Advanced Flash Translation Layer

Jihong Kim
Dept. of CSE, SNU

Outline

* Problems of Hybrid-Mapping-Based FTL

e FTLs for Memory-Constrained Storage Systems
— DFTL
— pu-FTL

Advanced Flash Translation Layer (Jihong Kim/SNU)

Hybrid FTL Schemes

* The main difficulties the FTL faces in giving high
performance is the severely constrained size of SRAM
— Coarse-grained mapping (block-level mapping)
» Small SRAM size / Poor garbage collection efficiency
— Fine-grained mapping (page-level mapping)
* Efficient garbage collection / Large SRAM size

Problems of Hybrid FTL Schemes

* Fail to offer good performance for enterprise-
scale workloads

* Require workload-specific tunable parameters

* Not properly exploit the temporal locality in
accesses

Basic Approaches to Memory-
Constrained Storage Systems

e Cached mapping information

* On-demand loading of mapping information
— DFTL

 Better data structures for mapping information
— pu-FTL

Advanced Flash Translation Layer (Jihong Kim/SNU)

DFTL

Hybrid FTLs suffer performance degradation due to full
merges

— Caused by the difference in mapping granularity of data and
log blocks

— A high performance FTL must be re-designed without log-
blocks

DFTL is an enhanced form of the page-level FTL scheme
— Allow requests to be serviced from any physical page on flash
— All'blocks can be used for servicing update requests

How to make the fine-grained mapping scheme feasible
with the constrained SRAM size

— Use an on-demand address translation mechanism

Demand-based Selective Caching of
Page-level Address Mapping

* Propose a novel FTL scheme (DFTL) : Purely page-
mapped FTL
— Exploit temporal locality of accesses

— Uses the limited SRAM to store the most popular mappings
while the rest are maintained on flash

— Provide an easier-to-implement solution
— Devoid of tunable parameters

DFTL Architecture

Stores active Consult Tracks

B icrost Cached Mapping location of Global Translation translation
e Table translation Directory pages on
PpPINg pages on flash
Dipn lDPPN flash Mven Mepn
: |
| Mapping _| [# | Directory _|
Store logical Entries Entries
to physical |
address Store real
translations SRAM data from I/O
Fetch Evict ma;:ping requests
i entry for
m:sfr;-l 4 Synchronization
Data OOB
Ol]
[T |
FLASH [T 1
[T 1
Translation Blocks Data Blocks

Advanced Flash Translation Layer (Jihong Kim/SNU)

Data Blocks and Translation Blocks

o DFTL partitions all blocks into two groups

— Data blocks: composed of data pages
» Each data page contains the real data

— Translation blocks: consists of translation pages

 Each translation page stores information about logical-to-
physical mappings

* Logically consecutive mappings information stored on a
single page

* 512 logically consecutive mappings in a single page (page
size: 2 KB, addr: 4 Byte)

Example:
When a Request Incurs a CMT miss

D py- 1280 Cached Mapping 5 GlobalTranslation
Table Directory
Doy Dppy Mypy Mppy
3 150 0 23
10 | 170 1 17
11 360 2 15
Victim entry 1280 | 660 3 22

Data A
Page v

DLPN DPPN DLPN DPPN DLPN DPPN
1024 570 SI) : '_I g ? ;;3_“_
Data 2 fl.}ig_ p) 440
1535 420 | 511 560 511 560
DLPN =1280 OOB MVPN = 2, MVPN = o, Mva = 01
FSV FV FSV FV
Data Block

Translation Block

Overhead in DFTL Address Translation

 The worst-case overhead in DFTL address translation

* One for the victim by the replacement policy
* The other for the original requests

* Ffor the translation page write for the victim

* The address translation overhead can be mitigated
— The existence of temporal locality helps in reducing the # of evictions

— Batch updates for the pages co-located in the victim could also reduce the # of
evictions

Read/Write Operation

* Forareadoperation

— Directly serviced through flash page read operation once the address translation is
completed

e for awrite operation

— Maintain two types of blocks for data block and translation blocks
e Currentdata block and current translation block

— Sequentially writes the given data into these blocks

Garbage Collection

* Different steps are followed depending on the
type of a victim block

— Translation block:
» Copy the valid pages to the current translation block
* Update the corresponding GTD

— Data block:

 Copy the valid pages to the current data block

 Update all translation pages and CMT entries associated
with these pages

Example: Translation Block

* Translation block as victim for garbage collection

Mppn=12 VPN Tanslation Block Current Translation Global Translation

Dol \ (Victim) Block Directory

HiC = \ ! Myven Mpen Meen

— 101 | Mns5, 1 | 200 | Mven=40, V| BER %

- -~ 1T Mvens6, 1 | 211 [Mven=15, V| 1120 —

C12[T Mven=0,V H— Copy 22| | Mven=a, F | 2 | 13 4—@
BT M=,V H 23] Wm0, | 3 [%5
— —_—

Mpen =B Meen =B2

(1) Select Victim Block (2) Copy Valid Map Pages (3) Update Global Translation Directory

Advanced Flash Translation Layer (Jihong Kim/SNU) 14

Example: Data Block

» Data block as victim for garbage collection

Dreen

Current Data
R Data Block(Victim)

Block

200[_T Deu=601, V]
201
202[[Dien=2,F |
203[] Dien=2. F |

110 DLPN:U; V
111 Dien=2, V

Yy

Dren =B3 Dren=B4

(1) Select Victim Block (2) Copy Valid Data Pages

Global Translation
Directory

Mepn

h Current Translation
. Translation Block

Block

MpPPu=12

Dier Deen
0

110

A

10[T Muven=5,1 |
1] Muen=6, | |
12[T Mven=0, V |

30[] Mwen=50, |
31] Mwven=55, |
32[[Mveu=a, F |

1 160
2 111

51 580

Mve0, 13 W21] 38 [Mo, F]
\i

Mpan=B1 Meren =B2

(3) Update Corresponding Translation Page

Cached Mapping
Table

Dien Deen

0

1
2
3

(4) Update Global
Translation Directory

Advanced Flash Translation Layer (Jihong Kim/SNU)

0 _| 110
1 130
20 | 150
511 | 560

(5) Update Cached
Mapping Table

Evaluation Setup

® Parameters

— Flash memory size: 32 GB / SRAM size: 2 MB

~ Log buffer size: 512 MB (about 3% of the total flash capacity)
— Evaluated schemes: FAST, baseline, DFTL

® Workloads
)) Avg. Req. Read | Seq. | Avg. Req. Inter-arrival
Workloads Size (KB) (%) (%) Time (ms)
Financial [25] 4.38 9.0 2.0 133.50
Cello99 [10] 5.03 35.0 1.0 41.01
TPC-H [28] 12.82 95.0 18.0 155.56
Web Search [26] 14.86 99.0 14.0 9.97

® Performance metrics

— Garbage collection’s efficacy

~ Response time (device service time + queuing delay)

The Number of Block Merges

18
1s |-
=
= 14 [Eull Merzs
—_ B Partsl Mearge
> 12 = B Switch Merza
Lo
= 10
= 8
=
':__.3 &
Z 4
2
I:I L A | L] —_ “La . |
2 & E 2 £ E 5 & E
[3 &= = it = = 2 =
jmai [= a3 0
Financial Celle TEC-H

® Baseline and DFTL show a higher number of switch merges

® FAST incurs lots of full merges

~ 20% and 60% of full merges involve more than 20 data blocks in Financial and TPC-H benchmarks,
respectively

Advanced Flash Translation Layer (Jihong Kim/SNU)

17

Address Translation Overhead

O Address Translation (Witse)
O Address Translation (Read)
B Valid Page Copy

100

6,000 - -]
- 5000 - é 20
o [Translation Black 2
4000 [Data Block =
= = a0
;
5 3000 &
5 : w
32,000 =
£ g
= = 0
“ 1000 g -
z
0]
;2 5 2 5 2 g F 2 g 5 2 & 5 2 g
- = Eau - s [s k] e -] = - = i o] = [
™ ﬁ a o :Jj [= = ﬁ o e @ Q w 7] Q B g (=]
o @ il @ o m
Financial Cello TPC-H Financial Cello TPC-H
Block Erases Extra Read/Write Ops.

* DFTL incurs extra overheads due to its translation mechanism
— The address translation accounts for 90% of the extra overhead
o DFTLyields a 3-fold reduction in extra ops. over FAST
— 63% hits for address translations in SRAM

Advanced Flash Translation Layer (Jihong Kim/SNU) 18

Impact of SRAM size

1 7 1.8 1 ;
! v .
Average Response Time ’-' E ;.
\-\ N) 0.8¢ i 2
0.9 \ ,; 168 Average Re?ponse Time .
2 % © V \1"
& e Sos o~
T 0.8 145 I o
E —_ N
< S Zo4 7
nd < o . . a
@ . . - @ Hit Ratio .~
0.7 Hit I'I\I’at|o 12N e
\ © 0.2 PR
i Noooo p S e
L Q
- pd
0.6 1 1 1 1 1 0 1 1 1 1 1 1
32K 64K 128K 256K 512K 1M 2M 32K 64K 128K 256K 512K 1M 2M 4aM
SRAM Size (Bytes) SRAM Size (Bytes)
(a) Financial Trace (b) TPC-H Benchmark

® With the SRAM size approaching the working set size

~ DFTL's performance becomes comparable to Baseline (=page level FTL)

— —
w N
Normalized Average Response Time

-
N

-
-
-

p-FTL

* Design goal
* Reduce the RAM usage as small as block-mapped FTLs
* Providing the performance comparable to page-mapped FTLs

* Key observations: Two dominant workloads
* Coarse-grained mapping for large and sequential writes

 Fine-grained mapping for small and random writes

 Adjusts mapping granularities according to the size of
incoming write requests

Advanced Flash Translation Layer (Jihong Kim/SNU)

20

p-FTL

Block-mapped FTL

Overhead

Low overhead

Advanced Flash Translation Layer (Jihong Kim/SNU)

High overhead
Small RAM usage

Page-mapped FTL

» Low overhead

Small RAM usage « Large RAM usage

RAM usage

21

Address Mapping

e u-FTL implements multiple mapping granularities

— Extent: A variable-sized mapping entry (a pair of key and record)

Key

Logical blocks Physical blocks

0 .Record
)
2}/ o | 4 5 | 6
—>
4
5
I\
7 V
K-FTL mapping example The implementation of

Advanced Flash Translation Layer (Jihong Kim/SNU) mapplng example 22

Garbage Collection

* Victim selection policy
— Having the largest # of invalid pages

* Garbage collection information

— Per-block invalid page counter

e Maintaining the number of invalid pages in each physical
block

— Bitmap information
* Distinguishing valid pages from invalid pages

Bitmap Information

 Bitmap information is too large to be stored in RAM
» We store the bitmap information in p-tree

Physical blocks Key (mapping)
100 104

105

106

107
26

Advanced Flash Translation Layer (Jihong Kim/SNU)

Key Data Structure: y-Tree

* Handling any insertion/deletion/update operation of the tree with
only one flash write operation
— By storing multiple nodes from the leaf to the root in a single page

n-Tree cache

LRU
head

- cache miss

< cache full
(dirty pages only)

Advanced Flash Translation LaM le-[rn% ﬁmb\l(gc k 25

Logical Address Space Partitioning

» Separating hot data from cold data has a beneficial effect on the
performance of an FTL

o Each part of the logical address space exhibits different degree of
“hotness”

e Update block

— Being charged for receiving data from incoming write requests

Logical address space

Logical address space

Hot

Cold

Hot

Cold

Cold

Cold

A global update block

Advanced Flash Translation Layer (Jihong Kim/SNU)

XTI T

Many update blocks

for each partition

26

u-FTL Design Summary

Bitmap update flush Bitmap

p-Tree Cache
Cache

Address Bitmap
Cache Info. update
full update
Cache miss E E D
Partition | Partition | Partition | Partition
p-Tree . 2 3 4
Free block list

Advanced Flash Translation Layer (Jihong Kim/SNU)

Evaluation Methodology

e Trace-driven simulators for several FTLs
— Block-mapped: the log block, FAST, the super block
— Page-mapped: DAC
e 6traces
— 3 multimedia traces: PIC(8GB), MP3(8GB), MOV(8GB)
— 3 PCtraces: WEB(32GB), GENERAL(32GB), SYSMARK (40GB)

* The standard configurations

The portion of

Partition Size Bitmap cache size extra blocks

256MB 4KB for multimedia traces

. 3%
(512 logical blocks) 32KB for PC traces

Advanced Flash Translation Layer (Jihong Kim/SNU)

The RAM Usage

Block-mapped FTL u-FTL (A+B+C) Page-mapped FTL

16KB+44KB+4KB
= 64KB e
64KB+160KB+32KB
256KB - 256KB 32MB
80KB+208KB+32KB
320KB - 320KB 40MB

(A) Per-blockinvalid page counter
(B) The p-Tree cache size
(C) The bitmap cache size

Advanced Flash Translation Layer (Jihong Kim/SNU) 29

The Comparison of FTL Performance

7000 —e-Logblock
-B-FAST
— 6000 \ Superblock
[72]
5 Y =#-DAC
S >000 -0--FTL
(8}
g_ 4000
®
® 3000
L
o
2 2000 - ~_—56.8%
© |
1000 ~= | E I
0 T T T T
1% 2% 3% 4% 5%
Extra blocks
GENERAL (32GB)

Advanced Flash Translation Layer (Jihong Kim/SNU)

Overhead(seconds)

1600
1400 _L._
1200 \\
1000 ‘\"\Oz~ >——o
800 \\
600 =
400 89.7%
200 2 |
0 -ﬁﬂﬁﬂ—v—Lﬂ=!=ﬁ
1% 2% 3% 4% 5%
Extra blocks
SYSMARK (40GB)
30

The Effect of Partitioning

B GC O Mapping Entry B Bitmap Entry B GC O Mapping Entry B Bitmap Entry

__ 1000

S

£ 800 -

§ 600 -

5 400 -

©

o 200 -

<

g o

@)

Partition size (MB) Partition size (MB)
WEB (32GB) GENERAL (32GB)

Advanced Flash Translation Layer (Jihong Kim/SNU) 31

Reference

* Aayush Gupta et al., "DFTL: A flash translation layer employing
demand-based selective caching of page-level address mappings”,
ASPLOS, 2009

* Yong-Goo Lee et al,, "u-FTL: A Memory-Efficient Flash Translation
Layer Supporting Multiple Mapping Granularities,” EMSOFT, 2008

e Dongwon Kang et al, "u-Tree : An Ordered Index Structure for
NAND Flash Memory,” EMSOFT, 2007

	Advanced Flash Translation Layer
	Outline
	Hybrid FTL Schemes
	Problems of Hybrid FTL Schemes
	Basic Approaches to Memory-Constrained Storage Systems
	DFTL
	Demand-based Selective Caching of Page-level Address Mapping
	DFTL Architecture
	Data Blocks and Translation Blocks
	Example:�When a Request Incurs a CMT miss
	Overhead in DFTL Address Translation
	Read/Write Operation
	Garbage Collection
	Example: Translation Block
	Example: Data Block
	슬라이드 번호 16
	슬라이드 번호 17
	Address Translation Overhead
	슬라이드 번호 19
	μ-FTL
	μ-FTL
	Address Mapping
	Garbage Collection
	Bitmap Information
	Key Data Structure: μ-Tree
	Logical Address Space Partitioning
	μ-FTL Design Summary
	Evaluation Methodology
	The RAM Usage
	The Comparison of FTL Performance
	The Effect of Partitioning
	Reference

