
Precision machine Design- Dynamic matching 

1. Dynamic matching of components 

1) Minimum stiffness of actuator and Maximum servo 

loop time 

The axial stiffness of actuator must be high enough such 

that the smallest force input to the system should cause a 

deflection less than the allowable minimum limit. If the 

deflection is bigger than this limit, the closed loop servo 

system may not react to the force input properly like rubber 

string, which is not controllable. 
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K is the actuator stiffness, and it is in general the higher the 

better, where M is the mass to be actuated, C is the damper. 



Let ΔXactual be the actual displacement under the force 

increment, ΔF, and ΔXcontrol is the control target or the 

allowable minimum limit. In order for the system to be 

controllable, 

ΔXactual=ΔF/K ≤ ΔXcontrol ; thus ΔF/ΔXcontrol ≤ K 

∴K should be high enough such that K≥ΔF/ΔXcontrol 

Otherwise, the feedback control action will fluctuate 

continuously between [0, ΔXactual]; which is uncontrollable. 

ΔF/ΔXcontrol is called as the minimum stiffness of actuator. 

 

When C is assumed as very small, the dynamic response of 

the actuation is obtained from 

Md2X/dt2+CdX/dt+KX=ΔF, thus the dynamic response, ΔX 

becomes 

ΔX=ΔF/K+Asin(ωnt+φ) 

where ωn=natural frequency of actuation system=√K/M 

A=constant 

The ΔX signal should be measured from the sensor then 

fed back to the controller. In digital sampling and control, 

aliasing is the phenomena such that signals of different 



frequencies become indistinguishable at the integer 

number times of frequencies. In order to avoid the aliasing, 

the LPF(low pass filter) is adopted to attenuate the high 

frequency signals (in control), or to use the Nyquist criterion 

(in digital sampling) such that fs≥2f0 where fs is the sampling 

frequency and f0 is the frequency of interest to be detected.  

 

The mechanical time constant, τm, of the actuator becomes, 

τm=2π/ωn=2π(M/K)1/2 eq(1)  

where ωn is the natural frequency of actuator.  

From the Nyquist Criterion, the servo frequency is at least 

twice the natural frequency of actuator such that ωservo 

≥2ωn. Thus the mechanical time constant, τm , should be at 

least twice of the servo loop time, τservo. The ratio, τm/2τservo, 

approximately gives the number of servo loop or sampling 

(n). The standard deviation of the average of samplings will 

be statistically reduced by √n or (τm/2τservo)1/2 when 

compared to the standard deviation of every single 

sampling. This is called the behavior of average or 

averaging effect due to multiple samplings, and it 

contributes to make narrower deviation or finer resolution 



by the factor of √n or (τm/2τservo)1/2 

For a controller of N bits of D/A resolution, the incremental 

force ΔF can be written as following, 

ΔF=Fmax/ 2N /[τm/2τservo]1/2    eq(2) 

where Fmax is the maximum (or full scale) force that the 

controller can handle. 

Let δK is the deflection when ΔF is applied to the system, then 

δK=ΔF/K  eq(3) 

where K is the stiffness of actuator. 

From eq(1) to (3), 

The stiffness of actuator, K, becomes 

K=ΔF/δK=[Fmaxτ1/2
servo /[2Nπ1/2M1/4δK]]4/3   eq(4) 

: Dynamic matching condition 

Eq(4) indicates that the minimum stiffness of actuator can be 

determined from the target deflection (δK) and the servo loop 

time (τservo). Eq(4) gives the minimum stiffness of actuator 

when the target deflection δK, and the servo loop time, τservo 

are chosen. 

 



In the mean time between the loop time, it can be assumed 

that the system behaves as the open loop system, thus the 

system of mass M will travel with constant acceleration, 

a=ΔF/M, ignoring any damping effect. Thus the distance of 

travel, δM, by the system during the time of τservo will be 

δM=at2/2=0.5(ΔF/M)τ2
servo   

Thus τservo=[2δM/ΔF]1/2  eq(5) 

Appying eq(5) to eq(4), 

K=FmaxδM
1/4/[2N-1/4π1/2δK

5/4] eq(6) 

The distance of travel, δM , during the time of τservo can be 

assumed as the half of the servo error, δservo/2. Similarly, the 

minimum target deflection, δK can be assumed as the half 

of the servo error, δservo/2. 

Thus eq(6) becomes, 

K=Fmax/[2N+3/4π1/2δservo] eq(7) 

: Minimum Stiffness to achieve δservo 

The servo loop time, τservo, also can be determined from 

eq(4),(5),(3),(6) 

τservo =[2δMM/ΔF]1/2=[2δMM/(KδK)]1/2 

=[2δMM2N-1/4π1/2δK
5/4/ FmaxδM

1/4δK]1/2 



=[2N+3/4 π1/2 δM
3/4M δK

1/4/Fmax]1/2 

=[2N-1/4 π1/2 Mδservo/Fmax]1/2 if δM=δK=δservo/2  eq(8) 

: Maximum Servo loop time to achieve δservo 

Eq(8) gives the maximum servo loop time in order to give 

the allowable δservo . 

Therefore, in order to decrease the servo error, δservo , that 

is to give higher precision, 

1) Increase K; stiffness solution (static solution) 

2) Decrease τservo ; control solution (dynamic solution) 

 

Ex) For M=200Kg, Fmax=1000N, N=12 bit D/A 

For δservo=10nm to be achieved, 

①K≥Fmax/[2N+3/4π1/2δservo]=8.192 MN/m (Minimum stiffness), 

or  

②τservo≤[2N-1/4π1/2Mδservo/Fmax]1/2=0.00349sec=3.49msec 

(Maximum servo loop time) 

 

 

 



For δservo=1nm to be achieved,  

①K≥Fmax/[2N+3/4π1/2δservo]=81.920 MN/m (Minimum stiffness), 

or  

②τservo≤[2N-1/4π1/2Mδservo/Fmax]1/2=0.00110sec=1.10msec  

 (Maximum servo loop time) 
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This is the case of the actuator stiffness and servo loop time 

issue for high precision motion. Additionally, the natural 

frequencies of the individual components such as brackets, 

holders, jigs are carefully avoided from the frequency of 

excitation or actuation in the system. 

 



 

2. Optimum transmission ratio between elements 

Velocity profile of actuation: 

Among various velocity profiles, the triangular or 

trapezoidal velocity profiles are the most common as shown 

in the fig, as they can be conveniently implemented through 

the controller 
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Let tT=total time for move, ta=time of acceleration=tT/3, 

tv=time of constant velocity=tT/3, and td=time for 

deceleration=tT/3 

When a is the acceleration/deceleration, the total distance 

travelled, D, is 

D=0.5a(tT/3)2+a(tT/3)(tT/3)+0.5a(tT/3)2=2atT2/9 

Thus for given distance, D, and time for move, tT 

The acceleration and velocity can be determined, which is 



the first step for the motor and power elements selection. 

a=9D/2tT2   eq(2-1) 

V=a(tT/3)=3D/2tT eq(2-2) 

 

PR, Power Rate [Watt/s]: 

Amount of change in power during a time period of 

acceleration/deceleration. 

Thus for the trapezoidal velocity profile with actuation force, 

Power rate during acceleration, PR; 

PR = d(FV)/dt=FdV/dt=Fa=F(F/M)=F2/M eq(2-3) 

where F=Actuation force, M=Mass to be actuated. 

For rotating actuation; 

PR=d(Tω)/dt=Tdω/dt=Tα=T(T/J)=T2/J  eq(2-4)  

where T=Actuation torque[Nm], J=Mass moment of inertia to 

be rotated[Kgm2], ω=angular velocity[rad/s],  

α=angular acceleration[rad/s2]  

Thus for the velocity profile given, 

Power for Load, PLoad=FV 



Motor 

Load 

Power Rate of Load, PRLoad=FV/ta 

The required power can be assigned larger than the twice of 

power for load, 

Prequired ≥ 2PLoad  eq(2-5) 

The required power rate can be assigned larger than four times 

of the power rate for load (from G.  Newton’s paper, Selecting the 

optimum electric servo motor for incremental positioning applications, 10 symp. 

Increment. Motion Control Syst. And Dev.BB Kuo(ed.) p5) 

PRrequired ≥ 4PRLoad eq(2-6) 

 

Eq(2-5),(2-6) give guidelines for the motor or actuator 

selection. 

 

Optimal Transmission Ratio 

Assume that motor transmits torque to element (or Load); 

Transmission Ratio=  n   :  1 

      

                           

For optimum transmission, the power output from the motor 

during the acceleration time, ta, must be equal to the power 



M                                 

 

input to the Load during the same time ta. 

Tmotorωmotor=Jmotorαmotorωmotor=Jmotorα2
motorta 

TLoadωLoad=JLoadαLoadωLoad=JLoadα2
Loadta 

where α is the angular acceleration, ω is the angular velocity. 

Therefore Jmotorα2
motor = JLoadα2

Load eq(2-7) 

When n is the optimum transmission ratio between the motor 

and the load such that αmotor=nαLoad  

Thus nopt=[JLoad/Jmotor]1/2   eq(2-8) 

 

For a friction drive; 

         Friction Drive of Mass, M 

                                       V 

                          

                   R 

 

Optimum transmission occurs when power is balanced; 

During ta acceleration period, 

Power from the motor wheel 



=Tω=Jmotorαω=Jmotorα2ta  

Power to friction driven rod 

=FV=MLoada2ta=MLoadα2R2ta  (∵a=αR) 

From the power balance, the optimum radius of wheel, R, can 

be determined as, 

R=[Jmotor/MLoad]1/2  eq(2-9) 

This is the optimum radius of motor wheel for optimal 

transmission. 

 

For the lead-screw driven carriage,  

         M=Mass, V=velocity  

 

Lead       

                             L mm/rev (=Screw pitch) 

During ta acceleration period, 

Power from Lead Screw=Tω=JScrewα2ta 

Power to Carriage=FV=MCarriagea2ta=MCarriage (Lα/2π/1000)2ta 

From power balancing,  



the optimum screw pitch can be determined as, 

L=2π(1000)[JScrew/MCarriage]1/2 [mm/rev]  eq(2-10) 

Sometimes it may lead quite small lead, thus requiring very 

high rotation speed. In this case, the lead can be chosen 

according to the critical speed criteria such that,  

ωn=k2[EI/(AρL4)]1/2 

L=2π(1000)Vmax/ωmax [mm/rev], where ωmax<ωn eq(2-11) 

 

Optimum transmission ratio under large external loads 

When large external load is applied to the system due to 

friction force or cutting force, the optimum transmission ratio 

can be modified as follows  

(source: J.Park and S.Kim,Optimum speed reduction ratio for DC servo drive system, 

Int.J.Machine Tools and Manufacture, 29(2), 1989) 

 

nopt=[JLoad√(1+r)/Jmotor]1/2  eq(2-11) 

where r=T2
Loadtc2/[cω2

LoadJ2Load], and 

c=tc/ta+tc/td where tc is total time of travel, ta is the time for 

acceleration, tc is the total time for travel. 

 



 

Sensors 

Linear Optical Scale 

 

Source: Mitutoyo catalog for optical scale, and interpolation electronics 

such as the quadrature decoding gives the finer resolution; Pitch/2N ≒ 

0.1 um for Pitch=20um, N=8 (bit)  

 

 

 



 

Rotary Encoder 

 

Source: slide share 

This is rotary version of linear optical scale, and the 

range is 360° and the resolution is 360°/N, where N is 

the number of divisions. Electronic interpolation gives 

very high resolution such as 0.001 deg or less. 

 

 

 

 



 

Small displacement measurement 

: To measure the small distance up to 10 mm with 

fine resolution 

Commercially available sensors for small distance 

Type    Range  Resolution 

LVDT    ~10mm  0.01um 

Capacitance Gauge ~1mm  0.001um 

Optical sensor  ~10mm  0.1um 

 

 

LVDT (Source:Wikipedia) 
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Capacitance Sensor (Source:Wikipedia) 

 

 

Optical Triangulation Sensor (Source:Keyence.com) 

d 



 

 

Control Schemes 

:There are several schemes to connect the sensor and actuator, 

that are commonly used in the practical machines or field. 

 

 

(a)Open Loop (b)Closed loop with Rotary encoder  

(c) Closed loop with Linear encoder 

(Source from Nakazawa’s Principles of Precision Engineering, Oxford University 



Press) 

(1) Open loop 

This method is to drive the actuator without connecting the 

sensor input; most simple and cheap method.  

When NC command or target position is given, motor control 

device outputs the pulse proportional to the commanded 

position, then the step motor is actuated by the pulse 

generated, stepping by each pulses, and the connected lead 

screw rotates to feed the table. The exact position of feed table 

is never measured, thus accuracy can be limited, but it has 

wide application due to the simple configuration and cheap 

cost. 

(2) Closed loop 

This method is one of most common methods for motion 

control, and the configuration typically consists of two parts 

of control loops: one loop for velocity control with feedback 

from the tacho-generator, and another loop for position 

control with feedback from the rotary encoder or linear 

encoder (linear scale). The position control device generates 

the signal that corresponds to the gap between the desired 

position and the actual position, and is in charge for the 



position to position movement. The velocity control device 

generates the signal that corresponds to the gap between the 

desired velocity and actual velocity, and it cares for the velocity 

control in charge of the path or trajectory.   

 

(3) PID Control 

The closed loop control device needs to generate the signal 

that corresponding to the gap between the desired and actual. 

There are several methods to achieve this, and the PID control 

method is one of the most widely used techniques, as it can 

be applied to various control applications with a simple design 

and relatively cheap cost.  

When u is the signal and e is the gap to be followed, then u 

can be calculated as the combination of Proportional part, 

Integral part, and the Derivative part, and it is called as the 

PID control; that is, 

u=Kc(e+∫edt/Ti+Tdde/dt) in time domain, or 

U(S)=Kc[1+S-1/Ti+STd]E(S) in S domain 

where U(S), E(S) are the Laplace transform of u(t), and e(t), 

respectively. 



Also, Kc is the P gain, 1/Ti is the I gain, and Td is D gain. 

The gains are adjusted or tuned from such as the step 

response, and their characteristics are as follows; 

Rise time = the time for rising 90% of target,  

Overshoot = the overshoot amount over the target position, 

Settling-time = the time when the response is within +/-3% 

tolerance from the target position,  

Steady-state error = the permanent error,  

=target position - actual position, as t becomes ∞. 

 

As Kc increase,  

Rise time↓, Overshoot↑, Settling time=X(not related),  

Steady-state error↓ 

As 1/Ti increase,  

Rise time↓, Overshoot↑, Settling time↑, Steady-state error=0 

As Td increase, 

Rise time X, Overshoot↓, Settling time↓, Steady-state error=X 

Therefore, the gains or parameters can be adjusted or tuned 

by manual tuning or auto-tuning. 



 

(4) Control scheme for steady-state error reduction 

The steady-state error is the permanent error between the 

target and actual, and it is always desirable to minimize this 

for precision motion control. 

 

Input, u     + G                 Output 

           - 

 

         Feedback Control Diagram 

 

For a typical feedback diagram shown, when the target U(S) 

is commanded, the error E(S) can be derived as  

E(S)=U(S)/[1+G(S)], where G(S) is the loop transfer function. 

For the step input u(t)=1, or U(S)=1/S, 

From the final value-theorem, the steady-state error, 

e(∞)=lim SE(S), as S->0 

=lim 1/[1+G(S)], as S->0 

Thus two ways are possible to reduce the steady-state error; 



one is to give very high gain for G, then the steady state 

error decreases inversely. But the maximum gain is limited 

by the stability of system.  

Another method is to include an Integral gain in the loop 

transfer function, then G(S) becomes as product of Integral 

Gain and Loop transfer function, that is, G(S)=F(S)/S 

Then the steady-state error becomes, 

e(∞)=lim 1/[1+G(S)], as S->0 

=lim 1/[1+F(S)/S]=lim S/[S+F(S)], as S->0 

=0 

Thus the steady-state error becomes zero after the Integral 

gain is introduced. 
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(5) Control scheme for noise reduction 

                D(S) 

 G1(S)    +     

 

 

Case a: Noise input D before G2 

 

 

                              D(S) 

 G1(S)                       +   

 

 

Case b : Noise input D after G2 

 

When error or disturbance, D(S), is introduced to the 

control scheme as shown in fig, the contribution X(S) 

of the disturbance to the output would be  

X(S)=G2(S)D(S)/[1+G1(S)G2(S)] for Case a 



X(S)=D(S)/[1+G1(S)G2(S)] for Case b 

Thus Case b gives smaller contribution to the output, 

which is desirable.  

Therefore, it is better to increase the gain of transfer 

function located before the disturbance is input. 

 

(6) Feedforward control scheme for particular application 

Feedforward control scheme can be introduced together 

with the feedback scheme for better performance in the 

particular application as shown in the fig. Generally, it may 

give some performance improvement in very limited 

application, but care should be taken. 

 

Feedforward-feedback combined control scheme 



(Source: Mekid’s Introduction to Precision Machine Design) 

(7) Requirement for sensors 

For precision motion of machines, the sensor ’s resolution is 

equal to or higher than the control precision. Practically, at 

least three times higher resolution of sensors are required 

for practical application. 

The response speed of the sensor is also important, and the 

sensor should be chosen such that 3dB frequency of the 

sensor may be equal to or higher than the fastest control 

frequency of the system, because the sensor gives about 

70.7% signal for the measured data at the 3dB frequency. 

 

 


