Air pollution IV

Air pollution IV

- Air pollution control for stationary souces
 - Absorption & adsorption
 - Combustion
 - Cyclones
 - Filter
 - Liquid scrubbing
 - Electrostatic precipitation

Air pollution control – gaseous pollutants

Absorption

- Dissolution of pollutant gas into a liquid
- If water is used, only applicable to gases having high water solubility such as NH₃, Cl₂, and SO₂

Adsorption

- Binding of pollutant gas to a solid
- Common adsorbents: activated carbon, zeolites, silica gel, and activated aluminum oxide

Combustion

- Applicable when the pollutant gas can be oxidized to inert gas such as CO₂
- Can be applied to CO and organic pollutants

Absorption processes

Adsorption processes

Combustion process: direct incinerator

 Cyclones: good for large particles (>10 µm)

 Filter: good for small particles (<5 μm)

 Liquid scrubbing: good for wet, corrosive, or very hot particulates

 Electrostatic
 precipitation: highefficiency, dry
 collection of particles
 from hot gas streams

• Electrostatic precipitation

Air pollution III

Air pollution III

- Adiabatic lapse rate
- Air stability
- Atmospheric distribution of air pollutants
 - Gaussian plume model

Adiabatic lapse rate

 \rightarrow When air moves vertically in the atmosphere, how does its temperature change?

→ This is close to the <u>adiabatic</u> <u>expansion</u>; the air adjust to the decreasing atmospheric pressure by expanding in volume, with a negligible exchange of heat between it and the surrounding air

Adiabatic lapse rate

• First law of thermodynamics

dUdQdW=change in internal Heat transfer to Change in energy energy of the the system due to work done by the system system For a adiabatic system, dQ = 0dW = pdVp = pressure; V=volume C_{v} = heat capacity; $dU = C_{\nu}dT$ *T* = *temperature* So: $C_v dT = -p dV$ As air moves up, V $\uparrow \Rightarrow$ T \downarrow

Adiabatic lapse rate and air stability

• Dry adiabatic lapse rate

$$\Gamma = -\frac{dT}{dz} = 1^o C / 100 m$$

- Air stability based on dry adiabatic lapse rate
 - $\Lambda = \Gamma$ Neutral stability
 - $\Lambda > \Gamma$ Unstable atmosphere
 - $\Lambda < \Gamma$ Stable atmosphere

 Λ = actual lapse rate of the atmosphere

Neutral stability

Unstable

Stable

Air stability

Inversion layer

- Inversion: an increase in atmospheric temperature with height
- Radiation inversion: form by nighttime cooling of the ground
- Subsidence inversion:
 form by sinking
 (→ warming) of air

and Physics, 1997

Plume behavior

 Effect of atmospheric lapse rates on plume behavior

• Coordination system

- Plume rise, ΔH
 - Due to <u>buoyancy</u> of the hot gas and <u>inertia</u> of the gas leaving the stack

$$\Delta H = \frac{v_s d}{u} \left[1.5 + \left(2.68 \times 10^{-2} \cdot P \cdot \left(\frac{T_s - T_a}{T_s} \right) \cdot d \right) \right]$$

v_s = stack velocity (m/s)
d = stack diameter (m)
u = wind speed (m/s)
P = pressure (kPa)
T_s = stack temperature (K)
T_a = air temperature (K)

We assume Gaussian (normal) distribution of pollutants

Gaussian distribution

$$y = \frac{1}{\sigma(2\pi)^{1/2}} exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right]$$

When the area of the curve is **1**

 μ = mean σ = standard deviation

... But in two directions (y and z) at a certain distance downwind

So, for a continuous point source of an air pollutant located at (x, y, z) = (0, 0, H):

$$C(x, y, z) = \left(\frac{E}{u}\right) \times \left(\frac{1}{\sigma_y(2\pi)^{1/2}} exp\left[\frac{-(y-0)^2}{2\sigma_y^2}\right]\right) \times \left(\frac{1}{\sigma_z(2\pi)^{1/2}} exp\left[\frac{-(z-H)^2}{2\sigma_z^2}\right]\right)$$

Total mass of pollutant between **x** m and **(x+1)** m

C = concentration (g/m³) E = emission rate (g/s) u = wind speed (m/s)

Therefore,

$$C(x, y, z) = \left(\frac{E}{2\pi u \sigma_y \sigma_z}\right) \left[exp\left(\frac{-y^2}{2\sigma_y^2}\right)\right] \left[exp\left(\frac{-(z-H)^2}{2\sigma_z^2}\right)\right]$$

where σ_y and σ_z are functions of x and atmospheric conditions (wind speed, stability, etc.)

How do we account for the ground?

1) No reflection: apply the equation we derived!

$$C(x, y, z) = \left(\frac{E}{2\pi u \sigma_y \sigma_z}\right) \left[exp\left(\frac{-y^2}{2\sigma_y^2}\right)\right] \left[exp\left(\frac{-(z-H)^2}{2\sigma_z^2}\right)\right]$$

2) Total reflection: assume a virtual source at (x, y, z) = (0, 0, -H)

$$C(x, y, z) = \left(\frac{E}{2\pi u \sigma_y \sigma_z}\right) \left[exp\left(\frac{-y^2}{2\sigma_y^2}\right)\right] \\ \times \left(\left[exp\left(\frac{-(z-H)^2}{2\sigma_z^2}\right)\right] + \left[exp\left(\frac{-(z+H)^2}{2\sigma_z^2}\right)\right]\right)$$

Concentration of a pollutant at the ground level with total reflection:

$$C(x, y, 0) = \left(\frac{E}{\pi u \sigma_y \sigma_z}\right) \left[exp\left(\frac{-y^2}{2\sigma_y^2}\right)\right] \left[exp\left(\frac{-H^2}{2\sigma_z^2}\right)\right]$$

Eq. (12-18) of the textbook

Now, how do we obtain σ_y and σ_z (functions of x and atmospheric stability)?

Key to stability o	categories					
	Day ^a Incoming solar radiation			Night ^a		
Surface wind speed (at 10 m) (m/s)				Thinly overcast or		
	Strong	Moderate	Slight	$\geq 1/2$ Low cloud	\leq 3/8 Cloud	
<2	А	A–B	В	—		
2-3	A–B	В	С	Е	F	
3–5	В	B-C	С	D	Е	
5-6	С	C–D	D	D	D	
>6	С	D	D	D	D	

"The neutral class, D, should be assumed for overcast conditions during day or night. Note that "thinly overcast" is not equivalent to "overcast."

Notes: Class A is the most unstable and class F is the most stable class considered here. Night refers to the period from one hour before sunset to one hour after sunrise. Note that the neutral class, D, can be assumed for overcast conditions during day or night, regardless of wind speed.

"Strong" incoming solar radiation corresponds to a solar altitude greater than 60° with clear skies; "slight" insolation corresponds to a solar altitude from 15° to 35° with clear skies. Table 170, Solar Altitude and Azimuth, in the Smithsonian Meteorological Tables, can be used in determining solar radiation. Incoming radiation that would be strong with clear skies can be expected to be reduced to moderate with broken (5/8 to 7/8 cloud cover) middle clouds and to slight with broken low clouds. (*Source:* Turner, 1967.)

$$\sigma_y = a x^{0.894}$$

 $\sigma_z = c x^d + f$ $x = downwind distants$

x = downwind	distance	(km)	
--------------	----------	------	--

0.1.11		$x \le 1 \text{ km}$		x > 1 km			
class	а	С	d	f	С	d	f
А	213	440.8	1.941	9.27	459.7	2.094	-9.6
В	156	100.6	1.149	3.3	108.2	1.098	2
С	104	61	0.911	0	61	0.911	0
D	68	33.2	0.725	-1.7	44.5	0.516	-13.0
Е	50.5	22.8	0.678	-1.3	55.4	0.305	-34.0
F	34	14.35	0.74.0	-0.35	62.6	0.18	-48.6

Q: A coal-fired power plants emits SO_2 at a rate of 1656 g/s. At 3 km downwind on an overcast summer afternoon, what is the concentration of SO_2 on the ground? The following parameters apply.

Stack parameters:

Height = 120 m Diameter = 1.2 m Exit velocity = 10 m/s Temperature = 315°C

Atmospheric conditions:

Pressure = 95.0 kPa

Temperature = 25°C

Wind speed = 4.5 m/s