Chapter 19

Health Care Applications

목 차

- 1 생명공학적 진단
- 2 생명공학적 치료
- 3 재생 의학
- 4 산업적 응용
- 5 대규모 생물공정

1. 생명공학적 진단 (Biotechnology-based Diagnostics)

Better Medical Technology

- More significant information for improving health
- Early and cheap diagnosis
- Identification of the cause, not a symptom
- Cure rather than management, disease prevention rather than treatment
- Fewer adverse side effects
- More efficacious and more affordable

Disease Diagnostics

- Based on symptoms
 - Different disease with same symptoms
 - Maybe too late to cure

Disease Diagnostics

- Visualization
 - X-ray
- Chemical imbalance and blood disorders
- Molecular diagnostics
 - Detection of a specific molecular event related to disease
 - Less invasive: use urine, blood, or saliva

Lung cancer

Breast cancer

Monoclonal Antibodies in Cancer Detection

 A radioactive isotope attached to monoclonal antibodies

Early Diagnosis of Contagious Disease

- Monoclonal antibody-based diagnosis
 - Detection of pathogenic bacteria without culture
 - Diagnosis of HIV
 - AIDS-defining illnesses
 - Rare infectious diseases and uncommon cancers
 - Do not appear until 9 to10 years after infection

- Detection of HIV using antibody
 - HIV infection was identified as a cause of AIDS (1983)
 - Detection of HIV antibody generated in the patient
 6 to 12 months after infection
 - Detection of HIV DNA by PCR

Detection of HIV

2. 생명공학적 치료 (Biotechnology-based Therapeutics)

Biotechnology Therapeutics

- Features of biotechnology-based therapeutics
 - Specificity
 - Specific inhibition of targets rather than general inhibition
 - Cancer-specific targeting
 - Biological therapeutics
 - Use natural products synthesized by plants, microbes, insects, and other animals
 - Search diverse ecosystems like sea
 - New production methods
 - Large-scale, economically feasible production
 - Recombinant DNA technology, cell culture, biomanufacturing technologies

Taxol

- Anti-cancer drug
- Extracted from the bark of the Pacific yew tree
 - The slow-growing yew tree reaches
 5 feet in a number of decades.
 - Between 2,000 and 4,000 trees had to be cut down to obtain 1kg of taxol.
- Development of plant cell culture process

Targeted Therapy with Monoclonal Antibodies

 Monoclonal antibodies can deliver chemotherapeutic toxins specifically to cancer cells.

- A. Cytoplasm of tumor cells in breast tissue is stained brown with a monoclonal antibody
- B. The same monoclonal antibody is able to locate a single breast cancer cell that has metastasized to the patient's liver.

Use Immune Systems for Treatments

- Cytokines boosting immune response
 - Interleukin-2: cancer, AIDS
 - Interleukin-12: some infectious disease
- Cancer vaccines

Use Immune Systems for Treatments

 Cancer vaccines teach the immune system to recognize the tumor as foreign.

Replacement of Missing Proteins with Recombinant Proteins

- Insulin for diabetes
- Human growth hormone
- Glucocerebrosidase for Gaucher's disease
- Hemophiliacs: missing components in the formation of a blood clot
 - Treatment of recombinant factor VIII (for hemophilia A) or factor IX (for hemophilia B)

Gene Therapy

- Administration of correct gene
- Applicable to some hereditary monogenic diseases
 - Hemophilia
 - Severe combined immunodeficiency disease (SCID); bubble boy disease
- Trial to transient gene therapy for non-hereditary disorders like cancer, infectious disease
- Still many technical barriers to overcome
 - e.g. gene delivery

Gene Therapy

(A) Child with SCID in germ-free chamber

(B) Two children with SCID received gene therapy in 1991.

Gene Therapy

3. 재생 의학 (Regenerative Medicine)

Regenerative Medicine

- Use the body's natural healing processes to cure diseases
- Endogenous proteins promoting cell division and differentiation
 - Epidermal growth factor: wound healing
 - Fibroblast growth factor: healing ulcers, broken bones, growing new blood vessels
 - Transforming growth factor β : promote cell differentiation
 - Nerve growth factor: repair damage resulting from head and spinal cord injuries, degenerative neural diseases

줄기 세포

- 성체줄기세포
 - 일부 분화된 전구세포
 - 예)
 - 골수 줄기세포 → 혈액 세포, 뼈 세포
 - 간 줄기세포 → 간 세포: 담즙 분비 세포, 글리코겐 저장 세포
- 배아줄기세포
 - 만능성(Pluripotent)
 - 배반포(blastocyst)의
 속세포덩이(inner cell mass)에서 채취

배아줄기세포 (Embryonic Stem Cell)

Therapeutic Potential of Stem Cells

- Replacement of damaged cells with AS or ES cells
- Research on differentiation
 - Identification of proper growth factors, nutrients, and environmental factors for specific differentiation
- Research on dedifferentiation and transdifferentiation
 - Factors that reverse differentiation

AS Cell De-differentiation

Tissue Engineering

- Generation of semisynthetic tissues and organs
 - Biocompatible scaffolding materials
 - Synthetic polymer or natural material (e.g. collagen)
 - Living cells grown in culture
 - Fully differentiated cells
- From simple tissues and organs (skin, cartilage, urinary bladders) to whole organs using stem cells

거부 반응 문제 해결

- 환자 자신의 성체 줄기세포 사용
- 미래 사용에 대비한 제대혈 보관
- 면역 적합성 줄기세포
 - 체세포 핵 치환
- 유도만능 줄기세포 (iPS cell)

Immune-Compatible Stem Cells

유도만능 줄기세포 (iPS Cell)

4. 산업적 응용 (Industrial Applications)

재조합 DNA 기술의 산업화

제넨텍(Genentech)

재조합 DNA 기술로 인간 인슐린을 대장균에서 생산

바이오산업의 트렌드

- 부가가치가 높은 의약품 분야에서 가장 먼저 산업화 진행
- 다음으로 농산물 산업, 에너지/화학소재 산업 등으로 확산

바이오 의약품

바이오 의약품

- 인슐린 (당뇨병 치료)
- t-PA (막힌 혈관 뚫음)
- 인간 성장 호르몬 (왜소증)
- EPO (빈혈 치료제)

바이오 의약품

	소분자 의약품 (Small Molecule Drug)	바이오 의약품 (Biopharmaceutical)	
크기	아스피린 21원자	성장 호르몬 3,000원자	항체 25,000원자
복잡도	자전거 21파운드	자동차 3,000파운드	비즈니스 제트 30,000파운드

※ 출처: 아스피린, 성장호르몬, https://ko.wikipedia.org 자전거, 자동차, 비행기, https://pixabay.com

바이오 의약품 개발 과정

- 바이오 신약
 - 평균 기간: 12년

(디스커버리 기간(2~6년)에 따라 더 길어질 수도 있음)

- 평균 비용: 10~20억불
- 바이오 시밀러
 - 평균 기간: 7~8년 (디스커버리, 임상 2상 없음)
 - 평균 비용: 1~2억불

바이오 의약품 개발 과정

<바이오 신약>

농산물

제초제 내성 작물

- HT(Herbicide-tolerant) Crop
- Monsanto, 'Roundup Ready'
 - Roundup
 - 거의 모든 식물을 죽이는 범용성 제초제
 - Roundup Ready
 - 라운드업에 내성이 있는 종자

바이오 살충제

- Bt toxin (바이오 살충제)
 - Bacillus thuringiensis toxin
 - pH가 높은 곤충 유충의 위장에서는 활성이 있으나, pH가 낮은 대다수 동물의 위장에서는 활성이 없음
- Bt toxin 유전자를 작물의 유전체 속으로 도입
 - 그 작물을 먹는 곤충에게만 작용
 - 해당 식물의 모든 세포가 그 독소를 가짐

Bt 작물

- Bt 옥수수
- Bt 감자
- Bt 목화
- Bt 콩

산업 바이오

<에너지/화학물질>

바이오 자원

- 바이오 에너지, 바이오 화학물질 생산에 이용되는 바이오매스 자원
 - 자연계의 식물 자원
 - 인공적으로 배양한 식물자원 (작물, 나무)
 - 바이오 폐자원 (예, 폐기 목재 등의 셀룰레이스)

셀룰로우스 성분의 바이오매스

바이오 자원

- 바이오 에너지
 - 바이오 에탄올
 - 바이오 디젤
 - 바이오 가스
- 바이오 리파이너리 (Bio-refinery)
 - 바이오 플라스틱
 - 바이오 정밀화학제품
 - 바이오 신소재

바이오 디젤 버스

생분해성 플라스틱 용기

5. 대규모 생물공정 (Large-Scale Bioprocess)

Chapter 24

Environmental Sustainability and Biotechnology

Cell Culture Process

- 미생물 배양 (Microbial fermentation)
 - 천연 미생물
 - 다양한 발효 제품
 - 재조합 미생물
 - 대장균(E.coli), 효모(Saccharomyces cerevisiae)
 - 바이오 의약품, 바이오 에너지, 바이오 화학물질
- 포유동물세포 배양 (Mammalian cell culture)
 - CHO (Chinese Hamster Ovary) cell
 - 바이오 의약품 (예, 치료용 항체)

Cell Culture Process

- Bioreactor, Fermentor
 - Medium supply
 - Optimal conditions
 - Temperature
 - pH
 - O2 concentration

Large-Scale Biomanufacturing (Microbial Cells)

Large-Scale Biomanufacturing (Microbial Cells)

Large-Scale Biomanufacturing (Mammalian Cells)

Large-Scale Biomanufacturing (Mammalian Cells)

Remediation of Environmental Problems

- Treatment of sewage and waste water
- Remediation of oil spills
- Treatment of hazardous wastes

A sewage treatment plant in Hawaii

Bioremediation

- Bioremediation
 - Use microbes to remove pollutants
 - (oil, toxic waste sites)

Bioremediation of a gasoline spill

생명공학 응용

- 의학적 응용
 - 분자 진단
 - 의약품 개발, 유전자 치료, 줄기세포/조직공학 치료
- 산업적 응용
 - 바이오 의약품 (Red BT)
 - 농산물 (Green BT)
 - 산업 바이오 (White BT)
 - 바이오 에너지, 바이오 화학물질 (Bio-refinery)
- 서비스 창출 및 사회문제 해결
 - 범죄 수사, 친자 확인, 전사자 신원 확인 등
 - 환경 처리, 생물 복원 등