Advanced Flash Translation Layer

Jihong Kim
Dept. of CSE, SNU



Outline

* Problems of Hybrid-Mapping-Based FTL

e FTLs for Memory-Constrained Storage Systems
— DFTL
— pu-FTL
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Hybrid FTL Schemes

* The main difficulties the FTL faces in giving high
performance is the severely constrained size of SRAM
— Coarse-grained mapping (block-level mapping)
» Small SRAM size / Poor garbage collection efficiency
— Fine-grained mapping (page-level mapping)
* Efficient garbage collection / Large SRAM size



Problems of Hybrid FTL Schemes

* Fail to offer good performance for enterprise-
scale workloads

* Require workload-specific tunable parameters

* Not properly exploit the temporal locality in
accesses



Basic Approaches to Memory-
Constrained Storage Systems

e Cached mapping information

* On-demand loading of mapping information
— DFTL

 Better data structures for mapping information
— pu-FTL
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DFTL

Hybrid FTLs suffer performance degradation due to full
merges

— Caused by the difference in mapping granularity of data and
log blocks

— A high performance FTL must be re-designed without log-
blocks

DFTL is an enhanced form of the page-level FTL scheme
— Allow requests to be serviced from any physical page on flash
— All'blocks can be used for servicing update requests

How to make the fine-grained mapping scheme feasible
with the constrained SRAM size

— Use an on-demand address translation mechanism



Demand-based Selective Caching of
Page-level Address Mapping

* Propose a novel FTL scheme (DFTL) : Purely page-
mapped FTL
— Exploit temporal locality of accesses

— Uses the limited SRAM to store the most popular mappings
while the rest are maintained on flash

— Provide an easier-to-implement solution
— Devoid of tunable parameters



DFTL Architecture
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Data Blocks and Translation Blocks

o DFTL partitions all blocks into two groups

— Data blocks: composed of data pages
» Each data page contains the real data

— Translation blocks: consists of translation pages

 Each translation page stores information about logical-to-
physical mappings

* Logically consecutive mappings information stored on a
single page

* 512 logically consecutive mappings in a single page (page
size: 2 KB, addr: 4 Byte)



Example:
When a Request Incurs a CMT miss
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Overhead in DFTL Address Translation

 The worst-case overhead in DFTL address translation

* One for the victim by the replacement policy
* The other for the original requests

* Ffor the translation page write for the victim

* The address translation overhead can be mitigated
— The existence of temporal locality helps in reducing the # of evictions

— Batch updates for the pages co-located in the victim could also reduce the # of
evictions



Read/Write Operation

* Forareadoperation

— Directly serviced through flash page read operation once the address translation is
completed

e for awrite operation

— Maintain two types of blocks for data block and translation blocks
e Currentdata block and current translation block

— Sequentially writes the given data into these blocks



Garbage Collection

* Different steps are followed depending on the
type of a victim block

— Translation block:
» Copy the valid pages to the current translation block
* Update the corresponding GTD

— Data block:

 Copy the valid pages to the current data block

 Update all translation pages and CMT entries associated
with these pages



Example: Translation Block

* Translation block as victim for garbage collection
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(1) Select Victim Block (2) Copy Valid Map Pages (3) Update Global Translation Directory
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Example: Data Block

» Data block as victim for garbage collection
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(3) Update Corresponding Translation Page
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Evaluation Setup

® Parameters

— Flash memory size: 32 GB / SRAM size: 2 MB

~ Log buffer size: 512 MB (about 3% of the total flash capacity)
— Evaluated schemes: FAST, baseline, DFTL

® Workloads
) ) Avg. Req. Read | Seq. | Avg. Req. Inter-arrival
Workloads Size (KB) (%) (%) Time (ms)
Financial [25] 4.38 9.0 2.0 133.50
Cello99 [10] 5.03 35.0 1.0 41.01
TPC-H [28] 12.82 95.0 18.0 155.56
Web Search [26] 14.86 99.0 14.0 9.97

® Performance metrics

— Garbage collection’s efficacy

~ Response time (device service time + queuing delay)




The Number of Block Merges
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® Baseline and DFTL show a higher number of switch merges

® FAST incurs lots of full merges

~  20% and 60% of full merges involve more than 20 data blocks in Financial and TPC-H benchmarks,
respectively
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Address Translation Overhead

O Address Translation (Witse)
O Address Translation (Read)
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* DFTL incurs extra overheads due to its translation mechanism
— The address translation accounts for 90% of the extra overhead
o DFTLyields a 3-fold reduction in extra ops. over FAST
— 63% hits for address translations in SRAM
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Impact of SRAM size
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® With the SRAM size approaching the working set size

~ DFTL's performance becomes comparable to Baseline (=page level FTL)
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p-FTL

* Design goal
* Reduce the RAM usage as small as block-mapped FTLs
* Providing the performance comparable to page-mapped FTLs

* Key observations: Two dominant workloads
* Coarse-grained mapping for large and sequential writes

 Fine-grained mapping for small and random writes

 Adjusts mapping granularities according to the size of
incoming write requests
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p-FTL

Block-mapped FTL

Overhead

Low overhead
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High overhead
Small RAM usage

Page-mapped FTL

» Low overhead

Small RAM usage « Large RAM usage

RAM usage
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Address Mapping

e u-FTL implements multiple mapping granularities

— Extent: A variable-sized mapping entry (a pair of key and record)

Key

Logical blocks Physical blocks

0 .Record
)
2}/ o | 4 5 | 6
—>
4
5
I\
7 V
K-FTL mapping example The implementation of
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Garbage Collection

* Victim selection policy
— Having the largest # of invalid pages

* Garbage collection information

— Per-block invalid page counter

e Maintaining the number of invalid pages in each physical
block

— Bitmap information
* Distinguishing valid pages from invalid pages



Bitmap Information

 Bitmap information is too large to be stored in RAM
» We store the bitmap information in p-tree

Physical blocks Key (mapping)
100 104

105

106

107
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Key Data Structure: y-Tree

* Handling any insertion/deletion/update operation of the tree with
only one flash write operation
— By storing multiple nodes from the leaf to the root in a single page

n-Tree cache

LRU
head

- cache miss

< cache full
(dirty pages only)
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Logical Address Space Partitioning

» Separating hot data from cold data has a beneficial effect on the
performance of an FTL

o Each part of the logical address space exhibits different degree of
“hotness”

e Update block

— Being charged for receiving data from incoming write requests

Logical address space

Logical address space

Hot

Cold

Hot

Cold

Cold

Cold

A global update block
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Many update blocks

for each partition
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u-FTL Design Summary

Bitmap update flush Bitmap

p-Tree Cache
Cache

Address Bitmap
Cache Info. update
full update
Cache miss E E D
Partition | Partition | Partition | Partition
p-Tree . 2 3 4
Free block list
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Evaluation Methodology

e Trace-driven simulators for several FTLs
— Block-mapped: the log block, FAST, the super block
— Page-mapped: DAC
e 6traces
— 3 multimedia traces: PIC(8GB), MP3(8GB), MOV(8GB)
— 3 PCtraces: WEB(32GB), GENERAL(32GB), SYSMARK (40GB)

* The standard configurations

The portion of

Partition Size Bitmap cache size extra blocks

256MB 4KB for multimedia traces

. 3%
(512 logical blocks) 32KB for PC traces
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The RAM Usage

Block-mapped FTL u-FTL (A+B+C) Page-mapped FTL

16KB+44KB+4KB
= 64KB e
64KB+160KB+32KB
256KB - 256KB 32MB
80KB+208KB+32KB
320KB - 320KB 40MB

(A) Per-blockinvalid page counter
(B) The p-Tree cache size
(C) The bitmap cache size
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The Comparison of FTL Performance
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The Effect of Partitioning
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