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In-Class Material: Class 25

VIl. Random fields (contd.)
@ Karhunen-Loéve (KL) expansion (Gaussian RFs)
— Describe RF in terms of finite # of shape functions
defined over domain
(no geometric discretization)
— Discretization based on

structure  p(X,X") D (X Xf)
—’ —
Goal: Want to descrive p(Xx,X") by

pXX) =3 A0 099, (6)
/ I\Orthogonal shape (base) functions
Canfind A, ¢ by solving an integral eigenvalue problem, i.e.
j (%, X0 (x)dX' = A (X) (Fredholem integral eqn — 2" kind)
0
Note p(X,X") is bounded, symmetric, (+) definite.
If so, one can find
@,(X) : orthogonal jqpi (X)p; (X)dx = &
A, real & positive
Candrop A 's if 4, =0
Then using ¢,(X), and 4, i=1,...,r, one can describe Gaussian RF Vv(X) by
4
v(X) 0 9(x) = 1(x) +a(x)i(uiﬁ 2 (), XxeQ| = v(x) = {u,-u}
i1

KL expansion of Gaussian RF

u, - N(O,1), u, s.i

Let’s check!
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function of u,'s

i.  E[NX)]=u(X)? ENX)]=

ii.  Var[o(x)]= E[( )]

SLON)

i=1 j=1

220,009, (%)

r

=" (X2, A4¢! (X)

=0’ (X) :

(because p(X,X) = = )

V. pe(X) =06 X)

= E[(V(x) = () (V(x") = (X N]/ 7 (x) o (X)

r r

= B[ D ui/A@09u;20,()]
WA J2,0,009;(x)

r r

-y e

i=1 j=1
=3 40,090, ()
in
= (X,x)
[+ #o0fRV's:
* Represented by function
9 * No necessary
* Most efficient (in terms of # of )
L = Requires solution of an integral eigenvalue problem.

Application examples:

Yi, S., and J. Song (2018) Patrticle filter based monitoring and prediction of
spatiotemporal corrosion using successive measurements of structural responses.
Sensors, Vol. 18(11), 3909.
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Lee, S.-H., and J. Song (2017). System identification of spatial distribution of structural
parameters using modified Transitional Markov Chain Monte Carlo (m-TMCMC)
method. ASCE Journal of Engineering Mechanics. Vol. 143(9), 04017099-1~18.
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Fig. 25. Exact and estimated spatial distribution by m-TMCMC-SI:
Scenario 8: (a) exact; (b) 1% error; (¢) 3% error; (d) 5% error

(® Orthogonal expansion (eigen-expansion, but correlated rv’s)
® Optimal linear estimation (OLE)~ linear regression

(@ Expansion OLE

: See Sudret & ADK (2000)

Nataf RF

v(X) = F(v,X), p,, (X,X)

v(x) = F,{O(Z (X))}, Z(X)~ N(0, p,, (X, X)) (Z(X) —> Gaussian RF)
= Construct Z(x) and discrete to Z(X)

> V() =F {(Z(x)}
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VIIl. Response Surface Method (CRC Ch.19 & Mike Tipping’s chapter)
Reliability Analysis, Uncertainty Quantification & Response Surface

Reliability Analysis

P, = j f (x)dx — e.g. FORM/SORM,
g(x)<0

I(Xi)' f (Xi)
h(x;)

— e.g. Sampling ¢, =1(X,) or
h I(x.)= L _O
where )50 % 450

Uncertainty Quantification

“Process of determining the effect of input uncertainties”

on response metrics of interest (Eldred et al. 2008)

eg. E[g()"]= jfx<x)dx

@D g(x) Sometimes
[ Computationally costly for MCS
No analytical gradients but many RVs

= FORM/SORM difficult

L Experiments expensive (statistical analysis of experiment data infeasible)

@ Idea: g(X)In(X) (n(X) < “response surface” or “surrogate” model)

= 1(X) usually constructed in terms of basic

X X ) .
X1 "support functions that can be computed more easily
points” (polynomials, exp, --- )

= Should fit g(x") sufficiently well especially in the region that contributes most
to P, or E[g(X)"]
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@ History
* Box and Wilson (1954): influential
* Applied mostly in chemical, industrial eng. etc.
(Mostly for “experimental design”)
* Rackwitz (1982) = Use RS for Structural Reliability Analysis

* Has been applied to random field, nonlinear structural dynamics, etc.
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VIIl. Response Surface Method (Contd.)

Basic formulation of RS models

Two approaches = use assumed mathematical model & fit it to data

p
eg. 7(x)=>.6x"
i=1

,’é) %G)\‘ Interpolation) = Interpolate using nearby data points
! 1

X 4 e.g. K-nearest points
Regression

True response of g(x): Z(x)

Z(x) = n(6,-,0,;X)+ ¢
N\

p )

=\
Model Input  Zero mean
parameters (random) error term

= E[z-7]=E[£]=0
“unbiased” model
How to find 0 ? What do data tell us?
Ref: Tipping, M.E. (2004)

“Bayesian inference: an introduction to principles and practice in machine learning”
Advanced lectures on machine learning, pp.41-62

(Free codes and papers at www.miketipping.com)

n=46exp(x)+6,Inx+6,---
Additive models (Linear in )

Find Z =n(x;0)+¢

P
:Z 0, G (X) +&
i=1
TN A
ode asis / =S
Parameter Function x® x(+D)
(Shape function)

e.g. ¢ (x)oc PDFof N(x¥,r’I)
from {X(i),Z(i)}, i=1---,m
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Z=Q0+¢

Z @) q:L (X(l) )

z™] (™)

mx1 mx p pxl mx1
Five approaches (Tipping 2004)
D “Least-Square” Approximation (classic)
= Minimize sum of squared errors
1570 (i) 2
Ep =§Z(Z —-n(x",0))
i=1
1 T
=§(Z—Q0) (Z-Q6)
1

=3 ZZ" + % (Q0)" (Q8)-Z"Qe

OBy (0) _ v TA =
0 Z'Q+(Q6) Q=0

Solve for 0,

8,=(Q'Q"'QZ

% over-fitting?

eg. Z=sinXx+¢

sin X —true model, & —noise Figure 1 in Tipping (2004)

A A

o [\‘ﬂ\.\ overfitting

“ideal” fit
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2 Regularization (by giving penalty on large 0)

E®)=Ey(0)+4 E,(0)
Standard choice
£, =5 0

regularization . I | o
parameter Iscourage large value o

= Smooth function

aED (9) _ . _ T -1 AT
T =0 =0, =(QQ4) Q'Z

% Appropriate value of A ?

A common approach: Use “validation” data

available y Find 0PLS for a given A, ePLS (ﬂ“)
train data
data b .
 idation Construct surrogate 7(Xx; 1) = gei (). (x)
data =

Compute error against validation data
e=Z-n ateach x e validation data set

and choose A that makes %Z(Z—n)2 minimum

1 T T T T T T T T

Normalised error
o
o
T

04r B
3 Validation
-
03k LY N -
-
02F "'--..sTest .
01F B
Training
-14 -12 -10 4

Fig. 3. Plots of error computed on the separate 15-example training and validation
sets, along with ‘test’ error measured on a third noise-free set. The minimum test
and validation errors are marked with a triangle, and the intersection of the best A
computed via validation is shown.
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% Probabilistic Regression

z :n@!
e.g. ¢~N(0,0%) . Z~N(,0%

Using this information one can construct likelihood function

L(Z|x,0,0%) = H f(zVx",0,0%)
i=1

T eXp{_{Z(i)—U(X(i)?G)}Z}
i=1 o

20°

@ Maximum Likelihood Estimation

Find 0 that maximizesL() < Find 0 that minimizes —InL()

/ED(Q)
n 1 n 4 = error measure
2 i i 2
~InL( )= E|n(2;m )ilggZ{Z() -n(xV,0)} for 0,5
i=1
Therefore, MLE based on s.i. error assumption (i.e. e~N( ))

Gives 0, =0,

(cf. Assuming errors are dependent? &~ N(0,X)

HX(I)_X(J)H N
P = EXp - = “Kriging” Method (Satner et al. 2003)

¥ Bayesian Methods f =c-L-p

Introduce a prior distribution

010 =T[5 | e0|-50}

9i2
H degree of belief about smooth model
» 27 %/_ % ) (deg )

O
aT Variability reduces /\ = certain that @ is around 0
0

=Become smooth

oo
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@ Maximum a posteriori (MAP) estimation (a Bayesian “shortcut”)
f=c-L-p
P(0Z,a,0%) = ¢ - L(Z|0,5%) - p(8]a)
Posterior Likelihood function prior

Find © where P(B‘Z,a,az) is maximum

e.g. Normal s.i errors ¢, Z ~ N(n,06°)

(1) =5 2O 0O + 53

~o’In(f) = —Z{Z“) -n(x";0)y .
_1\—/ED(9) \JEW(G)

the same as

% «a, o ?no need to bother w/ Bayesian?

(® Full Bayesian (“Marginalization”) integrate P(Z]0,a,0?)
P(2)=[P(Z|0)-P(6)d0 overall 0

Focus on
Total probability theorem

P(Zla. o) = [P(Z|0]a.a® PO[a, "ZDdB) simplified to
:jp(zm,az)-P(ma)da

S~ Closed-form available:

f,(Z,a,6%) (Eq. 23 in Tipping, 2004)

¥ P(Z|a,0'2): Probability that you will observe Z for given «,c”

P(Z|a,a?%)

= Find a&o’ that maximizes P(Z|a,0'2)

(i.e. Let data Ztell us the optimal point o ,c°)
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Normalised error
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Marginal fikelihood: —In P(Z|a, 6?)
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Fig. 5. Plots of the training, validation and test errors of the model as shown in Figure
3 (with the horizontal scale adjusted appropriately to convert from A to «) along with
the negative log marginal likelihood evaluated on the training data alone for that same
model. The values of o and test error achieved by the model with highest marginal

likelihood (smallest negative log) are indicated.

v Okham’s Razar (or the law of parsimony):

“model should be no more complex than is sufficient to explain the data”

CRC CH.19 RS
—DOE

—0; (X)

Other RS or UQ methods
D Kriging (Santner et al. 2003)
(Dubourg et al. 2010 IFIP)
e~N(0,X)

Hx(i) _X(J')H

e.g. p; =exp| — -

* coincides at each point
* Interpolate b/w each point
* Can quantify confidence

* Regularization

M(z)

12 :

M(z) ==z sin(x)
— M)
8- -

10+

*  Observations

6t 95% confidence interval

10

x
(Dubourg et al. 2011)
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@ Dimension Reduction (Rahman & Xu, 2004; Xu & Rahman 2004)
g(X) - g()’\() =ZQ(,ul,---,,ui_l,Xi,yi+1,---,yn)—(n—l)g(,ul,---,,un)
i=1

U

EG0)"T=ELG0N™T 7 Tig(x)
= [(G0O)™ £, (x)dx

Transform to s.i. space; Multivariate Integral = Multiple univariate Integral

@ Polynomials chaos (a good review by Eldred et al. 2008)

R=a,B, + ZailBl(gil)

iy=1

+i§:ail,i282(§il§i2)+"'

i,=1 ip=1

p
= Z;“j':”j © - Orthogonal bases for given types of r.v’s distribution
J:

_<Ry;>_ IRWJ f(€)dC — Important sampling, etc.

a; =

2 2
<y > <y > .
— closed form available
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