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Outline

* Introduction to lifetime problem in SSDs

 SSD Lifetime Extension Techniques
— Compression Technique
— Deduplication Technique: CAFTL
— Dynamic Throttling: READY



Trend of NAND Device Technologies
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NAND capacity is continuously increased,

and NAND flash-based storages are widely adopted.



Trend of NAND Device Technologies
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Total amount of writes of NAND flash-based storages

does not increase as much as we expected.



Lifetime Problem of NAND-based Storages
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Decreasing lifetime is a main barrier for sustainable growth.



Techniques for Improving Lifetime

Self-Healing SSDs
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Workload-Reduction Methods
for Extending SSD Lifetime

e Reduce amount of written data

— Compression technique
* Compressed data are stored

— Deduplication technique
* Prevent redundant data from being stored in SSDs

* Throttling SSD Performance

— Dynamic Throttling
 Guarantee the lifetime of SSD by throttling write traffic
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Compression Technique in SSD

* Reduces the amount of data written
* Improve effectively both the write speed and the reliability of a SSD
» Case Study: BlueZip
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Design of BlueZIP

* BlueZIP
— Based on the LZRW3 algorithm for compression/decompression
— Has alocal memory which is used as a hash table for compression
— Compresses data and writes the compressed data into the BRAM buffer

— The flash controller reads the compressed data from the BRAM buffer
and writes them into the flash board

e FTL
— Gives BlueZIP multiple pages to compress and write them
— Accepts return value from BlueZip, which is the size of the compressed data

Pages

Compressor

Flash Memory
BlueZIP Module




Primary Performance Evaluation

* Reduce the write times by 15% on average
*  Reduce the amount of written data by 26% on average

m Amount of Data Written m Write Time
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Web Text Rand Average
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Deduplication Technique
- CAFTL



Data Redundancy in Storage

* Duplicate data rate - up to 85.9% over 15 disks in CSE/OSU
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Content-Aware Flash Translation Layer (CAFTL)
e Keyldea

— Eliminating duplicate writes
— Coalescing redundant data

e Potential benefits

— Removing duplicate writes into flash memory ->
reducing “write/day”

— Extending available flash memory space -> increasing
available “flash space”

Endurance x Capacity
Write/day x Efficiency of FTL

Lifetime =




Overview of CAFTL

* In-line deduplication
— Proactively examines incoming data
— Cancels duplicate writes before committing a request
— Best-effort solution

* Out-of-line deduplication

— Periodically scans flash memory
— Coalesces redundant data out of line
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Fingerprint Store Challenges

7

e Fingerprint store
— Maintains fingerprints in memory
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— Memory overhead (25 bytes each)

— Fingerprint store lookup overhead 540 15 20 25 30 35 40 45 50
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* Observations and indications
— Skewed duplication fingerprint distribution - only 10~20%

* Most fingerprints are not duplicate -> waste of memory space

Store only the most likely-to-be-duplicate fingerprints in memory
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Challenges of Existing Mapping Table

* When a physical page is relocated to e B

another place, all the logical pages 1 i> 0
mapped to this page should be 3 -

updated quickly |

* For update request, the physical page 2
cannot be invalidated if the pageis |
shared ni k

— Must track the number of referencing ~ Mapping
. table  Flash Mem.
logical pages

Lifetime Issues & Techniques (Jihong Kim/SNU) 17



Two-Level Indirect Mapping

Virtual Block Address (VBA) is Ml -
introduced 0
— Additional indirect mapping level ) —] 0
— Represents a set of LBAs mapped to same 3 —
PBA VBA | PBA 1
— Each entry consists of 0
{PBA, reference} S| 2
Significantly simplifies reverse updates )
Secondary mapping table canbe small _ — |
— Since most logical pages are unique " m ok
Incurs minimal additional lookup Primary  Secondary - Flash

overhead mapping table mapping table Mem.



Sampling for Hashing

* Most writes are unique -> most hashing operations
turn out useless eventually
e Intuition

— If a pagein a write is a duplicate page, the other pages are
likely to be duplicate too

e Sampling
— Select one page in a write request as a sample

— If the sample page is duplicate, hash and examine the
other pages

— Otherwise, stop fingerprinting the whole request at
earliest time



Selecting Sample Pages

* Content-based sampling

— Selecting/comparing the first four bytes (i.e. sample bytes) in each page
» Concatenating the four bytes into a 32-bit numeric value

— The page with the largest value is the sample page

Content-based Sampling
1 2 3 4

1 - 0 2

\\

The page with
maximum sample byte
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Out-of-line Deduplication

* Periodically launched during device idle time

* Uses external merge sort to identify duplicate
fingerprint
— Part of the meta data page array is loaded into
memory and sorted and temporarily stored in flash

o CAFTL reserves dedicated number of flash pages
to store metadata (e.q. LBA and fingerprint)

— For 32GB SSD with 4KB pages, it needs only 0.6% of
flash space



Example of Out-of-line Deduplication

match!
{ditjdwls. LBA 0}
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Page#2
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Performance Evaluation

e SSD simulator

— Microsoft Research SSD extension for Disksim simulator

— Simulator augmented with CAFTL design and on-device

buffer

e SSD configurations

Flash page size 4KB
Pages / block 64
Blocks / plane 2048
Num of pkgs 10
Over-provisioning 15%
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Description
Flash Read
Flash write
Flash Erase

SHA-1 hashing

CRC32 hashing

Latency
25us
200ps
1.5ms
47,548 cycles
4,120 cycles
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Workloads and Trace Collection

e Desktop (d1,d2)

— Typical office workloads
— Irreqular idle intervals and small reads/writes

e Hadoop (h1-h7)

— TPC-H data warehouse queries were executed on a
Hadoop distributed system platform

— Intensive large write of temp data

 Transaction (t1, t2)

— TPC-C workloads were executed for transaction
processing

— Intensive write operations



Effectiveness of Deduplication

* Removing duplicate writes
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Effectiveness of Deduplication

* Extending flash space

— Spacesavingrate:(n-m)/n
» n-total # of occupied blocks of flash memory w/o CAFTL
» m-total # of occupied blocks of flash memory w/ CAFTL
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Dynamic Throttling- READY



Unpredictable Lifetime

* The lifetime of SSDs strongly fluctuates depending
on the write intensiveness of a given workload

Required lifetime

Bandwidth
(MB/sec)

Write intensiveness is high

Cannot guarantee
. therequired lifetime

Bandwidth
(MB/sec)

| |
| |
Required Lifetime 5
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Lifetime Guarantee Using Static Throttling

* To quarantee the SSD lifetime, some SSD vendors
start to adopt a static throttling technique

Cannot guarantee
., therequired lifetime

.

Bandwidth
(MB/sec)

|
<No throttling> T,
= A
S g The data written <375 TB Limited bandwidth
"?__: g ' (e.g, 2.5 MB/s =
8= 375TB/5yrs.)

<Static throttling> Tesd

«  Static throttling is likely to underutilize the endurance
of SSDs, incurring performance degradation
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 Self Recovery Effect of Memory Cell

Underutilize the Endurance of SSDs

— Repetitive P/E cycles cause damage to memory cells

— The damage of cells can be partially recovered during the idle time between two
consecutive P/E cycles

Control Gate
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Oxide Floating Gate (-) (<) (-) (-) (5) &)
n+ N+ N+ n+ N+ l N+
rapped Charge
e O] Charge
detrappin
substrate substrate substrate

<Erased Cell>

Cell Programming

<Programmed Cell>

(Damage)

<Programmed Cell>

Idletime
(Recovery)




Effective P/E Cycles

* The effective number of P/E cycles is much higher than
P/E cycles denoted by datasheets

o Example: 20nm 2-bit MLC flash memory with 3K P/E cycles

9000 I I I I I I 1 1
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5000 | ///////// .

4000 |/ .

Achievable P/E cycles

3000 II ] ] ] ] | | | |
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Idletime (second)

. The endurance can be improved if the self-recovery is exploited in throttling write
traffic...



REcovery-Aware DYnamic throttling (READY)

e Guarantee lifetime of SSDs by

— Throttling SSD performance depending on the write
demands of a workload

— Exploiting the self-recovery effect of memory cells,
which improves the effective P/E cycles
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Benefit of READY

»
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Design Goals of READY

* Design goal 1: minimize average response times

— Determine a throttling delay as low as possible so that the SSD
is completely worn out at the required lifetime

* Design goal 2: minimize response time variations

— Distribute a throttling delay as evenly as possible over every
write request
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Overall Architecture of READY
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Write Demand Predictor

* Write demand predictor exploits cyclical behaviors of
enterprise workloads to predict future write demands

Predict that the same number of data
Il
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Throttling Delay Estimator

* Decide a throttling delay so that the data written
during the next epoch is properly throttled

* Calculate a throttling delay by using the predicted
write demand and the remaining lifetime

Remaining SSD lifetime

i-th epoch capacity =
present # of remaining epochs

.
000000
et

Future weite demand ™™ Vs

Write demand

Past Future

i ! ! ! » Time
(i-1)th epoch i-thepoch  (i+1)th epoch




Change Throttling Delay

* Case 1: predicted write demand = epoch capacity
— Don't change a throttling delay

* Case 2: predicted write demand > epoch capacity

— Increase a throttling delay to reduce the number of data
written

* Case 3: predicted write demand < epoch capacity

— Decrease a throttling delay to increase the number of data
written



Epoch-Capacity Requlator

 Distribute a throttling delay to every page write evenly
— This is beneficial in minimizing response time variations

No throttling delay Apply throttling delay

»
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I Low VV iq
wrive dem write demand
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Bandwidth
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o
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Experimental Setting

 Use the DiskSim-based SSD simulator for evaluations
— 20 nm 2-bit MLC NAND flash memory with 3K P/E cycles
— The target SSD lifetime is set to 5 years

 Evaluated SSD configurations

NT No Throttling
ST Static Throttling
DT Dynamic Throttling
READY Recovery-Aware Dynamic Throttling

e Benchmarks

Trace Duration l[)):rt;(\:\;rrit(tGeg) WAF R fg IB3;=‘ Al

Proxy 1 week 4.94 1.62 32
Exchange 1day 20.61 2.24 128

map 1 day 23.82 1.68 128




tive Lifetime (year)

Required
lifetime

* NT cannot guarantee the required SSD lifetime
» READY achieves the lifetime close to 5 years

Lifetime Analysis
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e ST and DT exhibit the lifetime much longer than 5 years




Data Written to SSD during 5 years
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ST and DT uselessly throttles write performance even
through they can write more data to the SSD

 READY exhibits 10% higher endurance than NT because
of the increased recovery time



Performance Analysis
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* NT exhibits the best performance among all the configurations

* READY performs better than ST and DT while guaranteeing the required
lifetime
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