
Advanced Flash Translation Layer

Jihong Kim

Dept. of CSE, SNU

Outline

• Problems of Hybrid-Mapping-Based FTL

• FTLs for Memory-Constrained Storage Systems
– DFTL

– μ-FTL

2Advanced Flash Translation Layer (Jihong Kim/SNU)

Hybrid FTL Schemes

• The main difficulties the FTL faces in giving high
performance is the severely constrained size of SRAM
– Coarse-grained mapping (block-level mapping)

• Small SRAM size / Poor garbage collection efficiency

– Fine-grained mapping (page-level mapping)
• Efficient garbage collection / Large SRAM size

Advanced Flash Translation Layer (Jihong Kim/SNU) 3

Problems of Hybrid FTL Schemes

• Fail to offer good performance for enterprise-
scale workloads

• Require workload-specific tunable parameters

• Not properly exploit the temporal locality in
accesses

Advanced Flash Translation Layer (Jihong Kim/SNU) 4

Basic Approaches to Memory-
Constrained Storage Systems

• Cached mapping information

• On-demand loading of mapping information
– DFTL

• Better data structures for mapping information
– μ-FTL

Advanced Flash Translation Layer (Jihong Kim/SNU) 5

DFTL

• Hybrid FTLs suffer performance degradation due to full
merges
– Caused by the difference in mapping granularity of data and

log blocks
– A high performance FTL must be re-designed without log-

blocks
• DFTL is an enhanced form of the page-level FTL scheme

– Allow requests to be serviced from any physical page on flash
– All blocks can be used for servicing update requests

• How to make the fine-grained mapping scheme feasible
with the constrained SRAM size
– Use an on-demand address translation mechanism

Advanced Flash Translation Layer (Jihong Kim/SNU) 6

Demand-based Selective Caching of
Page-level Address Mapping

• Propose a novel FTL scheme (DFTL) : Purely page-
mapped FTL
– Exploit temporal locality of accesses

– Uses the limited SRAM to store the most popular mappings
while the rest are maintained on flash

– Provide an easier-to-implement solution

– Devoid of tunable parameters

Advanced Flash Translation Layer (Jihong Kim/SNU) 7

DFTL Architecture

Advanced Flash Translation Layer (Jihong Kim/SNU) 8

Data Blocks and Translation Blocks

• DFTL partitions all blocks into two groups
– Data blocks: composed of data pages

• Each data page contains the real data

– Translation blocks: consists of translation pages
• Each translation page stores information about logical-to-

physical mappings

• Logically consecutive mappings information stored on a
single page

• 512 logically consecutive mappings in a single page (page
size: 2 KB, addr: 4 Byte)

Advanced Flash Translation Layer (Jihong Kim/SNU) 9

Example:
When a Request Incurs a CMT miss

MVPN = 2,
FV

1024 570

DLPN = 1280
FV

- -
1280 660

- -

0 21

1 17

2 15

3 22

Data

OOB
MVPN = 0,

FV
MVPN = 0,

FV

1535 420

0 110
1 130
2 440
- -

0 110
1 130
2 440
- -

511 560

3 150

10 170

11 360

1 260

… …

DLPN

DPPN = 660

MVPN MPPNDPPN

DPPN = 661

511 560

DLPN DPPN DLPN DPPN DLPN DPPN

MPPN = 15 MPPN = 21 MPPN = 23

DLPN = 1280 Global Translation
Directory

Cached Mapping
Table

MISS

Victim entry

21

260

23

1280 660

Data
Page

Data Block Translation Block

Advanced Flash Translation Layer (Jihong Kim/SNU) 10

Overhead in DFTL Address Translation

• The worst-case overhead in DFTL address translation
– Two translation page reads

• One for the victim by the replacement policy

• The other for the original requests

– One translation page write
• For the translation page write for the victim

• The address translation overhead can be mitigated
– The existence of temporal locality helps in reducing the # of evictions

– Batch updates for the pages co-located in the victim could also reduce the # of
evictions

Advanced Flash Translation Layer (Jihong Kim/SNU) 11

Read/Write Operation

• For a read operation
– Directly serviced through flash page read operation once the address translation is

completed

• For a write operation
– Maintain two types of blocks for data block and translation blocks

• Current data block and current translation block

– Sequentially writes the given data into these blocks

Advanced Flash Translation Layer (Jihong Kim/SNU) 12

Garbage Collection

• Different steps are followed depending on the
type of a victim block
– Translation block:

• Copy the valid pages to the current translation block

• Update the corresponding GTD

– Data block:
• Copy the valid pages to the current data block

• Update all translation pages and CMT entries associated
with these pages

Advanced Flash Translation Layer (Jihong Kim/SNU) 13

Example: Translation Block

• Translation block as victim for garbage collection

Advanced Flash Translation Layer (Jihong Kim/SNU) 14

Example: Data Block

• Data block as victim for garbage collection

Advanced Flash Translation Layer (Jihong Kim/SNU) 15

Evaluation Setup

 Parameters

− Flash memory size: 32 GB / SRAM size: 2 MB

− Log buffer size: 512 MB (about 3% of the total flash capacity)

− Evaluated schemes: FAST, baseline, DFTL

 Workloads

 Performance metrics

− Garbage collection’s efficacy

− Response time (device service time + queuing delay)

16Advanced Flash Translation Layer (Jihong Kim/SNU)

The Number of Block Merges

 Baseline and DFTL show a higher number of switch merges

 FAST incurs lots of full merges

− 20% and 60% of full merges involve more than 20 data blocks in Financial and TPC-H benchmarks,
respectively

17Advanced Flash Translation Layer (Jihong Kim/SNU)

Address Translation Overhead

• DFTL incurs extra overheads due to its translation mechanism
– The address translation accounts for 90% of the extra overhead

• DFTL yields a 3-fold reduction in extra ops. over FAST
– 63% hits for address translations in SRAM

Advanced Flash Translation Layer (Jihong Kim/SNU) 18

Block Erases Extra Read/Write Ops.

Impact of SRAM size

 With the SRAM size approaching the working set size

− DFTL’s performance becomes comparable to Baseline (=page level FTL)

19Advanced Flash Translation Layer (Jihong Kim/SNU)

μ-FTL

• Design goal
• Reduce the RAM usage as small as block-mapped FTLs

• Providing the performance comparable to page-mapped FTLs

• Key observations: Two dominant workloads
• Coarse-grained mapping for large and sequential writes

• Fine-grained mapping for small and random writes

• Adjusts mapping granularities according to the size of
incoming write requests

Advanced Flash Translation Layer (Jihong Kim/SNU) 20

μ-FTL

Page-mapped FTL

• Low overhead
• Large RAM usage

Block-mapped FTL

• High overhead
• Small RAM usage

μ-FTL

• Low overhead
• Small RAM usage

RAM usage
21Advanced Flash Translation Layer (Jihong Kim/SNU)

Address Mapping

• μ-FTL implements multiple mapping granularities
– Extent: A variable-sized mapping entry (a pair of key and record)

Logical blocks Physical blocks
5

0 4 5 6

100,
4

105,
1

104,
1

106,
2

Key

Record

μ-FTL mapping example The implementation of
mapping example

100
101
102
103

104
105
106
107

0
1
2
3

4
5
6
7

22Advanced Flash Translation Layer (Jihong Kim/SNU)

Garbage Collection

• Victim selection policy
– Having the largest # of invalid pages

• Garbage collection information
– Per-block invalid page counter

• Maintaining the number of invalid pages in each physical
block

– Bitmap information
• Distinguishing valid pages from invalid pages

23Advanced Flash Translation Layer (Jihong Kim/SNU)

5 25

Bitmap Information

• Bitmap information is too large to be stored in RAM

• We store the bitmap information in μ-tree

0 4 5 6

100,
4

105,
1

104,
1

106,
2

Physical blocks

100
101
102
103

104
105
106
107

25 26

(1000)2 (1111)2

Key (bitmap)

Record

1 1
25 26

Key (mapping)

1

24Advanced Flash Translation Layer (Jihong Kim/SNU)

Key Data Structure: μ-Tree
• Handling any insertion/deletion/update operation of the tree with

only one flash write operation
– By storing multiple nodes from the leaf to the root in a single page

LRU
head

μ-Tree cache

 cache miss

 cache full
(dirty pages only)

A

B C

D E F

A’

C’

F’

A
B C

D E F

A
B C

D E F F’

A
B C C’

D E F F’

A A’
B C C’

D E F F’

A A’
B C C’

D E F F’

μ-Tree block 25Advanced Flash Translation Layer (Jihong Kim/SNU)

• Separating hot data from cold data has a beneficial effect on the
performance of an FTL

• Each part of the logical address space exhibits different degree of
“hotness”

• Update block
– Being charged for receiving data from incoming write requests

Logical Address Space Partitioning

A global update block Many update blocks
for each partition

Hot Cold Hot Cold Hot Cold Hot Cold

Logical address space Logical address space

26Advanced Flash Translation Layer (Jihong Kim/SNU)

μ-FTL Design Summary

Write

Bitmap
Cacheμ-Tree

Cache

Partition
1

Partition
2

Partition
3

Partition
4μ-Tree

Free block list

Data

Address
Info.

update

Bitmap
update

Bitmap update flush

Cache
full

Cache miss

27Advanced Flash Translation Layer (Jihong Kim/SNU)

Evaluation Methodology

• Trace-driven simulators for several FTLs
– Block-mapped: the log block, FAST, the super block

– Page-mapped: DAC

• 6 traces
– 3 multimedia traces: PIC(8GB), MP3(8GB), MOV(8GB)

– 3 PC traces: WEB(32GB), GENERAL(32GB), SYSMARK(40GB)

• The standard configurations

Partition Size Bitmap cache size
The portion of

extra blocks

256MB
(512 logical blocks)

4KB for multimedia traces
32KB for PC traces

3%

28Advanced Flash Translation Layer (Jihong Kim/SNU)

The RAM Usage

Block-mapped FTL μ-FTL (A+B+C) Page-mapped FTL

8GB 64KB
16KB+44KB+4KB

= 64KB
8MB

32GB 256KB
64KB+160KB+32KB

= 256KB
32MB

40GB 320KB
80KB+208KB+32KB

= 320KB
40MB

(A) Per-block invalid page counter
(B) The μ-Tree cache size
(C) The bitmap cache size

29Advanced Flash Translation Layer (Jihong Kim/SNU)

The Comparison of FTL Performance

0

1000

2000

3000

4000

5000

6000

7000

1% 2% 3% 4% 5%

O
ve

rh
ea

d(
se

co
nd

s)

Extra blocks

0

200

400

600

800

1000

1200

1400

1600

1% 2% 3% 4% 5%
O

ve
rh

ea
d(

se
co

nd
s)

Extra blocks

GENERAL (32GB) SYSMARK (40GB)

56.8% 89.7%

30Advanced Flash Translation Layer (Jihong Kim/SNU)

0

200

400

600

800

1000

32
76

8
16

38
4

81
92

40
96

20
48

10
24 51

2
25

6
12

8 64 32O
ve

rh
ea

d(
se

co
nd

s)
Partition size (MB)

GC Mapping Entry Bitmap Entry

0
20
40
60
80

100
120
140

32
76

8
16

38
4

81
92

40
96

20
48

10
24 51

2
25

6
12

8 64 32O
ve

rh
ea

d(
se

co
nd

s)

Partition size (MB)

GC Mapping Entry Bitmap Entry

The Effect of Partitioning

WEB (32GB) GENERAL (32GB)

23.6% 39.6%

31Advanced Flash Translation Layer (Jihong Kim/SNU)

Reference

• Aayush Gupta et al., “DFTL: A flash translation layer employing
demand-based selective caching of page-level address mappings”,
ASPLOS, 2009

• Yong-Goo Lee et al., “μ-FTL: A Memory-Efficient Flash Translation
Layer Supporting Multiple Mapping Granularities,” EMSOFT, 2008

• Dongwon Kang et al, “μ-Tree : An Ordered Index Structure for
NAND Flash Memory,” EMSOFT, 2007

32Advanced Flash Translation Layer (Jihong Kim/SNU)

	Advanced Flash Translation Layer
	Outline
	Hybrid FTL Schemes
	Problems of Hybrid FTL Schemes
	Basic Approaches to Memory-Constrained Storage Systems
	DFTL
	Demand-based Selective Caching of Page-level Address Mapping
	DFTL Architecture
	Data Blocks and Translation Blocks
	Example:�When a Request Incurs a CMT miss
	Overhead in DFTL Address Translation
	Read/Write Operation
	Garbage Collection
	Example: Translation Block
	Example: Data Block
	슬라이드 번호 16
	슬라이드 번호 17
	Address Translation Overhead
	슬라이드 번호 19
	μ-FTL
	μ-FTL
	Address Mapping
	Garbage Collection
	Bitmap Information
	Key Data Structure: μ-Tree
	Logical Address Space Partitioning
	μ-FTL Design Summary
	Evaluation Methodology
	The RAM Usage
	The Comparison of FTL Performance
	The Effect of Partitioning
	Reference

