Two-dimensional materials and applications

8. van der Waals Heterostructures

van der Waals Heterostructures

Ultrathin devices for flexible & transparent Ultrasharp heterointerface formed through vdW force

Stacking Technique for 2D Heterostructures

<u>G.H. Lee</u>, J. Hone et al. ACS Nano (2013). APL Materials (2014)

Stacking Technique for 2D Heterostructures

Robotic assembly of artificial nanomaterials

A. Castellanos-Gomez et al. Nat. Nanotechnol. (2018)

T. Machida et al. Nat. Commun. (2018)

van der Waals Heterostructures

Effect of hBN on Electrical Transport of Graphene

J. Xue et al. Nat. Mater. (2011)

Room-temperature mobility > 140,000 cm²/Vs

L. Wang et al. Science (2014)

40,000 cm²/V·s at 300K

Graphene
BN

A SIO

C. Dean et al. Nat. Nanotech. (2010)

Advantages of van der Waals Heterostructures

1. Ultrathin devices for flexible & transparent electronics

VS.

2. Ultrasharp heterointerface

G.H. Lee et al. ACS Nano (2013)

3. Arbitrary stacking

<u>G.H. Lee</u> et al. Nat. Nanotechno. (2015)

J. P et al. Nature (2017)

Advantages of van der Waals Heterostructures

4. Band engineering

5. Strong light-matter interaction

L. Britnell et al. Science (2013)

60

x10

Laser nower ut

G33 nm △ 514 nm O 488 nm

80

6. Vertical confinement in 2D space (quantum well structure)

R. V. Gorvachev et al. Science (2012)

F. Withers et al., Nat. Mater. (2015)

Advantages of van der Waals Heterostructures

7. Interlayer interaction (interlayer exciton)

A. Kis et al. Nature (2018)

8. Periodic potential modulation / Novel symmetry material systems (Quasicrystal)

L. A. Ponomarenko et al. Science (2019)

Y.W. Son et al. Science (2018)

Issue in Stacking

Formation of bubbles

S. Jeong et al. Nanoscale (2017)

Various Types of vdW Heterostructure Devices

1. Vertical contact

2. Vertical transistors

3. Vertical diodes

- Versatile work-function tunable contact
- Less contamination
- Non-damaging interface between metal and 2D channel

- High-speed, low-power and flexible
- Tunneling vertical transistors

- Unique E-field controlled p-n diodes
- Anti-ambipolar behavior

Various Types of vdW Heterostructure Devices

f

а n or p type D Gate oxide b n type p type Gate oxide с Gate oxide

4. Light harvesters and detectors

- Gate-dependent photoresponse (tunable carrier density)
- Dynamic modulation of diode characteristics
- Rapid extraction of exciton

5. Light emitting devices

- Au Al₂O₃ Mos GaN ϕ Pt
- Vertical device structure
- Vertical current injection
- Quantum well structure

Heterostructure of Graphene/hBN

Tunable Schottky barrier in graphene

Tuning the graphene work function by electric field

P. Kim et al. Nano. Lett. (2009)

Field-effect tunneling transistor

L. A. Ponomarenko et al. Science (2012)

Barristor

Graphene barristor

Tunable Schottky barrier

□ Barristor = Barrier + transistor

Barristor is a device that controls the on-off ratio by changing the Schottky barrier of graphene and silicon via the applied gate voltage.

Flexible and Transparent Heterostructure Devices

Number of Layers

ACS Nano 7, 7931-7936 (2013)

Heterostructure Charge Trap Memory

Nature Communications 4, 1624-1628 (2013)

Heterostructure of TMD/TMD

Band engineering

J. Wu et al. Appl. Phys. Lett (2013)

Band structure dependent on TMD thickness

F. Wang et al. Nano Lett. (2010)

H. S. J. van der Zant et al Chem. Soc. Rev. (2018)

Heterostructure of TMD/TMD

WSe, ۵ 0 0.0000000000 MoS Two unit cells

Atomically PN junction

PN Junction device

(mA)

0.3 0.4 0.5

0.0 $V_{ds}(V)$

V_{ds}(V)

- 1L-1L

- 2L-2L

- ML-ML (10-9 nm)

50

Photocurrent (mA/W)

-150|____ -10

Ó

10 20 30 1.9 2.1 2.3 2.5 1.5 1.7 Voltage/thickness (mV/nm) Photon energy (eV)

C.H. Lee, <u>G.H. Lee</u> et al. Nat. Nanotechno. (2014)

Heterostructure of Graphene/Graphene

Twisted bilayer graphene

Graphene quasi-crystal

P Jarillo-Herrero et al. Nature. (2018)

L. A. Ponomarenko et al. Science (2019)

Y.W. Son et al. Science (2018)

Excitons and Excitonic Devices

Interlayer exciton

Interlayer exciton		
Charge	Neutral Charge	
Transport mechanism	Diffusion	
Control parameter	Exciton density	

Interlayer excitons in the vdW heterostructure

Excitonic transistor operation by electric field

A. Kis et al. Nature (2018)

Light Emitting Devices

60 +40 V -40 Spectral intensity (counts) 100 Current (nA) 40 200 nA 20 Unipolar, 200 nA here a substant of the second states and the 1.2 1.5 2.0 2.2 Energy (eV)

TMDC Light Emitter

• Atomically thin LEDs (pn junction by split gate) from WSe₂, MoS₂, WS₂ • EQE: ~ 0.2 % (limited by contact and thickness)

> A. Pospischil et al. Nature Nanotech. 9, 257 (2015) B. W. H. Baugher et al. Nature Nanotech. 9, 262 (2015)

J. S. Ross et al. Nature Nanotech. 9, 268 (2015)

van der Waals Light Emitter

- Atomically thin quantum well with van der Waals heterostructure
- Efficient electron and hole injection by tunneling through hBN
- Flexible and transparent light emission devices
- EQE: 2.0 ~ 8.4 % (at low T)

F. Withers et al. Nature Materials 14, 301 (2015)

Monolayer WSe₂ LETs with Tunable Schottky Barrier

J. Kwon, C. H. Lee, <u>G. H. Lee</u> Advanced Materials (2020)

Multi-operation Modes of WSe₂ LETs

J. Kwon, C. H. Lee, <u>G. H. Lee</u> Advanced Materials (2020)

Light Emitting Devices

J. Hone. et al. Nano Lett. (2018)

Light emission from graphene

High breakdown current

Multiple Quantum Well of TMDs

Fabrication process of WO_x/WSe₂/WO_x/WSe₂ by Layer-by-layer oxidation

TQWs

0 L 1.4

70

50

6

3

Intensity (norm.)

60

FWHM (meV)

Y. S. Kim[†], S. Kang[†], G. H. Lee^{*}, C. H. Lee^{*} Science Advances 7, eabd7921 (2021)

1.6

Energy (eV)

1.7

1.5

1.8

Twist Angle of Stacked 2D Layers

Charge transfer at interface of stacked 2D layers

- Electrical properties are influenced by stacking angle?
- The stacked layers are coupled or decoupled?
- Can we modify interfacial properties and band structure with twist angle and stacking structure?

Band Offset at Heterointerface

J.H. Kim, G.H. Lee Unpublished

Ec

- Ev

Hetero-structured Contacts with Low Resistance

H. Yoon, G.H. Lee, S.C. Jun et al. NPG Asia Mater. (2019)

Moiré Crystals

Moiré superlattice

Moiré potential trapped interlayer exciton

Twist angle control in TMDs heterobilayers

J. Baek, <u>G.H. Lee</u> In preparation

- Interlayer excitons are laterally confined from the moiré potential
- Atomic reconstruction occurred in twisted TMDs heterobilayer by thermal annealing.

Superconductivity in magic angle graphene

- Moiré potential trapped charge carriers contribute to novel quantum physics in 2D materials.
- □ Twisted bilayer graphene shows superconducting behavior at specific angle ($\theta = 1.1^\circ$).

Type of van der Waals heterostructure

- 1.Heterostructure of Graphene-hBN / TMD-hBN
 - High mobility
 - No hysteresis
- 2. Heterostructure of Graphene-TMD-hBN
 - Tunable Schottky barrier
 - Fast charge transfer
 - Barristor / LET
- 3. Heterostructure of Graphene Graphene
 - Twisted bilayer graphene
 - Quasi crystal
- 4. Heterostructure of TMD-TMD
 - Band engineering
 - PN junction
 - Interlayer exciton
- 5. Heterostructure of various 2D material
 - 2D magnetic : spin
 - 2D ferroelectric : NC transistor

Heterostructure of Graphene-hBN / TMD-hBN

1-1. Heterostructure of Graphene-hBN

 μ_{hall} for 1L Gr on hBN = 25000 cm²/Vs μ_{hall} for 2L Gr on hBN = 40000 cm²/Vs μ_{hall} for 1L Gr on SiO2 = 2500 cm²/Vs

J. Hone et al. Nat. Nanotechnol (2010)

1-2. Heterostructure of TMD-hBN

G.H. Lee, J. Hone et al Nat. Nanotech (2013)

Heterostructure of magnetic material

2D magnetic material Crl3

X. Xu et al. Nat. Nanotechno. (2018)

Giant tunneling magnetoresistance in spin filter

X. Xu et al. Science (2018)

Spin tunnel field effect transistor

K.F. Mak et al. Nat. Electro. (2019)

Heterostructure of ferroelectricity material

d

PFM amplitude (pm)

1,000

800

600

400

200

-8

DC bias (V)

2D ferroelectric material CulnP₂S₆

PFM phase (°)

180

-90

-180

8

vdW NC transistor has 28 mV dec⁻¹ subthreshold swing(SS) and can overcome theoretically thermionic limit of 60 mV dec⁻¹

Z. Liu et al. Nat. Commun. (2019)

Negative differential resistance device

NDR device

Ternary inverter with three logical states

- NDR device using band engineering of vdW heterostructure
- NDR charactersistric can be attributed to change types of band alignment from type III to type II.
- Multi-value level can be demonstrated, as ternary inverter fabricated using NDR characteristics

Light emitting transistor with tunable Schottky barrier

Light emitting transistor with tunable Schottky barrier

J. Kwon, G.H. Lee In preparation

Light emitting transistor with tunable Schottky barrier

Multi-mode Operation

J. Kwon, G.H. Lee In preparation

Excitonic Light Emitting Devices

Interlayer exciton

Strong light-matter interaction of TMD

P. S. Toth et al. Appl. Mater. Today (2017)

Interlayer excition generation

X. Xu et al. Nat. Nanotechno. (2018)

Possibility of interlayer excition

TMD	Binding energy	Life time
Conventional S/C	1~20meV	300ns
2D S/C	300~500meV	0.001~20ns
Vdw heterostructure	200~300meV	100ns

Interlayer exciton

Diffusion of Interlayer exciton

P. Kim et al. Science (2019)

Interlayer trion

Exciton Trion

Exciton vs Trion

Interlayer trion 🍄 👌		
Charge	Positive Charge Negative Charge	
Transport mechanism	Drift (+Diffusion)	
Control parameter	Electric field	

Diffusion of Interlayer trion

Photoswitching logic and memory

Different operation depend on channel thickness

AND gate

Memory using floating gate

P. Zhou et al. Nat. Nanotechno (2019)

Flexible and Transparent Heterostructure Devices

Number of Layers

<u>G.H. Lee</u> et al. ACS Nano 7, 7931–7936 (2013)

Light Emitting Devices based on 2D Materials

Thermionic emission

Lateral p-n diode

Tunnel device

M. Steiner et al. Nano Lett. (2013)

F. Withers et al. Nat. Mater. (2015)

J. Hone. et al. Nano Lett. (2018)

X. Xu. et al. Nat. Nanotechno. (2014)

R. Gorbachev et al. Nat. Commun. (2020)

vdW Heterostructure Device Platform

G.H. Lee, X. Cui, Y.D. Kim Nat. Nanotechno. (2015)

High Stability and Low Contact Resistance

Gate-tunable graphene electrodes

G.H. Lee, X. Cui, Y.D. Kim et al. Nat. Nanotechno. (2015)

200

80

Ultrahigh Mobility of MoS₂

Device platform for measurement of intrinsic electrical properties of 2D materials

G.H. Lee, X. Cui, Y.D. Kim et al. Nat. Nanotechno. (2015)

Heterostructures of p-type and n-type

Tunable photovoltaic effect? Light-emitting? New band structure at the interface?

C. Lee, <u>G. H. Lee</u> et al. Nat. Nanotechno. (2014)

Ultra-thin p-n Junction Devices

C. Lee, <u>G. H. Lee</u> et al. Nat. Nanotechno. (2014)