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Table 6.1: Experimental Rotor Configurations

Configuration Flap flexure Lead-lag flexure Blade pitch angle set

1 nominal, ωβ0 < ωζ0 straight, Kpζ = 0 outboard of flexures
2 nominal, ωβ0 < ωζ0 skewed, Kpζ = −0.4 outboard of flexures
3 nominal, ωβ0 < ωζ0 skewed, Kpζ = −0.4 outboard of flexures
4 thick, ωβ0 = ωζ0 straight, Kpζ = 0 outboard of flexures
5 thick, ωβ0 = ωζ0 skewed, Kpζ = −0.4 outboard of flexures

Table 6.2: Rotor Structural Properties

Property Value

Radius, cm 81.10
Chord, cm 4.19
Hinge offset, cm 8.51
Lock number 7.37 (based on a = 5.73)
Airfoil NACA 23012 (C0 = 0.15)
Profile drag (cd0) 0.0079
Blade mass (to flap flexure), g 209.00
Blade mass centroid (ref. flexure centerline), cm 18.60
Blade flap inertia (ref. flexure centerline), g-m2 17.30
Blade polar inertia (ref. hub centerline), g-m2 85.50

Table 6.3: Blade Frequency and Damping

Configuration ωβ0, Hz ωζ0, Hz ξ%

1 3.13 6.70 0.52
2 3.13 7.16 0.65
3 3.13 7.16 0.65
4 6.63 6.73 0.53
5 6.64 7.04 0.65

Table 6.4: Body Properties

Property Pitch Roll

Body mass, kg 22.60 19.06
Vertical c.g., cm 1.32 1.56

Body inertia, g-m2 633.00 183.00
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(a) Overall set up of the model

SKEWED LEAD-LAG
FLEXURE

(b) Expanded view of blade root flexures

Figure 6.10: A 1.62-m diameter, three-bladed model rotor mounted on a static mast
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(b) Configuration 2
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(c) Configuration 3
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(d) Configuration 4
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(e) Configuration 5

Figure 6.11: Lead-lag regressing mode damping as a function of rotor speed at blade
pitch angle θ0 = 9o
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Figure 6.12: Lead-lag regressing mode damping as a function of blade pitch angle for
configuration 1; ωβ0 < ωζ0, Kpζ = 0
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Figure 6.13: Lead-lag regressing mode damping as a function of blade pitch angle for
configuration 3; ωβ0 < ωζ0, Kpζ = −0.4
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Figure 6.14: Lead-lag regressing mode damping as a function of blade pitch angle for
configuration 4; ωβ0 = ωζ0, Kpζ = 0
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(a) Lead-lag progressive and regressive modes
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(b) Body roll and pitch modes
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(c) Flap progressive and regressive modes
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(d) All modes

Figure 6.15: Modal frequencies as a function of rotor speed for configuration 1; ωβ0 < ωζ0,
Kpζ = 0, blade pitch angle thetab = 0
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(a) Lead-lag regressive mode damping
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(b) Body pitch mode damping
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(c) Body roll mode damping

Figure 6.16: Modal damping as a function of rotor speed for configuration 1; ωβ0 < ωζ0,
Kpζ = 0.
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Figure 6.17: Body pitch and roll mode damping as a function of blade pitch angle for
configuration 1; ωβ0 < ωζ0, Kpζ = 0, Ω = 650 rpm.
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(b) Body roll and pitch modes
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(c) Flap progressive and regressive modes
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Figure 6.18: Modal frequencies as a function of rotor speed for configuration 4; ωβ0 = ωζ0,
Kpζ = 0, blade pitch angle θb = 0.
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(a) Lead-lag regressive mode damping
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(b) Body pitch and flap regressive mode damping
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(c) Body roll mode damping

Figure 6.19: Modal damping as a function of rotor speed for configuration 1; ωβ0 < ωζ0,
Kpζ = 0.



Bibliography

[1] Coleman, R. P. and Feingold, A. M., “Theory of Self-Excited Mechanical Oscillations of
Helicopter Rotors with Hinged Blades,” NACA Report 1351, 1958.

[2] Hammond, C. E., “An applicatoin of Floquet theory to the prediction of mechanical insta-
bility,” Journal of the American Helicopter Society, Vol. 19, No.4, Oct. 1974. pp, 14-23.

[3] Bousman, W. G., “An Experimental Investigation of the Effects of Aeroelastic Couplings on
Aeromechanical Stability of a Hingeless Rotor Helicopter,” Journal of the American Heli-

copter Society, Vol. 26, (1), January 1981, pp. 46–54.

[4] Donham, R. E., Cardinale, S. V., and Sachs, I. B., “Ground and Air Resonance Characteristics
of a Soft In-plane Rigid-Rotor System,” Journal of the American Helicopter Society, Vol. 14,
(4), October 1969, pp. 33–41.

[5] Lytwyn, R. T., Miao, W., and Woitsch, W., “Airborne and Ground Resonance of Hingeless
Rotors,” Journal of the American Helicopter Society, Vol. 16, (2), April 1971, pp. 2–9.

[6] Miao, W., Edwards, W. T., and Brandt, D. E., “Investigation of Aeroelastic Stability Phe-
nomena of the Helicopter by In-flight Shake Test,” NASA Symposium on Flutter Testing

Techniques, NASA SP-415, 1976, pp. 473–495.

[7] Staley, J. A., Gabel, R., and MacDonald, H. I., “Full Scale Ground and Air Resonance
Testing of the Army-Boeing Vertol Bearingless Main Rotor,” Preprint No. 79–23. American
Helicopter Society 35th Annual Forum Proceedings, May 1979.

359



360 BIBLIOGRAPHY



Chapter 7

Aeroelastic Stability in Forward
Flight

The forward flight condition introduces an extra dimension of complexity to the rotorcraft aeroe-
lastic stability and response problems. The airflow on the disk is asymmetric, and also a part of
the region is in either stalled flow or in reversed flow condition. The complexity is caused by the
blade aerodynamic forces which are very much involved.

The equations of blade motion in forward flight contain many periodic terms and therefore one
has to develop special mathematical tools to solve these equations. One possible way of solving
these equations is to write the blade equations in the fixed reference frame using Fourier coordinate
transformation, and then solve these equations approximately either neglecting altogether periodic
terms or using the harmonic balance method on the periodic terms. The other involved method
is to use Floquet theory in the fixed reference frame. The second approach is to keep the blade
equations in the rotating reference frame and solve these using the Floquet or time integration
technique or harmonic balance method. With the dynamic inflow modeling, it is more appropriate
to use the first approach and solve the equations in the fixed reference frame.

To understand the fundamentals of forward flight, we shall start with a simple blade model
undergoing rigid flap motion. Later on a two-degree-of-motion, flap and lag, will be investigated
for aeroelastic stability in forward flight.

7.1 Flap Motion in forward flight

The blade is assumed rigid and it undergoes a single degree of motion, rigid flap, about the flap
hinge. The blade is exposed to forward flight environment.
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z
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The equation of motion of a blade is

∗∗
β +ν2ββ = γMβ

where νβ is the rotating flap frequency and γ is the Lock number. The Mβ represents the
aerodynamic moment about the flap hinge

Mβ =
1

ρacΩ2R4

∫ L

0
r Fz dr

Fz ≈ L

=
1

2
ρV 2ca(θ − up

uT
)

=
1

2
ρca(u2t θ − upuT )

The flow components are

uT
ΩR

= μ sinψ + x

up
ΩR

= xβ̇ + λ+ βμ cosψ

where x = r
R and λ is the induced inflow. The μ is the advance ratio,

μ =
v cosα

ΩR
≈ V

ΩR
(a is tilt of TPP)

Mβ =
1

2

∫ 1

0
x

[( uT
ΩR

)2
θ − up

ΩR

uT
ΩR

]
dx

Assuming θ is uniform along the blade length. It is also assumed that the induced inflow λ is
uniform on the disk.

Mβ =

(
1

8
+

μ

3
sinψ +

μ2

4
sin2 ψ

)
θ −
(
1

8
+

μ

6
sinψ

) ∗
β

−
(
1

6
+

μ

4
sinψ

)
λ− μ cosψ

(
1

6
+

μ

4
sinψ

)
β

The flap equation becomes

∗∗
β +

(
1

8
+

μ

6
sinψ

) ∗
β +

[
ν2β + γμ cosψ

(
1

6
+

μ

4
sinψ

)]
β
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= γ

(
1

8
+

μ

3
sinψ +

μ2

4
sin2 ψ

)
θ

−γ

(
1

6
+

μ

4
sinψ

)
λ (7.1)

This is a linear differential equation containing periodic coefficients. If the effect of pitch-flap
coupling kpβ is also to be introduced, then replace θ by θ − kpβ in the above equation.

∗∗
β +γ

(
1

8
+

μ

6
sinψ

) ∗
β +

[
ν2β + γμ cosψ

(
1

6
+

μ

4
sinψ

)

+γ

(
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8
+

μ

3
sinψ +

μ2

4
sin2 ψ

)
kpβ

]
β

= γ

(
1

8
+

μ

3
sinψ +

μ2

4
sin2 ψ

)
θ − γ

(
1

6
+

μ

4
sinψ

)
λ (7.2)

7.2 Hover Stability Roots

Let us first examine hover flight case (μ = 0). The blade equation becomes

∗∗
β +

γ

8

∗
β +

(
ν2β +

γ

8
kpβ

)
β =

γθ

8
− γλ

6

The stability of the system can be examined from the eigenvalues of this equation.

s = − γ

16
± i

√
ν2β + kpβ

γ

8
−
( γ

16

)2
This is a complex pair i.e., two eigenvalues. The real part of the eigenvalue represents the damping
of the flap mode and the imaginary part represents the frequency of the flap mode.

Frequency of damped oscillations ωd =

√
ν2β + kpβ

γ

8
−
( γ

16

)2

Natural frequency νβe =

√
ν2β + kpβ

γ

8

Damping ratio ζ = −Real s

|s|

=
γ

16νβe

Thus, the damping of the flap mode depends on the Lock number and is always a positive number.
This shows that there is no likelihood of instability of the flap mode. In fact, for a typical Lock
number of 8, the damping ratio is about 50%, a very high number. This damping is due to
aerodynamic force caused by the flapping motion. For a 4-bladed rotor, there will be four identical
pairs. Let us plot roots for a blade in a complex plane
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Root
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The roots will always lie in the left half of the plane on a semi-circular arc.

7.3 Forward Flight Stability Roots

The equation of motion for a blade in forward flight (Eq. 7.2) contains periodic coefficients. This
equation is expressed in the rotating reference frame. One way is to solve numerically this equation
using the Floquet theory. For hover case (μ = 0), the roots are complex conjugate pairs and the
magnitude of the root depends on νβ , Y and kpβ . For forward flight the roots, in addition, also
depend on the advance ratio, μ. For low μ, the forward flight roots behavior is influenced by hover
roots. Let us consider these blade cases with kpβ = 0.

I. νβ = 1 and γ = 12 (Articulated)

shover = −12

16
± i

√
1− (

12

16
)2

= −3

4
± i

√
7

16

Frequency of oscillation close to 1/2 per rev.
II. νβ = 1.15 and γ = 6 (Hingeless)

shover = −3

8
± i

√
(1.15)2 − 9

64

Frequency of oscillation close to 1 per rev.
III. νβ = 1.0 and γ = 6 (Articulated)

shover = −3

8
± i

√
1− 9

64

Frequency of oscillation not close to 1/2 per rev. or 1 per rev.
Let us examine the behavior of roots for change of μ from 0 to 0.5.
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For values of γ and νβ such that the hover frequency (Ims) is not close to a multiple of 1/2/rev.
(Case III), the roots for low μ only exhibit a second order (μ2) change in frequency and the damping
remains unchanged.

For values of γ and νβ such that the hover frequency (Ims) is close to a multiple of 1/2/rev.
(Case I), the roots for low μ exhibit a first order (μ) change. There can occur a degradation of
stability, perhaps even an instability, an important characteristic of the periodic system.

For values of γ and νβ such that the hover frequency (Ims) is close to 1/rev. (Case II), the
roots exhibit similar behavior like Case I. For both cases one finds that the frequency Ims decreases
while damping Real s remains constant until an integer multiple of 1/2/rev. is reached. A further
increase of μ results in a change of damping, a decrease for the upper root and an increase for
the lower root, and the frequency stays constant. For larger μ, one needs to include the effect of
reversed flow as well as higher modes.

7.3.1 Stability Roots in Rotating Coordinates

7.3.2 Stability Roots in Fixed Coordinates

Let us examine the flapping dynamics in the fixed reference frame. The equation of motion for the
blade flapping in the rotating frame (Eq. 7.2) is converted to the fixed reference frame using the
Fourier coordinate transformation.
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Let us consider a 3-bladed rotor, n = 1

β(m) = β0 + β1c cosψm + β1s sinψm

Using

1

N

N∑
m=1

(de) = 0

2

N

N∑
m=1

(de) cosψm = 0

2

N

N∑
m=1

(de) sinψm = 0

results in⎡⎢⎢⎣
∗∗
β 0∗∗
β 1c∗∗
β 1s

⎤⎥⎥⎦ =

⎡⎢⎢⎣
γ
8 0 μγ

12

0 γ
8 + μγ

12 sin 3ψ 2− μγ
12 cos 3ψ

μγ
6 −2− μγ

12 cos 3ψ γ
8 − μγ

12 sin 3ψ

⎤⎥⎥⎦
⎡⎢⎢⎣

∗
β0∗
β1c∗
β1s

⎤⎥⎥⎦

+

⎡⎢⎢⎢⎣
ν2β

μ2γ
16 sin 3ψ −μ2γ

16 cos 3ψ

μγ
6 + μ2γ

8 sin 3ψ ν2β − 1 + μγ
6 cos 3ψ γ

8 + μγ
6 sin 3ψ + μ2γ

16

−μ2γ
8 cos 3ψ −γ

8 + μ2γ
16 + μγ

6 sin 3ψ ν2β − 1− μγ
6 cos 3ψ

⎤⎥⎥⎥⎦
⎡⎣ β0

β1c
β1s

⎤⎦ (7.3)

Similarly for a 4-bladed rotor

β(m) = β0 + β1c cosψm + β1s sinψm + β2(−1)(m)

results in⎡⎢⎢⎢⎢⎢⎣
∗∗
β 0∗∗
β 1c∗∗
β 1s∗∗
β 2
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γ
8 0 μγ
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⎤⎥⎥⎥⎥⎥⎥⎦
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⎤⎥⎥⎦ (7.4)

It is important to note that the 3-bladed rotor equations in the fixed system contain periodic
terms of 3ψ only. For a 4-bladed rotor, the equations contain periodic terms of 4ψ as well as 2ψ.
Therfore, in the fixed system, the vibratory forces take place at N/rev for an odd bladed rotor and

N/rev and N
2 /rev for an even bladed rotor where N is the tortal number of blades.

Let us examine an example of an articulated 3-bladed rotor with νβ = 1 and γ = 12. In the
rotating frame there are three identical roots

sR = −3

4
±
√

7

16
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and in the fixed systems, again there are three roots;

coning s = sR

high frequency s = sR + i

low frequency s = sR − i

For forward flight condition, the roots of the equations can be obtained for different μ. One
simple approach is to neglect all periodic terms in the fixed system equations and solve these as
constant coefficient equations. The results are quite satisfactory for low advance ratios (μ < 0.5),
expecially for the low frequency mode. One should keep in mind that this type of approximation
won’t work in the rotating frame. The second method is to solve the fixed frame equations nu-
merically using the Floquet theory. Another way is to use the harmonic balance method in the
fixed frame. In the figure, results are obtained using the Floquet theory and constant coefficient
approximation.

The stability behavior will be identical whether the rotating reference frame or the fixed refer-
ence frame are used.

-1

-2

-1

1

2

Re s

I     sm
periodic coefficients

constant coefficients

high frequency mode

collective and low 
frequency modes

7.4 Flap-lag Stability in Forward Flight

The blade is assumed rigid and it undergoes two degrees of motion, flap and lag motions about
hinges. There are bending springs at the hinges to obtain desired flap and lag frequencies.
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The equations of motion become

Flap Eq.:
∗∗
β +ν2ββ − 2β

∗
ζ= γMβ +

ω2
β0

Ω2 βp
Lag Eq.:
∗∗
ζ +ν2ζ ζ + 2

ωζ0

Ω ζL
∗
ζ +β

∗
β= γM ζ

(7.5)

where νβ and νζ are rotating flap and lag frequencies and ζL is the structural damping coefficient
in the lag mode. The ωβ0 and ωζ0 are the nonrotating flap and lag frequencies.
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Quasisteady aerodynamics is used to obtain the aerodynamic forces on the blade. The reversed
flow effects are neglected.

Fz ≈ L =
1

2
ρac
(
u2T θ − upuT

)
Fx ≈ L

up
uT

+D =
1

2
ρac
(cd
a
u2T + upuT θ − u2p

)
Perturbation forces are

δFz =
1

2
ρac
[
δuT (2uT θ − up)− δup(uT ) + δθu2T

]
δFx =

1

2
ρac
[
δuT

(
2uT

cd
a

+ upθ
)
+ δuP (uT θ − 2up) + δθ(upuT )

]
For making analysis simple, the effect of radial force is neglected.

The flow components are
Steady:

uT
ΩR = x+ μ sinψ
up

ΩR = λ+ xβ̇ + βμ cosψ
(7.6)

Perturbation:

δuT
ΩR = −xζ̇ − μζ cosψ
δup

ΩR = xβ̇ + μβ cosψ
(7.7)

The solution of the governing equation (7.6) consists of two major steps.
(a) Calculation of trim.
(b) Calculation of perturbation stability.

7.4.1 Perturbation Stability Solution

It is assumed that the flutter motion is a small perturbation about the steady trim solution.

(β)Total = (β)trim + (β)perturbation

(ζ)Total = (ζ)perturbation

This is because (ζ)trim trim is neglected. The trim values of β are calculated as

(β)trim = −β1c sinψ + β1s sinψ = βT

(
∗
β)trim = β0 + β1c cosψ + β1s cosψ =

∗
βT

Let us remove the perturbation word from β and ζ. Substituting this in the governing equation
(7.5), and also including the perturbation aerodynamic moment expressions, and keeping linear
terms in perturbation motion components one gets,⎡⎣ ∗∗

β
∗∗
ζ

⎤⎦+ [C(ψ)]

⎡⎣ ∗
β
∗
ζ

⎤⎦+ [K(ψ)]

[
β
ζ

]
= 0 (7.8)

These are matrices of order two, and the various terms are

c11(ψ) =
γ

8
(1 +

4

3
μ sinψ)
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c12(ψ) =
γ

8

(
4

3
λ+

4

3
μβT cosψ+

∗
βT

)
−γ

4
θ

(
1 +

4

3
μ sinψ

)
+ 2βT

c21(ψ) = −γ

4

(
4

3
λ+

4

3
μβT cosψ−

∗
βT

)
+
γ

8
θ

(
1 +

4

3
μ sinψ

)
− 2βT

c22(ψ) =
γ

8
θ

(
4

3
λ
4

3
μ cosψβT+

∗
βT

)
+
cd0
a

γ

4

(
1 +

4

3
μ sinψ

)
− 2βT

∗
βT

k11(ψ) = ν2β +
γ

8

(
4

3
μ cosψ + 2μ2 sinψ cosψ

)
−γ

8
kpβ

(
1 +

8

3
μ sinψ + 2μ2 sin2 ψ

)
k12(ψ) =

γ

8
μ cosψ

(
2λ+ frac43

∗
βT

)
− γ

4
θ

(
4

3
μ cosψ + 2μ2 sinψ cosψ

)
γ

4
βT

(
μ2 cos 2ψ − 2

3
μ sinψ

)
−γ

8
kpβ

(
1 +

8

3
μ sinψ + 2μ2 sin2 ψ

)
k21(ψ) = −γ

4
μ cosψ

(
2λ+ frac43

∗
βT

)
+

γ

8
θ

(
4

3
μ cosψ + μ2 sin 2ψ

)
−γ

2
βTμ

2 cos2 ψ +
γ

8
kpβ

[
4

3
λ

(
1 +

3

2
μ sinψ

)
+

∗
βT

(
1 +

8

3
μ sinψ

)
+ βT

(
4

3
μ cosψ + μ2 sin 2ψ

)]
k22(ψ) = ν2ζ +

γ

8

[
2
cd0
a

(
4

3
μ cosψ + ψ2 sin 2ψ

)
+μ cosψ θ

(
2λ+

4

3

∗
βT

)
− βT θ

(
4

3
μ sinψ − 2μ2 cosψ

)
+2μβT sinψ

(
2λ+

4

3

∗
βT +2μβT cosψ

)]
+
γ

8
kpβ

[
4

3
λ

(
1 +

3

2
μ sinψ

)
+ βT

(
4

3
μ cosψ + μ2 sin 2ψ

)
∗
β

(
1 +

4

3
μ sinψ

)]
In the above expressions

θ = θ0 + θ1c cosψ + θ1s sinψ

The stability of the system is calculated from the solution of the perturbation equations (7.8).
There are many methods to solve these equations. Two possible approaches are discussed here

(a) Constant coefficient approximation.
(b) Floquet Theory.
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7.4.2 Constant Coefficient Approximation

The coefficients of the matrices (c̃ , k̃) contain periodic terms, and these are approximanted as
constant terms by taking average values over a period of 2π. For example,

(cij)new =
1

2π

∫ 2π

0
cij(ψ) dψ

(kij)new =
1

2π

∫ 2π

0
kij(ψ) dψ

and this results in

c11 =
γ

8

c12 = 2β0 +
γ

8

(
4

3
λ+

2

3
μβ1c

)
− γ

4

(
θ0 +

2

3
μθ1s

)
c21 = −2β0 − γ

4

(
4

3
λ+

2

3
μβ1c

)
+

γ

8

(
θ0 +

2

3
μθ1s

)
c22 =

γ

8

[
2
cd0
a

+
1

2
θ1cβ1s − 1

2
θ1sβ1c +

2

3
μθ1c +

2

3
μθ1cβ0

+θ0

(
4

3
λ+

2

3
μβ1c

)]
k11 = ν2β − γ

8
kpβ(1 + μ2)

k12 = −γ

8
kpζ (1 + μ2)− γ

6
μθ1c

k21 =
γ

6
λkpζ +

γ

8
μ

(
2

3
θ1c − 4

3
β1c − 2μβ0

)
k22 =

γ

8

[
μλθ1c − 2

3
μβ0θ1s − 4

3
μβ0β1c + 2μλβ1s

]
γ

6
kpζλ

The perturbation equations (7.8) become constant coefficient equations and these can be solved as
a standard eigenvalue problem.

7.4.3 Floquet Theory

The perturbation equations (7.8) contain periodic terms and the stability of these equations can be
calculated using Floquet theory. As a first step, the Floquet transition matrix is to be calculated.
For this purpose, the equatoins (7.8) are transformed to first order form.

{∗q} = [A(ψ)]{q} (7.9)

where

{q} =

⎡⎢⎢⎢⎢⎣
β
ζ
∗
β
∗
ζ

⎤⎥⎥⎥⎥⎦
[A] =

[
Õ Ĩ

−k̃ −c̃

]
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To obtain the Floquet transition matrix [Q], the equations (7.9) are solved numerically using
some standard time integration technique (say Runge-Kutta) with unity initial conditions. The
solution at ψ = 2π gives the elements of transistion matrix. For example,⎡⎢⎢⎢⎢⎣

β
ζ
∗
β
∗
ζ

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎣
1
0
0
0

⎤⎥⎥⎦
Ic

⇒

⎡⎢⎢⎣
Q11

Q21

Q31

Q41

⎤⎥⎥⎦ (solution at ψ = 2π)

After the transition matrix is evaluated, the next step is to obtain its eigenvalue.

λ{q} = [Q]{q}

If the absolute value of any of the eigenvalue (λ|) is greater than one, the system is unstable.

The numerical results are obtained for a typical rotor configuration with the following charac-
teristics

νβ = 1.15 γ = 1.15 cT
σ = .2 σ = .05

νζ = 1.4 kpβ = kpζ = 0 βp = 0 f/A = 0.01

cd0 = .01 a = 2π h
R = .2

xcg = ycg = 0 cmxF
= cmyF

= 0

Earlier, the trim is calculated for this configuration. These results are plotted for various values
of advance ratio μ.

Conclusions:

1. The constant coefficient approximation in the rotating system gives satisfactory results for
low advance ratio (μ < 0.1).

2. The flap-lag stability in forward flight is very sensitive to the trim solution. For example, the
propulsive trim results are quite different from moment trim results.

3. For large advance ratio (μ > 0.1), the inflow is affected appreciably by the helicopter drag
term (f/A).

4. The implicit periodic coefficients (due to β1c, β1s, θ1c, θ1s) and the explicit periodic coefficients
(μ sinψ, μ cosψ) are important for flap-lag stability analysis.

5. The torsion degree of motion has a considerable influence on blade stability if torsional fre-
quency is small.
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COUPLED TRIM ANALYSIS

• Uncoupled Vehicle Trim (Propulsive)

◦ Control Settings and Vehicle Attitude

◦ Initial Guess for Iteration Process




