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Outline

• Problems of Hybrid-Mapping-Based FTL

• FTLs for Memory-Constrained Storage Systems
– DFTL

– μ-FTL 
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Hybrid FTL Schemes

• The main difficulties the FTL faces in giving high 
performance is the severely constrained size of SRAM
– Coarse-grained mapping (block-level mapping)

• Small SRAM size / Poor garbage collection efficiency

– Fine-grained mapping (page-level mapping)
• Efficient garbage collection / Large SRAM size
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Problems of Hybrid FTL Schemes

• Fail to offer good performance for enterprise-
scale workloads

• Require workload-specific tunable parameters

• Not properly exploit the temporal locality in 
accesses
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Basic Approaches to Memory-
Constrained Storage Systems

• Cached mapping information

• On-demand loading of mapping information
– DFTL

• Better data structures for mapping information
– μ-FTL
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DFTL

• Hybrid FTLs suffer performance degradation due to full 
merges
– Caused by the difference in mapping granularity of data and 

log blocks
– A high performance FTL must be re-designed without log-

blocks
• DFTL is an enhanced form of the page-level FTL scheme

– Allow requests to be serviced from any physical page on flash
– All blocks can be used for servicing update requests

• How to make the fine-grained mapping scheme feasible 
with the constrained SRAM size
– Use an on-demand address translation mechanism
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Demand-based Selective Caching of 
Page-level Address Mapping

• Propose a novel FTL scheme (DFTL) : Purely page-
mapped FTL
– Exploit temporal locality of accesses

– Uses the limited SRAM to store the most popular mappings 
while the rest are maintained on flash

– Provide an easier-to-implement solution 

– Devoid of tunable parameters
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DFTL Architecture
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Data Blocks and Translation Blocks

• DFTL partitions all blocks into two groups
– Data blocks: composed of data pages 

• Each data page contains the real data

– Translation blocks: consists of translation pages 
• Each translation page stores information about logical-to-

physical mappings

• Logically consecutive mappings information stored on a 
single page

• 512 logically consecutive mappings in a single page (page 
size: 2 KB, addr:  4 Byte)
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Example:
When a Request Incurs a CMT miss
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Overhead in DFTL Address Translation

• The worst-case overhead in DFTL address translation
– Two translation page reads

• One for the victim by the replacement policy

• The other for the original requests

– One translation page write
• For the translation page write for the victim

• The address translation overhead can be mitigated
– The existence of temporal locality helps in reducing the # of evictions

– Batch updates for the pages co-located in the victim could also reduce the # of 
evictions
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Read/Write Operation

• For a read operation
– Directly serviced through flash page read operation once the address translation is 

completed

• For a write operation
– Maintain two types of blocks for data block and translation blocks

• Current data block and current translation block

– Sequentially writes the given data into these blocks
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Garbage Collection 

• Different steps are followed depending on the 
type of a victim block
– Translation block:

• Copy the valid pages to the current translation block

• Update the corresponding GTD

– Data block:
• Copy the valid pages to the current data block

• Update all translation pages and CMT entries associated 
with these pages
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Example: Translation Block

• Translation block as victim for garbage collection
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Example: Data Block

• Data block as victim for garbage collection
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Evaluation Setup

 Parameters

− Flash memory size: 32 GB / SRAM size: 2 MB

− Log buffer size: 512 MB (about 3% of the total flash capacity)

− Evaluated schemes: FAST, baseline, DFTL

 Workloads

 Performance metrics

− Garbage collection’s efficacy

− Response time (device service time + queuing delay)
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The Number of Block Merges

 Baseline and DFTL show a higher number of switch merges

 FAST incurs lots of full merges

− 20% and 60% of full merges involve more than 20 data blocks in Financial and TPC-H benchmarks, 
respectively
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Address Translation Overhead

• DFTL incurs extra overheads due to its translation mechanism
– The address translation accounts for 90% of the extra overhead

• DFTL yields a 3-fold reduction in extra ops. over FAST
– 63% hits for address translations in SRAM
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Impact of SRAM size

 With the SRAM size approaching the working set size

− DFTL’s performance becomes comparable to Baseline (=page level FTL)
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μ-FTL

• Design goal
• Reduce the RAM usage as small as block-mapped FTLs

• Providing the performance comparable to page-mapped FTLs

• Key observations: Two dominant workloads
• Coarse-grained mapping for large and sequential writes 

• Fine-grained mapping for small and random writes

• Adjusts mapping granularities according to the size of 
incoming write requests
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μ-FTL

Page-mapped FTL

• Low overhead
• Large RAM usage

Block-mapped FTL

• High overhead
• Small RAM usage

μ-FTL

• Low overhead
• Small RAM usage

RAM usage
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Address Mapping 

• μ-FTL implements multiple mapping granularities
– Extent: A variable-sized mapping entry (a pair of key and record)
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Garbage Collection

• Victim selection policy
– Having the largest # of invalid pages

• Garbage collection information
– Per-block invalid page counter

• Maintaining the number of invalid pages in each physical 
block

– Bitmap information
• Distinguishing valid pages from invalid pages
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5 25

Bitmap Information

• Bitmap information is too large to be stored in RAM

• We store the bitmap information in μ-tree
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Key Data Structure: μ-Tree
• Handling any insertion/deletion/update operation of the tree with 

only one flash write operation
– By storing multiple nodes from the leaf to the root in a single page
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• Separating hot data from cold data has a beneficial effect on the 
performance of an FTL

• Each part of the logical address space exhibits different degree of 
“hotness”

• Update block
– Being charged for receiving data from incoming write requests

Logical Address Space Partitioning

A global update block Many update blocks 
for each partition

Hot Cold Hot Cold Hot Cold Hot Cold

Logical address space Logical address space
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μ-FTL Design Summary
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Evaluation Methodology

• Trace-driven simulators for several FTLs
– Block-mapped: the log block, FAST, the super block

– Page-mapped: DAC

• 6 traces 
– 3 multimedia traces: PIC(8GB), MP3(8GB), MOV(8GB)

– 3 PC traces: WEB(32GB), GENERAL(32GB), SYSMARK(40GB)

• The standard configurations

Partition Size Bitmap cache size
The portion of 

extra blocks

256MB 
(512 logical blocks)

4KB for multimedia traces
32KB for PC traces   

3%
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The RAM Usage

Block-mapped FTL μ-FTL (A+B+C) Page-mapped FTL

8GB 64KB
16KB+44KB+4KB

= 64KB
8MB

32GB 256KB
64KB+160KB+32KB

= 256KB
32MB

40GB 320KB
80KB+208KB+32KB

= 320KB
40MB

(A) Per-block invalid page counter 
(B) The μ-Tree cache size
(C) The bitmap cache size
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The Comparison of FTL Performance
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