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Outline

• Introduction to lifetime problem in SSDs

• SSD Lifetime Extension Techniques
– Compression Technique

– Deduplication Technique: CAFTL

– Dynamic Throttling: READY
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Trend of NAND Device Technologies
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NAND capacity is continuously increased, 
and NAND flash-based storages are widely adopted.



Trend of NAND Device Technologies
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Lifetime Problem of NAND-based Storages
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Decreasing lifetime is a main barrier for sustainable growth.
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Lifetime ∝ Capacity × Endurance

Daily workload × WAF
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Techniques for Improving Lifetime
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Workload-Reduction Methods 
for Extending SSD Lifetime

• Reduce amount of written data
– Compression technique

• Compressed data are stored

– Deduplication technique
• Prevent redundant data from being stored in SSDs

• Throttling SSD Performance
– Dynamic Throttling

• Guarantee the lifetime of SSD by throttling write traffic
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Compression Technique in SSD
• Reduces the amount of data written
• Improve effectively both the write speed and the reliability of a SSD
• Case Study: BlueZip

Lifetime Issues & Techniques (Jihong Kim/SNU) 8



Design of BlueZIP

• BlueZIP
– Based on the LZRW3 algorithm for compression/decompression

– Has a local memory which is used as a hash table for compression

– Compresses data and writes the compressed data into the BRAM buffer

– The flash controller reads the compressed data from the BRAM buffer
and writes them into the flash board

• FTL
– Gives BlueZIP multiple pages to compress and write them 

– Accepts return value from BlueZip, which is the size of the compressed data
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Primary Performance Evaluation
• Reduce the write times by 15% on average
• Reduce the amount of written data by 26% on average
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Deduplication Technique
- CAFTL



Data Redundancy in Storage

• Duplicate data rate – up to 85.9% over 15 disks in CSE/OSU
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Content-Aware Flash Translation Layer (CAFTL)

• Key Idea
– Eliminating duplicate writes

– Coalescing redundant data

• Potential benefits
– Removing duplicate writes into flash memory -> 

reducing “write/day”

– Extending available flash memory space -> increasing 
available “flash space”

Lifetime     = 
Endurance  x  Capacity 

Write/day x  Efficiency of FTL
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Overview of CAFTL

• In-line deduplication
– Proactively examines incoming data

– Cancels duplicate writes before committing a request

– Best-effort solution

• Out-of-line deduplication
– Periodically scans flash memory 

– Coalesces redundant data out of line
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Architecture of CAFTL
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Fingerprint Store Challenges

• Fingerprint store
– Maintains fingerprints in memory

• Challenges
– Memory overhead (25 bytes each)
– Fingerprint store lookup overhead

• Observations and indications
– Skewed duplication fingerprint distribution – only 10~20%

• Most fingerprints are not duplicate -> waste of memory space
• Most lookups cannot find a match -> waste of lookup latencies
Store only the most likely-to-be-duplicate fingerprints in memory
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Challenges of Existing Mapping Table

• When a physical page is relocated to 
another place, all the logical pages 
mapped to this page should be 
updated quickly

• For update request, the physical page 
cannot be invalidated if the page is 
shared
– Must track the number of referencing 

logical pages
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Two-Level Indirect Mapping

• Virtual Block Address (VBA) is 
introduced
– Additional indirect mapping level
– Represents a set of LBAs mapped to same 

PBA
– Each entry consists of 

{PBA, reference}
• Significantly simplifies reverse updates
• Secondary mapping table can be small

– Since most logical pages are unique
• Incurs minimal additional lookup 

overhead
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Sampling for Hashing

• Most writes are unique -> most hashing operations 
turn out useless eventually

• Intuition
– If a page in a write is a duplicate page, the other pages are 

likely to be duplicate too
• Sampling

– Select one page in a write request as a sample
– If the sample page is duplicate, hash and examine the 

other pages
– Otherwise, stop fingerprinting the whole request at 

earliest time
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Selecting Sample Pages

• Content-based sampling
– Selecting/comparing the first four bytes (i.e. sample bytes) in each page

• Concatenating the four bytes into a 32-bit numeric value
– The page with the largest value is the sample page
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Out-of-line Deduplication

• Periodically launched during device idle time 

• Uses external merge sort to identify duplicate 
fingerprint
– Part of the meta data page array is loaded into 

memory and sorted and temporarily stored in flash

• CAFTL reserves dedicated number of flash pages 
to store metadata (e.g. LBA and fingerprint)
– For 32GB SSD with 4KB pages, it needs only 0.6% of 

flash space
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Example of Out-of-line Deduplication
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Performance Evaluation

• SSD simulator
– Microsoft Research SSD extension for Disksim simulator

– Simulator augmented with CAFTL design and on-device 
buffer

• SSD configurations
– Default configuration numbers

– Estimated latencies of hashing code on ARM simulator
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Workloads and Trace Collection

• Desktop (d1, d2)
– Typical office workloads
– Irregular idle intervals and small reads/writes

• Hadoop (h1-h7)
– TPC-H data warehouse queries were executed on a 

Hadoop distributed system platform
– Intensive large write of temp data

• Transaction (t1, t2)
– TPC-C workloads were executed for transaction 

processing
– Intensive write operations
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Effectiveness of Deduplication

• Removing duplicate writes
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Effectiveness of Deduplication

• Extending flash space
– Space saving rate : (n-m) / n

• n–total # of occupied blocks of flash memory w/o CAFTL
• m–total # of occupied blocks of flash memory w/ CAFTL

Smaller workloads
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Dynamic Throttling- READY



Unpredictable Lifetime

• The lifetime of SSDs strongly fluctuates depending 
on the write intensiveness of a given workload
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Lifetime Guarantee Using Static Throttling

• To guarantee the SSD lifetime, some SSD vendors 
start to adopt a static throttling technique
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Underutilize the Endurance of SSDs

• Self Recovery Effect of Memory Cell
– Repetitive P/E cycles cause damage to memory cells
– The damage of cells can be partially recovered during the idle time between two 

consecutive P/E cycles
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Effective P/E Cycles

• The effective number of P/E cycles is much higher than 
P/E cycles denoted by datasheets

• Example: 20nm 2-bit MLC flash memory with 3K P/E cycles
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• The endurance can be improved if the self-recovery is exploited in throttling write 
traffic…



REcovery-Aware DYnamic throttling (READY)

• Guarantee lifetime of SSDs by
– Throttling SSD performance depending on the write 

demands of a workload 

– Exploiting the self-recovery effect of memory cells, 
which improves the effective P/E cycles
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Benefit of READY
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Design Goals of READY

• Design goal 1: minimize average response times
– Determine a throttling delay as low as possible so that the SSD 

is completely worn out at the required lifetime

• Design goal 2: minimize response time variations
– Distribute a throttling delay as evenly as possible over every 

write request
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Overall Architecture of READY
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Write Demand Predictor

• Write demand predictor exploits cyclical behaviors of
enterprise workloads to predict future write demands
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Throttling Delay Estimator

• Decide a throttling delay so that the data written 
during the next epoch is properly throttled

• Calculate a throttling delay by using the predicted 
write demand and the remaining lifetime
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Change Throttling Delay

• Case 1: predicted write demand = epoch capacity
– Don’t change a throttling delay

• Case 2: predicted write demand > epoch capacity
– Increase a throttling delay to reduce the number of data 

written

• Case 3: predicted write demand < epoch capacity
– Decrease a throttling delay to increase the number of data 

written
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Epoch-Capacity Regulator

• Distribute a throttling delay to every page write evenly
– This is beneficial in minimizing response time variations
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Experimental Setting
• Use the DiskSim-based SSD simulator for evaluations

– 20 nm 2-bit MLC NAND flash memory with 3K P/E cycles
– The target SSD lifetime is set to 5 years

• Evaluated SSD configurations

• Benchmarks

Lifetime Issues & Techniques (Jihong Kim/SNU) 40

NT No Throttling

ST Static Throttling

DT Dynamic Throttling

READY Recovery-Aware Dynamic Throttling

Trace Duration Data written 
per hour (GB) WAF SSD capacity 

(GB)

Proxy 1 week 4.94 1.62 32

Exchange 1 day 20.61 2.24 128

map 1 day 23.82 1.68 128



Lifetime Analysis

• NT cannot guarantee the required SSD lifetime
• READY achieves the lifetime close to 5 years
• ST and DT exhibit the lifetime much longer than 5 years
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Data Written to SSD during 5 years

• ST and DT uselessly throttles write performance even 
through they can write more data to the SSD

• READY exhibits 10% higher endurance than NT because 
of the increased recovery time
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Performance Analysis

• NT exhibits the best performance among all the configurations
• READY performs better than ST and DT while guaranteeing the required 

lifetime
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