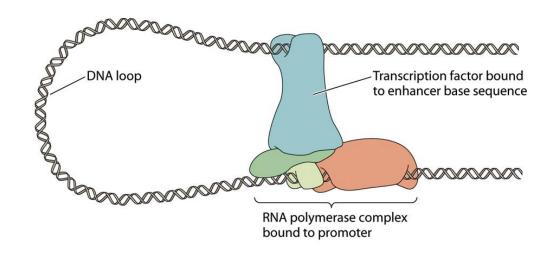
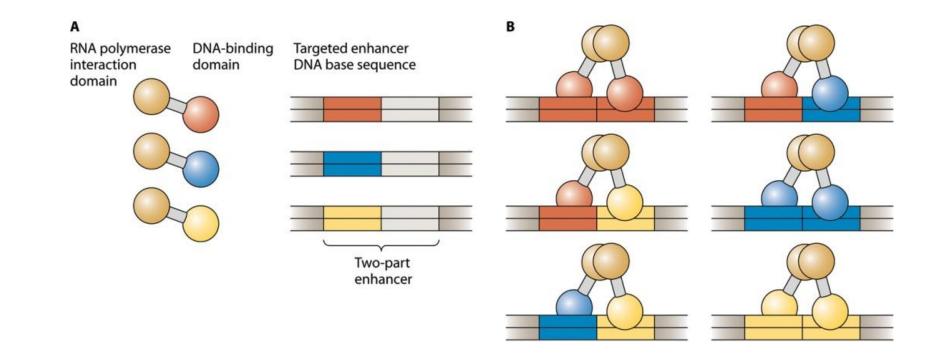


Differential Gene Expression

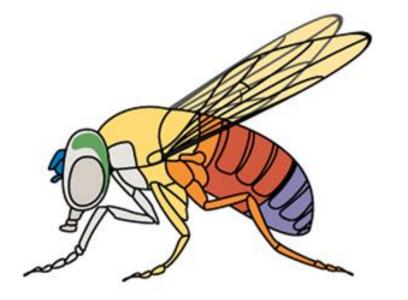

Enhancer

- Base sequence in DNA
- Activate transcription
- Far from the RNA polymerase binding site

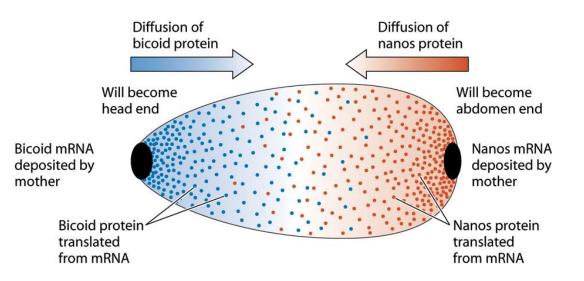

Transcription factor: consisting of two domains

Silencer: turn off transcription

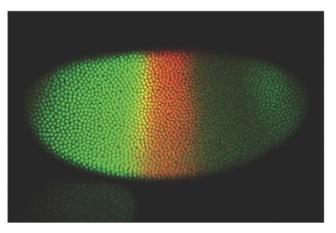
Transcription Factors


- Usually act as a complex with other proteins
- Regulation of gene expression with smaller number of transcription factors

Determination of anterior-posterior body axis in fly


Embryo produced by mutant fly

- Mutant fly (mutation in bicoid) \rightarrow embryo with two tails
- Mutant fly (mutation in nanos) \rightarrow embryo with two heads

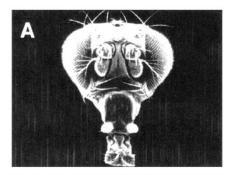

Determination of anterior-posterior body axis in fly

- Establishment of body plan by maternal genes
 - Maternal cells deposit bicoid and nanos mRNA at the opposite ends of embryo during embryo formation
 - Concentration gradient of bicoid and nanos upon fertilization
 - Bicoid end \rightarrow head
 - Nanos end \rightarrow tail

Segment formation

- Hunchback: gene required for development of thorax
 - Regulation of gene expression by bicoid and nanos proteins
 - Bicoid: activation of hunchback
 - Nanos: repression of hunchback

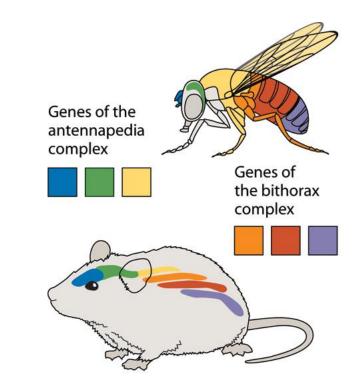
Green: hunchback protein Red: Krupple protein Yellow: both


- Genes turned on in the wake of the bicoid-nanos gradient divide the Drosophila embryo into segments
- Homologous genes in frog, chicken, zebrafish, mouse, and human

Homeotic Genes in Fly

Homeotic genes

- The fates of the individual segments are controlled by an other family of genes: the homeotic genes
- Homeotic gene clusters
 - Bithorax complex
 - Controlling the development of the posterior half of the embryo
 - Gene arrangement on the chromosome is in the same order as the segments of the fly body they controls
 - Antennapedia complex
 - Controlling the development of the anterior part


A. NormalB. Antennapedia

Homeotic Genes in Vertebrates

- Similar to Drosophila homeotic genes
- Instead of one bithorax cluster and one antennapedia cluster, mouse and human have 4 copies of each.
- The proteins encoded by homeotic genes have similar DNA binding domains, called the homeodomain.
- Homeotic genes would specify segment fate by turning different sets of genes on and off.

6. 포유동물의 초기 발생

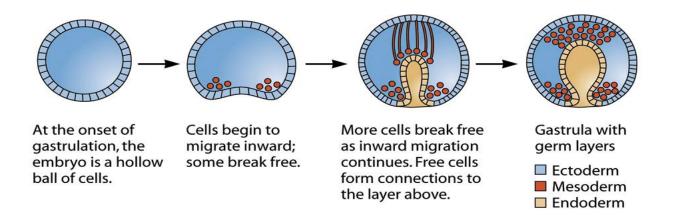
Early Cell Division and Implantation


Blastocyst

- Inner cell mass
- Trophoblast (outer cell layer)
 - The trophoblast cells form a fluid-filled ball with the inner cell mass.
 - The trophoblast cells will form the embryo's portion of placenta.
 - Implantation into the uterus
- Extraembryonic tissues
 - Fetal side of placenta

+

- Membranes surrounding the fetus
- After implantation, the cells of the inner cell mass undergo gastrulation.


Blastocyst

※ 출처: commons.wikimedia.org

Early Development in Mammals

- Gastrulation (The blastula undergoes a dramatic rearrangement.)
 - Formation of three germ layers
 - Ectoderm \rightarrow outer layer of the skin and the nervous tissue
 - Endoderm \rightarrow inner linings of the digestive organs and circulatory system
 - Mesoderm \rightarrow muscle, bone, blood, and other internal organs and tissues
- Differentiation into specific tissues and organs
 - Homeotic genes

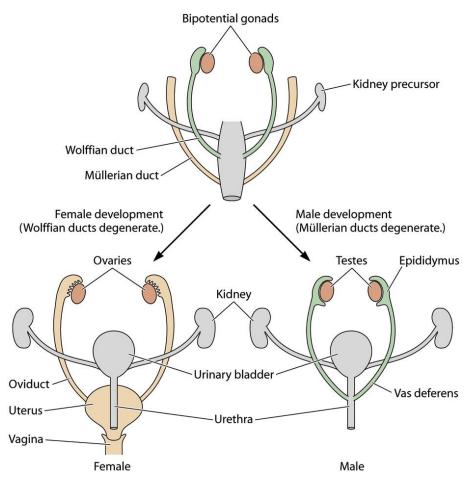
Twin and Chimera

- Identical twin
 - They develop from the same inner cell mass, which splits and forms two embryos
- Chimera
 - a single organism composed of two different embryo's inner cell mass

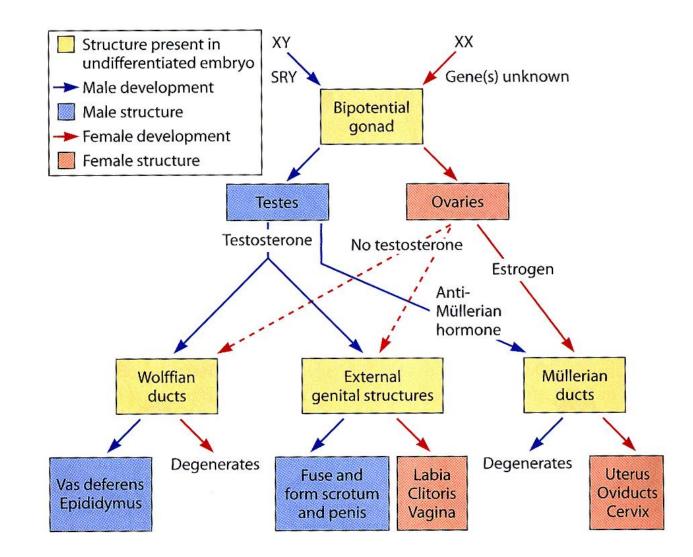
7. 성의 분화 (Sex Differentiation)

Primary sex determination

- Determination of the gonads: ovaries or testes
 - Genetic
 - Environmental
 - Reptile ; depending on the temperature
- Secondary sex determination
 - Sexual phenotype outside the gonads
 - Male mammals: penis, seminal vesicles, prostate gland
 - Female mammals: vagina, cervix, uterus, oviducts, mammary glands
- Different from species to species


Primary Sex Determination

23 pairs of human chromosomes


- Autosomes: 22 pairs (homologous chromosomes)
- Sex chromosomes
 - Male: XY, Female: XX
 - X chromosome :1500 genes not related to gender development, essential for survival
 - Y chromosome: small, 100 genes
 - SRY: sex-determining region of the Y chromosome
 - Regulation of early gene expression

		3	4	5	6	7	a	9	
10		12	13			16	17	18	
19	20	21							

- Primordial gonadal structure : bipotential gonads
 - Mullerian and Wolffian ducts
- Female development
 - Degeneration of Wolffian ducts
 - Generation of ovaries and eggs
- Male development
 - Degeneration of Mullerian ducts
 - Generation of testes and sperms

- With SRY
 - Expressed around week 7 of development
 - Stimulation of testes formation
 - Hormones secreted from testes
 - Anti Mullerian hormone (AMH)
 - Testosterone
 - Stimulate development of male sex organs
- Without SRY
 - Development of ovaries
 - Hormones secreted from ovaries
 - Estrogen
 - Generation of female sex organs
- Two X chromosomes are necessary for complete female sexual development
 - Turner's syndrome: one X, no Y chromosome

Sex Hormones

- No strict female and male hormone
- Estradiol
 - Responsible for growth spurts of boys and girls at puberty
 - Conversion of testosterone to estradiol in the bone of boys
- Testosterone
 - Generated in the adrenal glands of the kidney and in the ovaries
 - Stimulation of the growth of mammary glands, uterus, and clitoris in rats
- Estrogen
 - Produced from the adrenal glands in both males and females
 - Necessary for complete development of the Wolffian ducts
 - Fertility in adult males
 - Water resorption during semen formation

8. 성 발생의 비정상적 변형

Variations in Sex Development

- Androgen (male hormone secreted from testes) insensitivity: XY female
 - Androgen: male hormone
 - Mutation of the testosterone receptor in X chromosome
 - Testes formation because of SRY gene
 - Female external genital structures

Variations in Sex Development

DHT deficiency

 Testosterone converted into 5α-dihydrotestosterone (DHT) in the fetal external genitalia

Testosterone \rightarrow DHT

- Mutation of the converting gene on chromosome 2
- High concentration of testosterone at puberty
 - \rightarrow development of external genitalia at puberty
- Common in a certain population in the Caribbean

Variations in Sex Development

- CAH (Congenital adrenal hyperplasia)
 - No cortisol-synthesizing enzyme
 - Cortisol precursor is same as androgen precursor.
 - Overproduction of testosterone and other androgens from adrenal gland
 - Female fetus \rightarrow Male-like genital structure

Gender Identity

- Testosterone
 - Key factor in the development of sexual identity