i j

v

T

v v

v v

vv v v

E

E

D

R

f







 


  
 



 

 

v

vv

v vv v

v

M v

Σ v M v M

D R D

v v

 

 Theoretical Representation of R.F 

( ),  v x x  random field in domain    

Partial descriptors: 

( ) x : mean function [ ( )]E v x   

2 ( ) x : variance function 
2 2[ ( )] ( )E v xx   

'( , ) x x : correlation coefficient function 
( ) ( ')v v
x x

  

For Gaussian R.F. the above gives a complete specification 

For Nataf R.F., also specify ( ; )vF v x   

For general RF’s, specify joint PDF of (          ) and (         ) 

for, , 'x x  , ( ( ), ( '))vvf v x v x  

e.g. _____________ Random field 

    ~ _____________ does not change over the domain   

( )v x , x  

( ) x = 

2 ( ) x = 

'( , ) x x = 

( ; )F v x = 
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Note; This doesn’t mean ( )v vx  (not constant over the domain) 

 

 

Scenario 1 

 

Scenario 2 

 

       1 2
1.5 1.5

( ) 1.5

x x 

 

 

 x
                 ( )v vx  

 

Q: Correlation Function 
'( , ) x x ←meaning? 

 

How to capture this from 
'( , ) x x ? 

 

 Correlation length 

 

0

( )x dx 


    

 

~ measure of the distance over which significant loss of correlation occurs 
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Examples 

• ( ) exp
x

x
a


 

   
 

  

 0

0

exp

exp

x
d x

a

x
a a

a






 
   

 

 
    

 


  

•
2

2
( ) exp

x
x

a


 
   

 
  

 

2

2

0

2

2

exp

1
exp

2

1
                                             

2

x
d x

a

x
d x

a

a a



 







 
   

 

 
   

 

 



   
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 Discrete Representation of RFs (Summary: Sudret & ADK 2000; 2002 PEM) 

① Mid-point method 

ˆ( ) ( )

( ),  c e

v v

v 

x x

x x
  

(constant in each e ) 

 

• Represented by a constant r.v.  

over each RF element 

• Positive definiteness problem of R … if RF element size is small relative to    

 

Recommended size of RF element size 

~
10 15

 
  RF size ~

3 5

 
  

Numerical stability             Accurate  

(Positive definiteness)         representation 

 

 

② Spatial averaging method 

( )

ˆ( ) e

e

v d

v
d














x

x ,  ex  

• Represented by a single r.v per e  

• Variances are (                ) → _____-estimate 
fP   

• Positive definiteness problem 
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③ Shape function method (←motivated by FE people) 

element
nodes

ˆ( ) ( ) Σ ( ) ( )i iv v N vx x x x  

• Represented by continuous function 

 

 ( )i j ijN x   

 to guarantee ˆ( ) ( )i iv vx x  

④ Karhunen-Loève (KL) expansion (Gaussian RFs) 

→ Describe RF in terms of finite # of shape functions  

   defined over ________ domain 

   (no geometric discretization) 

→ Discretization based on 

_____________ structure ( , ') x x   

Goal: Want to descrive ( , ') x x  by 

  
1

( , ' ) ( ) ( ' )i i i

i

   




x x x x  

Orthogonal shape (base) functions 

Can find ,     by solving an integral eigenvalue problem, i.e. 

( , ') ( ') ' ( )i i id  


 x x x x x  (Fredholem integral eqn – 2nd kind) 

       Note ( , ') x x  is bounded, symmetric, (+) definite. 

       If so, one can find 

         ( )i x : orthogonal ( ) ( )i j ijd   x x x  

i : real & positive 
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Can drop 'i s  if 0r   

Then using ( )i x , and i , i=1,…,r, one can describe Gaussian RF ( )v x  by 

 

1

ˆ( ) ( ) ( ) ( ) ( ( ))
r

i i i

i

v v u   


  x x x x x , x  ⇒ ( )v x  ⇒ 1{ , , }ru u  

(0,1),   s.ii iu N u  

Let’s check! 

i. Gaussian? Yes,            function of 'iu s  

ii. ˆ[ ( )] ( )E v x x ? ˆ[ ( )]E v x  

iii. 
2ˆ[ ( )] [(                       ) ]Var v Ex   

1 1

2

1 1

2 2

1

2

[                                                          ]

( )                    ( ) ( )

( ) ( )

( )

r r

i j

r r

i j i j

i j

r

i i

i

E

    

 



 

 

















x x x

x x

x

  

(because ( , )                               = x x          ) 

iv. 
?

ˆˆ ( , ') ( , ')vv x x x x  

1

1 1

1

ˆ ˆ[( ( ) ( ))( ( ') ( '))] / ( ) ( ')

[ ( ) ( ')]

[            ] ( ) ( ')

( ) ( ')

( , ')

r r

i i i j j j

i j

r r

i j i j

i j

r

i i i

i

E v v

E u u

E

   

   

   

 



 

 



  















x x x x x x

x x

x x

x x

x x

  

 

 

 

KL expansion of Gaussian RF 
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• # of RV’s:  

• Represented by          function 

• No              necessary 

• Most efficient (in terms of # of         ) 

• Requires solution of an integral eigenvalue problem. 

⑤ Orthogonal expansion (eigen-expansion, but correlated rv’s) 

⑥ Optimal linear estimation (OLE)~ linear regression 

⑦ Expansion OLE 

 See Sudret & ADK (2000) 

 

 Nataf RF 

( ) ( , )v F vx x , ( , ')ZZ x x  

1 ˆ( ) { ( ( ))}vv F Z x x , ( ) ~ ( , ( , '))ZZZ N x 0 x x  ( ( )Z x Gaussian RF) 

⇒ Construct ( )Z x  and discrete to ˆ( )Z x  

⇒ 1 ˆ( ) { ( ( ))}v F Z x x   
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