Dijkstra's Algorithm

## Dijkstra's Algorithm

- On weighted, directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ for which all edge weights are nonnegative.
- The running time of Dijkstra's algorithm is lower than that of the Bellman-Ford algorithm.


## Dijkstra's Algorithm

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)
2. $S=\varnothing$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V}$
4. $\quad$ while $\mathrm{Q} \neq \varnothing$
5. $u=$ Extract-Min(Q)
6. $S=S U\{u\}$
7. for each vertex $v \in$ G.Adj[u]
8. $\operatorname{RELAX}(u, v, w)$


## Dijkstra's Algorithm

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)
2. $S=\varnothing$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V}$
4. $\quad$ while $Q \neq \varnothing$
5. $u=$ Extract-Min(Q)
6. $S=S U\{u\}$
7. for each vertex $v \in$ G.Adj[u]
8. $\operatorname{RELAX}(u, v, w)$


## Dijkstra's Algorithm

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)
2. $S=\varnothing$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V}$
4. $\quad$ while $\mathrm{Q} \neq \varnothing$
5. $u=$ Extract-Min(Q) $\quad S=\varnothing$
6. $S=S U\{u\}$
7. for each vertex $v \in$ G.Adj[u]
8. $\operatorname{RELAX}(u, v, w)$


## Dijkstra's Algorithm

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)
2. $S=\varnothing$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V}$
4. while $\mathrm{Q} \neq \varnothing$
5. $u=$ Extract-Min(Q)
6. $S=S U\{u\}$
7. for each vertex $v \in$ G.Adj[u]
8. $\operatorname{RELAX}(u, v, w)$
Q

| G.V | $\boldsymbol{s}$ | $\boldsymbol{t}$ | $\boldsymbol{x}$ | $\boldsymbol{y}$ | $\boldsymbol{z}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| d | 0 | $\infty$ | $\infty$ | $\infty$ | $\infty$ |



## Dijkstra's Algorithm

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)
2. $S=\varnothing$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V}$
4. while $\mathrm{Q} \neq \varnothing$
5. $u=$ Extract-Min $(Q)$
6. $S=S U\{u\}$
7. for each vertex $v \in$ G.Adj[u]
8. 

$\operatorname{RELAX}(u, v, w)$

$$
S=\{s\}
$$

Q

| G.V | $t$ | $\boldsymbol{x}$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: | :---: |
| d | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| $\mathrm{u}=s$ |  |  |  |  |



## Dijkstra's Algorithm

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)
2. $S=\varnothing$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V}$
4. $\quad$ while $\mathrm{Q} \neq \varnothing$
5. $u=$ Extract-Min(Q)
6. $\quad S=S U\{u\}$
7. for each vertex $v \in$ G.Adj[u]
8. $\operatorname{RELAX}(u, v, w)$
$S=\{s\}$
Q

| G.V | $t$ | $\boldsymbol{x}$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: | :---: |
| d | 10 | $\infty$ | $\infty$ | $\infty$ |
| $\mathrm{U}=s$ |  |  |  |  |



## Dijkstra's Algorithm

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)
2. $S=\varnothing$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V}$
4. $\quad$ while $\mathrm{Q} \neq \varnothing$
5. $u=$ Extract-Min(Q)
6. $S=S U\{u\}$
7. for each vertex $v \in$ G.Adj[u]
8. $\operatorname{RELAX}(u, v, w)$
$S=\{s\}$
Q

| G.V | $t$ | $x$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: | :---: |
| d | 10 | $\infty$ | 5 | $\infty$ |
| $\mathrm{U}=s$ |  |  |  |  |



## Dijkstra's Algorithm

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)
2. $S=\varnothing$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V}$
4. $\quad$ while $\mathrm{Q} \neq \varnothing$
5. $u=$ Extract-Min(Q)
6. $S=S U\{u\}$
7. for each vertex $v \in$ G.Adj[u]
8. 

$\operatorname{RELAX}(u, v, w)$

$$
\begin{aligned}
& \mathrm{S}=\{s, y\} \\
& \begin{array}{|c|c|c|c|}
\hline \mathrm{G} . \mathrm{V} & \boldsymbol{t} & \boldsymbol{x} & z \\
\hline \mathrm{~d} & 10 & \infty & \infty \\
\hline \mathrm{U}=y \\
\text { G.adj }[y]=\{t, x, z\}
\end{array}
\end{aligned}
$$



## Dijkstra's Algorithm

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)
2. $S=\varnothing$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V}$
4. $\quad$ while $\mathrm{Q} \neq \varnothing$
5. $u=$ Extract-Min(Q)
6. $S=S U\{u\}$
7. for each vertex $v \in$ G.Adj[u]
8. RELAX (u,v,w)

$$
S=\{s, y\}
$$

Q

| G.V | $\boldsymbol{t}$ | $\boldsymbol{x}$ | $\boldsymbol{z}$ |
| :---: | :---: | :---: | :---: |
| d | 8 | $\infty$ | $\infty$ |

$u=y$
$\operatorname{G} \cdot \operatorname{adj}[y]=\{t, x, z\}$


## Dijkstra's Algorithm

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)
2. $S=\varnothing$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V}$
4. $\quad$ while $\mathrm{Q} \neq \varnothing$
5. $u=$ Extract-Min(Q)
6. $\quad S=S U\{u\}$
7. for each vertex $v \in$ G.Adj[u]
8. RELAX (u,v,w)

$$
S=\{s, y\}
$$

Q

| G.V | $\boldsymbol{t}$ | $\boldsymbol{x}$ | $\boldsymbol{z}$ |
| :---: | :---: | :---: | :---: |
| d | 8 | 14 | $\infty$ |

$u=y$
$\operatorname{G} \cdot \operatorname{adj}[y]=\{t, x, z\}$


## Dijkstra's Algorithm

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)
2. $S=\varnothing$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V}$
4. $\quad$ while $\mathrm{Q} \neq \varnothing$
5. $u=$ Extract-Min(Q)
6. $\quad S=S U\{u\}$
7. for each vertex $v \in$ G.Adj[u]
8. RELAX (u,v,w)

$$
S=\{s, y\}
$$

Q

| G.V | $\boldsymbol{t}$ | $\boldsymbol{x}$ | $\boldsymbol{z}$ |
| :---: | :---: | :---: | :---: |
| d | 8 | 14 | 7 |

$u=y$
$\operatorname{G} \cdot \operatorname{adj}[y]=\{t, x, z\}$


## Dijkstra's Algorithm

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)
2. $S=\varnothing$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V}$
4. $\quad$ while $\mathrm{Q} \neq \varnothing$
5. $u=$ Extract-Min(Q)
6. $S=S U\{u\}$
7. for each vertex $v \in$ G.Adj[u]
8. 

$\operatorname{RELAX}(u, v, w)$

$$
\begin{aligned}
& \mathrm{S}=\{s, y, z\} \\
& \begin{array}{|c|c|c|}
\hline \mathrm{G} . \mathrm{V} & \boldsymbol{t} & \boldsymbol{x} \\
\hline \mathrm{~d} & 8 & 14 \\
\hline
\end{array} \\
& \begin{array}{l}
\mathrm{U}=z \\
\text { G.adj }[z]=\{x, \mathrm{~s}\}
\end{array}
\end{aligned}
$$



## Dijkstra's Algorithm

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)
2. $S=\varnothing$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V}$
4. $\quad$ while $\mathrm{Q} \neq \varnothing$
5. $u=$ Extract-Min(Q)
6. $S=S U\{u\}$
7. for each vertex $v \in$ G.Adj[u]
8. $\operatorname{RELAX}(u, v, w)$

$$
\begin{aligned}
& \mathrm{S}=\{\boldsymbol{s}, \boldsymbol{y}, \boldsymbol{z}\} \\
& \mathrm{Q} \begin{array}{|c|c|c|}
\hline \mathrm{G} . V & \boldsymbol{t} & \boldsymbol{x} \\
\hline \mathrm{~d} & 8 & 13 \\
\hline
\end{array} \\
& \begin{array}{l}
\mathrm{u}=\boldsymbol{z} \\
\text { G.adj }[\boldsymbol{z}]=\{\boldsymbol{x}, \mathbf{s}\}
\end{array}
\end{aligned}
$$



## Dijkstra's Algorithm

```
DIJKSTRA(G,w,s)
    1. INITIALIZE-SINGLE-SOURCE(G,s)
    2. }S=
    3. }\textrm{Q}=\textrm{G}.
    4. while Q # \varnothing
    5. u = Extract-Min(Q)
    6. S = SU{u}
    7. for each vertex v G G.Adj[u]
    8. RELAX(u,v,w)
```


G.adj $[z]=\{x, s\}$


## Dijkstra's Algorithm

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)
2. $S=\varnothing$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V}$
4. $\quad$ while $\mathrm{Q} \neq \varnothing$
5. $u=$ Extract-Min(Q)
6. $S=S U\{u\}$
7. for each vertex $v \in G . A d j[u]$
8. 

$\operatorname{RELAX}(u, v, w)$

$$
\begin{aligned}
& \mathrm{S}=\{s, y, z, t\} \\
& \mathrm{Q} \begin{array}{|c|c|}
\hline \mathrm{G} . \mathrm{V} & x \\
\hline \mathrm{~d} & 13 \\
\hline
\end{array} \\
& \begin{array}{l}
\mathrm{U}=t \\
\mathrm{G} . \operatorname{adj}[t]=\{x, y\}
\end{array}
\end{aligned}
$$



## Dijkstra's Algorithm

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)
2. $S=\varnothing$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V}$
4. $\quad$ while $\mathrm{Q} \neq \varnothing$
5. $u=$ Extract-Min(Q)
6. $\quad S=S U\{u\}$
7. for each vertex $v \in$ G.Adj[u]
8. $\operatorname{RELAX}(u, v, w)$

$$
\begin{aligned}
& \mathrm{S}=\{s, y, z, t\} \\
& \mathrm{Q} \begin{array}{|c|c|}
\hline \mathrm{G} \cdot \mathrm{~V} & x \\
\hline \mathrm{~d} & 9 \\
\hline
\end{array} \\
& \begin{array}{l}
\mathrm{U}=t \\
\mathrm{G} . \operatorname{adj}[t]=\{x, y\}
\end{array}
\end{aligned}
$$



## Dijkstra's Algorithm

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)
2. $S=\varnothing$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V}$
4. $\quad$ while $\mathrm{Q} \neq \varnothing$
5. $u=$ Extract-Min(Q)
6. $S=S U\{u\}$
7. for each vertex $v \in$ G.Adj[u]
8. RELAX (u,v,w)

$$
\begin{aligned}
& \mathrm{S}=\{s, y, z, t\} \\
& \mathrm{Q} \begin{array}{|c|c|}
\hline \mathrm{G} \cdot \mathrm{~V} & x \\
\hline \mathrm{~d} & 9 \\
\hline
\end{array} \\
& \begin{array}{l}
\mathrm{U}=t \\
\mathrm{G} . \operatorname{adj}[t]=\{x, y\}
\end{array}
\end{aligned}
$$



## Dijkstra's Algorithm

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)
2. $S=\varnothing$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V}$
4. $\quad$ while $\mathrm{Q} \neq \varnothing$
5. $u=$ Extract-Min(Q)
6. $\quad S=S U\{u\}$
7. for each vertex $v \in$ G.Adj[u]
8. $\operatorname{RELAX}(u, v, w)$

$$
S=\{s, y, z, t, x\}
$$

$Q=\varnothing$

$$
\begin{aligned}
& \mathrm{U}=x \\
& \mathrm{G} \cdot \operatorname{adj}[x]=\{z\}
\end{aligned}
$$



## Dijkstra's Algorithm

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)
2. $S=\varnothing$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V}$
4. $\quad$ while $\mathrm{Q} \neq \varnothing$
5. $u=$ Extract-Min(Q)
6. $S=S U\{u\}$
7. for each vertex $v \in$ G.Adj[u]
8. $\operatorname{RELAX}(u, v, w)$

$$
S=\{s, y, z, t, x\}
$$

$Q=\varnothing$

$$
\begin{aligned}
& \mathrm{U}=x \\
& \mathrm{G} \cdot \operatorname{adj}[x]=\{z\}
\end{aligned}
$$



## Dijkstra's Algorithm

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)
2. $S=\varnothing$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V}$
4. $\quad$ while $\mathrm{Q} \neq \varnothing$
5. $u=$ Extract-Min(Q)
$S=\{s, y, z, t, x\}$
6. $S=S U\{u\}$
$Q=\varnothing$


## Dijkstra's Algorithm

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)
2. $S=\varnothing$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V}$
4. $\quad$ while $\mathrm{Q} \neq \varnothing$
5. $u=$ Extract-Min(Q)
$S=\{s, y, z, t, x\}$
6. $\quad S=S U\{u\}$
7. for each vertex $v \in G . A d j[u]$
8. $\operatorname{RELAX}(u, v, w)$


## Running Time of Dijkstra's Algorithm

- It depends on implementations of the min-priority queue Q .
- If we implement Q as a binary min-heap,
- EXTRACT-MIN takes O(Ig $|\mathrm{V}|)$ time.
- DECREASE-KEY takes O(Ig $|\mathrm{V}|)$ time.
- If we implement Q as a simple array,
- EXTRACT-MIN takes O(IV|) time.
- DECREASE-KEY O(1) time.
- If we implement Q as a Fibonacci heap,
- EXTRACT-MIN takes $\mathrm{O}(\mathrm{lg}|\mathrm{V}|)$ amortized time.
- DECREASE-KEY O(1) amortized time.


## Dijkstra's Algorithm

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)
2. $S=\varnothing$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V}$
4. while $\mathrm{Q} \neq \varnothing$
5. $u=$ Extract-Min(Q)
6. $\quad S=S U\{u\}$
7. for each vertex $v \in G . A d j[u]$
8. $\operatorname{RELAX}(u, v, w)$

## Dijkstra's Algorithm

- min-priority queue : array

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s) $\leftarrow \square(|\mathrm{V}|)$
2. $S=\varnothing \longleftarrow O(1)$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V} \leftarrow \mathrm{O} \leftarrow \mathrm{IV\mid})$
4. while $\mathrm{Q} \neq \varnothing$
5. $\quad u=\operatorname{Extract-Min}(Q) \leftarrow O\left(|V|^{2}\right)$
6. $S=S U\{u\} \quad \leftarrow O(|V|)$
7. $\quad$ for each vertex $v \in G . \operatorname{Adj}[u] \longleftarrow O(|E|)$
8. $\operatorname{RELAX}(u, v, w)$

Dijkstra's algorithm running time is $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$

## Dijkstra's Algorithm

- min-priority queue : binary min-heap

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE $(\mathrm{G}, \mathrm{s}) \leftarrow \mathrm{O}(|\mathrm{V}|)$
2. $S=\varnothing \longleftarrow O(1)$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V} \leftarrow \mathrm{O}(\mid \mathrm{VI})$
4. while $\mathrm{Q} \neq \varnothing$
5. $u=$ Extract-Min $(Q) \leftarrow O(|V||g| V \mid$
6. $\quad S=S U\{u\} \quad \leftarrow O(|V|)$
7. for each vertex $v \in \operatorname{G.Adj}[u] \leftarrow O(|E| \lg |v|$
8. $\operatorname{RELAX}(u, v, w)$

- Running time:
- $\mathrm{O}((|\mathrm{V}|+|\mathrm{E}|) \lg |\mathrm{V}|)$, if all vertices are reachable $\rightarrow \mathrm{O}(|\mathrm{E}| \lg |\mathrm{V}|)$.
- Better than $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$, if the graph is sufficiently sparse: $|\mathrm{E}|=\mathrm{o}\left(|\mathrm{V}|^{2} / \lg |\mathrm{V}|\right)$.


## Dijkstra's Algorithm

- min-priority queue : Fibonacci heap

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE (G,s) $\leftarrow O(|\mathrm{~V}|)$
2. $\quad S=\varnothing \leftarrow O(1)$
3. $\quad \mathrm{Q}=\mathrm{G} . \mathrm{V} \leftarrow \mathrm{O}(|\mathrm{V}|)$
4. while $\mathrm{Q} \neq \varnothing$
5. $u=$ Extract-Min $(\mathrm{Q})$ $\leftarrow O(|\mathrm{IV}| \lg |\mathrm{V}| \mathrm{l}$
6. $S=S U\{u\} \quad \leftarrow O(|V|)$
7. for each vertex $v \in \operatorname{G.Adj}[u] \longleftarrow O(|E|$
8. $\operatorname{RELAX}(u, v, w)$

Dijkstra's algorithm running time is $\mathrm{O}(|\mathrm{V}| \lg |\mathrm{V}|+|\mathrm{E}|)$

## Theorem 24.6 (Correctness of Dijkstra's Algorithm)

- Dijkstra's algorithm, run on a weighted, directed graph $G=(\mathrm{V}, \mathrm{E})$ with non-negative weight function $w$ and source $s$, terminates with $u . d=\delta(s, u)$ for all vertices $u \in V$.


## Theorem 24.6 (Proof)

- Loop invariant
- At the start of each iteration of the while loop of lines 4-8, v.d= $\delta(\mathrm{s}, \mathrm{v})$ for each vertex v in S
- Initialization: $\mathrm{S}=\{ \}$, so true
- Maintenance:
- Let u be the first vertex for which $u . d \neq \delta(s, u)$ when it is added to set S
- $u \neq s$ because $s$ is the first vertex added to set $S$ and $s . d=\delta(s, s)=0$
- Because $u \neq s$, we also have that $S \neq\{ \}$ just before $u$ is added to $S$
- There must be some path from $s$ to $u$, for otherwise $u . d=\delta(s, u)=$ $\infty$ by no-path property
- There is a shortest path p from s to u
- Prior to adding $u$ to $S$, path $p$ connects a vertex in S, namely $s$, to a vertex in V-S, namely u.


## Theorem 24.6 (Proof)

- Let us consider the first vertex $y$ along $p$ such that $y \in V-S$, and let $x \in S$ be $y^{\prime} s$ predecessor along $p$
- Figure shown below illustrates, we can decompose path $p$ into $s \sim x \rightarrow y \sim u$ ( $s \sim x: p_{1}$, y~u: $p_{2}$ )
- Claim: $\mathrm{y} \cdot \mathrm{d}=\delta(\mathrm{s}, \mathrm{y})$ when u is added to S
- $x . d=\delta(s, x)$ when $x$ was added to $s$
( $\because$ we chose $u$ as the first vertex for which $u . d \neq \delta(s, u)$ )
- Edge ( $x, y$ ) was relaxed at that time, and the claim follows from the convergence property



## Theorem 24.6 (Proof)

- We can now obtain a contradiction to prove u.d= $\delta(\mathrm{s}, \mathrm{u})$
- $\delta(\mathrm{s}, \mathrm{y}) \leq \delta(\mathrm{s}, \mathrm{u})(\because$ y appears before $u$ on a shortest path from $s$ to $u$ and all edge weights are non-negative)
- $y . d=\delta(s, y) \leq \delta(s, u) \leq u . d$ (by the upper-bound property)
- But because both vertices $u$ and $y$ were in V-S when u was chosen in line 5, u.d $\leq y . d$
- $y . d=\delta(s, y)=\delta(s, u)=u . d$
- Consequently u.d= $\delta(s, u)$, which contradicts our choice of $u$.
- u.d= $\delta(\mathrm{s}, \mathrm{u})$ when u is added to S , and that this equality is maintained at all times thereafter
- Termination : At termination, $\mathrm{Q}=\{ \}$ which, along with our earlier invariant that $\mathrm{Q}=\mathrm{V}-\mathrm{S}$, implies that $S=V . u . d=\delta(s, u)$ for all vertices $u \in V$


## Shortest-Path Algorithms

|  | Bellman-Ford | Dijkstra |
| :---: | :---: | :---: |
| Negative Edge | O | X |
| Positive Cycle | O | O |
| Negative Cycle | X | X |
| Time Complexity | $\mathrm{O}(\|\mathrm{V}\|\|\mathrm{E}\|)$ | Array: $\mathrm{O}\left(\|\mathrm{V}\|^{2}\right)$ <br> Min-heap: $\mathrm{O}((\|\mathrm{V}\|+\|\mathrm{E}\|)\|\mathrm{g}\| \mathrm{V} \mid)$ <br> Fibonacci heap: $\mathrm{O}(\|\mathrm{V}\| \mathrm{Ig}\|\mathrm{V}\|+\|\mathrm{E}\|)$ |

## Single Source/All Destinations: Dijkstra's Algorithm

- Definition of class Graph

```
class Graph
{
private:
    int length[nmax][nmax]; // w(u,v)
    int dist[nmax]; // v.d
    Boolean s[nmax];
public:
    void ShortestPath(const int, const int);
    int choose(const int);
};
```


## Single Source/All Destinations: Dijkstra's Algorithm



| $\quad$ Path | Length |
| :--- | :---: |
| 1) 0,3 | 10 |
| 2) $0,3,4$ | 25 |
| 3) $0,3,4,1$ | 45 |
| 4) 0,2 | 45 |

(a) graph
(b) shortest paths from 0

Figure 6.26 : Graph and shortest paths from vertex 0

## Single Source/All Destinations: Dijkstra's Algorithm

- S: set of vertices to which the shortest paths have already been found
- dist[w], for w not in S
- The length of the shortest path starting from v
- Go through only the vertices that are in S
- End at w
- A greedy algorithm will generate the shortest paths in nondecreasing order of path length


## Single Source/All Destinations: Dijkstra's Algorithm

- We observe that when paths are generated in nondecreasing order of length
(1) If the next shortest path is to vertex $u$, then the path goes through only vertices that are in S
- All of the intermediate vertices on the shortest path must be in S
- Proof) Assume there is a vertex won this path that is not in S. Then the v-to-u path also contains a path from $v$ to $w$ that is less than that of the $v$-to-u path. But, by the observation, paths are generated in nondecreasing order of length. so, the shorter path from $v$ to $w$ has been generated already. Hence, there is no intermediate vertex that is not in $S$
(2) The destination of the next path generated must be the vertex $u$ that has the minimum distance, dist[u], among all vertices not in S
- This follows from the definition of dist and observation (1)
- If there are several vertices not in S with the same dist, then any of these may be selected
(3) The vertex $u$ selected in (2) becomes a member of $S$. At this point, the length of the shortest paths starting at v , going through vertices only in S , and ending at a vertex $w$ not in $S$ may decrease. Therefore, if dist[w] decreases, then the change is due to the path from $v$ to $u$ to $w$. The length of this path is dist[u]+length( $\langle u, w\rangle$ )


## Single Source/All Destinations: Dijkstra's Algorithm

```
void MatrixWDigraph::ShortestPath(const int n, const int v)
{ // dist[j], 0\leq j < n, is set to the length of the shortest path from v to j
    // in a digraph G with n vertices and edge lengths given by length[i][j].
        for(int i= 0; i < n; i++) { s[i] = false; dist[i] = length[v][i]; } // initialize
        s[v] = true;
        dist[v] = 0;
    for(i=0; i < n-1; i++) { // determine n-1 paths from vertex v
        int u = Choose(n); // .returns a value u such that:
            // dist[u] = minimum dist[w], where s[w] = false
        s[u] = true;
        for(int w = 0;w<n;w++)
            if(!s[w] && dist[u] + length[u][w] < dist[w])
                    dist[w] = dist[u] + length[u][w];
    } // end of for(i=0;\cdots)
}
```

Program 6.8 : Determining the shortest paths

- Time Complexity
- $O\left(n^{2}\right), n$ : number of vertices


## Example 6.5


(a) Digraph

(b) Length-adjacency matrix

| Iteration | S <br> (shortest paths have already been found) | Vertex <br> selected | Distance |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | LA | SF | DEN | CHI | BOST | NY | MIA | NO |
|  |  |  | [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] |
| Initial | - -$\{4\}$ | $5$ | $\begin{aligned} & +\infty \\ & +\infty \end{aligned}$ | $\begin{aligned} & +\infty \\ & +\infty \end{aligned}$ | $\begin{aligned} & +\infty \\ & +\infty \end{aligned}$ | $\begin{aligned} & 1500 \\ & 1250 \end{aligned}$ | 00 | $\begin{aligned} & 250 \\ & 250 \end{aligned}$ | $\begin{gathered} +\infty \\ 1150 \end{gathered}$ | $\begin{aligned} & +\infty \\ & 1650 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |
| 2 | $\{4,5\}$ | 6 | $+\infty$ | $+\infty$ | $+\infty$ | 1250 | 0 | 250 | 1150 | 1650 |
| 3 | \{4, 5, 6\} | 3 | $+\infty$ | $+\infty$ | 2450 | 1250 | 0 | 250 | 1150 | 1650 |
| 4 | $\{4,5,6,3\}$ | 7 | 3350 | $+\infty$ | 2450 | 1250 | 0 | 250 | 1150 | 1650 |
| 5 | $\{4,5,6,3,7\}$ | 2 | 3350 | 3250 | 2450 | 1250 | 0 | 250 | 1150 | 1650 |
| 6 | $\{4,5,6,3,7,2\}$ | 1 | 3350 | 3250 | 2450 | 1250 | 0 | 250 | 1150 | 1650 |
|  | $\{4,5,6,3,7,2,1\}$ |  |  |  |  |  |  |  |  |  |

Figure 6.28 : Action of ShortestPath on digraph of Figure 6.27

Figure 6.27 : Digraph for Example 6.5

