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VII. Random fields (contd.) 

④ Karhunen-Loève (KL) expansion (Gaussian RFs) 

→ Describe RF in terms of finite # of shape functions  

   defined over ________ domain 

   (no geometric discretization) 

→ Discretization based on 

_____________ structure ( , ') x x   

Goal: Want to descrive ( , ') x x  by 

  
1

( , ') ( ) ( ')i i i

i

  




x x x x  

Orthogonal shape (base) functions 

Can find ,     by solving an integral eigenvalue problem, i.e. 

( , ') ( ') ' ( )i i id  


 x x x x x  (Fredholem integral eqn – 2nd kind) 

       Note ( , ') x x  is bounded, symmetric, (+) definite. 

       If so, one can find 

         ( )i x : orthogonal ( ) ( )i j ijd   x x x  

i : real & positive 

Can drop 'i s  if 0r   

Then using ( )i x , and i , i=1,…,r, one can describe Gaussian RF ( )v x  by 

 

1

ˆ( ) ( ) ( ) ( ) ( ( ))
r

i i i

i

v v u   


  x x x x x , x  ⇒ ( )v x  ⇒ 1{ , , }ru u  

(0,1),   s.ii iu N u  

Let’s check! 

KL expansion of Gaussian RF 
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i. Gaussian? Yes,            function of 'iu s  

ii. ˆ[ ( )] ( )E v x x ? ˆ[ ( )]E v x  

iii. 
2ˆ[ ( )] [(                       ) ]Var v Ex   

1 1

2

1 1

2 2

1

2

[                                                          ]

( )                    ( ) ( )

( ) ( )

( )

r r

i j
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i j i j

i j

r

i i

i

E

    

 



 

 

















x x x

x x

x

  

(because ( , )                               = x x          ) 

iv. 
?

ˆˆ ( , ') ( , ')vv x x x x  

1

1 1

1

ˆ ˆ[( ( ) ( ))( ( ') ( '))] / ( ) ( ')

[ ( ) ( ')]

[            ] ( ) ( ')

( ) ( ')

( , ')
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i i i j j j
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i j
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x x x x x x

x x

x x

x x

x x

  

 

• # of RV’s:  

• Represented by          function 

• No              necessary 

• Most efficient (in terms of # of         ) 

• Requires solution of an integral eigenvalue problem. 

Application examples: 

Yi, S., and J. Song (2018) Particle filter based monitoring and prediction of 

spatiotemporal corrosion using successive measurements of structural responses. 

Sensors, Vol. 18(11), 3909. 
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Lee, S.-H., and J. Song (2017). System identification of spatial distribution of structural 

parameters using modified Transitional Markov Chain Monte Carlo (m-TMCMC) 

method. ASCE Journal of Engineering Mechanics. Vol. 143(9), 04017099-1~18. 

 

⑤ Orthogonal expansion (eigen-expansion, but correlated rv’s) 

⑥ Optimal linear estimation (OLE)~ linear regression 

⑦ Expansion OLE 

 See Sudret & ADK (2000) 

 Nataf RF 

( ) ( , )v F vx x , ( , ')ZZ x x  

1 ˆ( ) { ( ( ))}vv F Z x x , ( ) ~ ( , ( , '))ZZZ N x 0 x x  ( ( )Z x Gaussian RF) 

⇒ Construct ( )Z x  and discrete to ˆ( )Z x  

⇒ 
1 ˆ( ) { ( ( ))}v F Z x x   
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VIII. Response Surface Method (CRC Ch.19 & Mike Tipping’s chapter) 

 Reliability Analysis, Uncertainty Quantification & Response Surface 

Reliability Analysis 

( ) 0

( )f

g

P f d


  x

x

x x  →  e.g. FORM/SORM ( )ig x , ( )ig x   

→  e.g. Sampling ( )i iq I x  or 
( ) ( )

( )

i i

i

I f

h

x x

x
  

    where 
1       ( ) 0

( )
0       ( ) 0

i

i

i

g
I

g


 



x
x

x
 

Uncertainty Quantification 

“Process of determining the effect of input uncertainties”  

 on response metrics of interest (Eldred et al. 2008) 

e.g. [ ( ) ] ( ) ( )m mE g g f d  x

x

x x x x   

① ( )g x  Sometimes  

Computationally costly for MCS 

No analytical gradients but many RVs 

                ⇒ FORM/SORM difficult 

Experiments expensive (statistical analysis of experiment data infeasible) 

② Idea: ( ) ( )g x x  ( ( ) x  ← “response surface” or “surrogate” model) 

  

⇒ Should fit 
( )( )ig x  sufficiently well especially in the region that contributes most    

   to 
fP  or [ ( ) ]mE g x   

⇒ ( ) x  usually constructed in terms of basic 

functions that can be computed more easily 

(polynomials, exp,  ) 
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③ History 

• Box and Wilson (1954): influential 

• Applied mostly in chemical, industrial eng. etc. 

(Mostly for “experimental design”) 

• Rackwitz (1982) ⇒ Use RS for Structural Reliability Analysis 

• Has been applied to random field, nonlinear structural dynamics, etc. 
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VIII. Response Surface Method (Contd.) 

 Basic formulation of RS models 

 Two approaches: Regression  ⇒ use assumed mathematical model & fit it to data 

 e.g. 
1

( )
p

m

i i

i

x 


x   

         Interpolation ⇒ Interpolate using nearby data points 

 e.g. K-nearest points 

Regression 

True response of ( )g x : ( )Z x  

1( )  ( , ,  ;   )  pZ     x x   

 

 ⇒ [ ] [ ] 0E z E      

                               “unbiased” model 

How to find θ ? What do data tell us? 

Ref: Tipping, M.E. (2004) 

“Bayesian inference: an introduction to principles and practice in machine learning” 

Advanced lectures on machine learning, pp.41-62 

(Free codes and papers at www.miketipping.com) 

 

 Additive models (Linear in    ) 

Find ( ; )Z   x θ   

 
1

p

i

 i  ( )iq x   

 

 

from 
( ) ( ){ , },  1, ,i iZ i mx  

1 2 3exp( ) lnx x        

Model  

parameters 

Input Zero mean 

(random) error term 

e.g. 
( ) 2( ) PDF of ( , )i

iq N rx x I   

Model 

Parameter 

Basis 

Function 

(Shape function) 
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 Z Qθ ε   

(1) (1)(1) (1)
11

(2)

( ) ( )( ) ( )
1

( ) ( )

( ) ( )

p

m mm m
pp

q qZ

Z

q qZ

 

 

      
      

             
      
           

x x

x x

  

1m              m p            1p   1m  

Five approaches (Tipping 2004) 

① “Least-Square” Approximation (classic) 

⇒ Minimize sum of squared errors 

( ) ( ) 2

1

1
( ( , ))

2

1
( ) ( )

2

1 1
( ) ( )

2 2

m
i i

D

i

T

T T T

E Z  


 

  

  

 x

Z Qθ Z Qθ

ZZ Qθ Qθ Z Qθ

  

( )
( )  =0T TDE

  


θ
Z Q Qθ Q

θ
 

Solve for θ , 

1( )T T

LS

θ Q Q Q Z  

※ over-fitting? 

e.g. sinZ x     

sin x →true model,  →noise         Figure 1 in Tipping (2004) 

 

!!! 
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② Regularization (by giving penalty on large θ ) 

ˆ ( ) ( )DE E  θ θ  ( )WE θ  

 

 

   Discourage large value of θ   

 ⇒ Smooth function 

1( )
0 ( )T TD

PLS

E
 

   


θ
 θ Q Q I Q Z

θ
 

※ Appropriate value of  ? 

A common approach: Use “validation” data 

 Find PLSθ for a given  , ( )PLS θ  

 Construct surrogate 
1

( ; ) ( ) ( )
p

PLS

i i

i

q   


x x   

 
               Compute error against validation data 

 Z    at each 
( )i x  validation data set 

 and choose   that makes 21
( )

2
Z    minimum 

 
 

  

validation  
data 

train data available 
data 

regularization 

parameter 

Standard choice 

2

1

1
( )

2

p

W i

i

E 


 θ   
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※ Probabilistic Regression 

Z     ! 

e.g. 
2 2~ (0, )           ~ ( , )N Z N      

Using this information one can construct likelihood function 

2 ( ) ( ) 2

1

( ) ( ) 2

2
1

( , , ) ( , , )

1 { ( ; )}
exp

22

n
i i

i

i in

i

L f Z

Z

 











 
  

 





Z x θ x θ

x θ
  

 

③ Maximum Likelihood Estimation 

Find θ  that maximizes L( )  ⇔ Find θ  that minimizes –lnL( ) 

  

2 ( ) ( ) 2

2
1

1
ln (    ) ln(2 ) { ( , )}

2 2

n
i i

i

n
L Z 

 

    x θ    

Therefore, MLE based on s.i. ________ error assumption (i.e. ~ (    )N ) 

Gives         
MLE LSθ θ    

(cf. Assuming errors are dependent? ~ ( , )N 0 Σ  

( ) ( )

exp

i j

ij
L


 
   
 
 

x x
 “Kriging” Method (Satner et al. 2003) 

 

※ Bayesian Methods f c L p    

Introduce a prior distribution 

1/2

2

1

2

1

( | α) exp
2 2

1
exp

1 12 2( )

p

i

i

p

i

i

p
 













   
   

   

 
 

  
  





θ

  

    Variability reduces     ⇒ certain that   is around 0 

  ⇒Become smooth 

  ∴     

(degree of belief about smooth model) 

 

𝟎 

E𝐷(𝛉) 
⇒ error measure  
     for 𝛉𝐿𝑆 
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④ Maximum a posteriori (MAP) estimation (a Bayesian “shortcut”) 

f c L p    

2 2( , , )    ( , )  ( )P c L p     θ Z Z θ θ  

Posterior     Likelihood function  prior 

Find θ  where 2( , , )P  θ Z  is maximum 

e.g. Normal s.i errors  , 
2~ ( , )Z N     

( ) ( ) 2 2

2
1 1

1
ln( ) { ( ; )}

2 2

pn
i i

i

i i

f Z


 
  

    x θ   

2
2 ( ) ( ) 2 2

1 1

1
ln( )    { ( ; )}         

2 2

pn
i i

i

i i

f Z


  
 

    x θ  

 

※ 2,     ? no need to bother w/ Bayesian?  

 

⑤ Full Bayesian (“Marginalization”) 

 

Focus on 

2 2 2

2

( , ) ( | , , ) ( | , )

( | , ) ( | )

P P P d

P P d

     

 

 

 





Z Z θ θ θ

Z θ θ θ
 

 

 

※ 
2( , )P  Z : Probability that you will observe Z  for given 

2,    

 

⇒ Find 
2&   that maximizes 

2( , )P  Z  

(i.e. Let data Z tell us the optimal point 
* 2*,  ) 

  

( ) ( | ) ( )P P P d Z Z θ θ θ  

Total probability theorem 

Simplified to  

E𝐷(𝛉) 

the same as 
1

2
λ 

E𝑊(𝛉) 

λ

= α σ2  

integrate 
2( | , , )P  Z θ  

over all θ  

Closed-form available: 

2( , , )Nf  Z  (Eq. 23 in Tipping, 2004) 
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☆ Okham’s Razar (or the law of parsimony):   

“model should be no more complex than is sufficient to explain the data” 

 
CRC CH.19 RS 
→DOE 

→ ( )iq x   

 

 Other RS or UQ methods 

① Kriging  (Santner et al. 2003)  

 (Dubourg et al. 2010 IFIP) 

~ ( , )N 0 Σ   

e.g. 

( ) ( )

exp

i j

ij
L


 
  
 
 

x x
 

• coincides at each point 

• Interpolate b/w each point

• Can quantify confidence 

• Regularization 

: − ln 𝑃ሺ𝐙ȁ𝛼,  𝜎2ሻ 

Too complex: 
overfit Too simple  

ሺsmoothሻ: 
underfit 

ሺ𝛼∗, 𝜎2∗ሻ 

𝜎2∗ 

ሺDubourg et al. 2011ሻ 
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② Dimension Reduction (Rahman & Xu, 2004; Xu & Rahman 2004) 

1 1 1 1

1

ˆ( ) ( ) ( , , , , , , ) ( 1) ( , , ) 
n

i i i n n

i

g g g x n g      



   x x   

   

ˆ[( ( )) ] [( ( )) ]

ˆ( ( )) ( )

m m

m

E g x E g x

g x f d



  x x x
  

Transform to s.i. space; Multivariate Integral ⇒ Multiple univariate Integral  

 

③ Polynomials chaos (a good review by Eldred et al. 2008) 

1

1 2

0 0 1 1 1

1

1, 2 2 1 2

1 1

0

( )

         ( )

( )

i i

i

i i i i

i i

p

j j

j

R a B a B

a B



 

 





 

 



 

 







 ζ

  

2 2

( ), jj

j

j j

R f dR 


 

 
 

   

 ζ ζ
 

 

( )ix   

→ Orthogonal bases for given types of r.v’s distribution 

→ Important sampling, etc.  

→ closed form available 
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