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Why Host-Managed Flash?
 An emerging approach to managing NAND flash, especially in 

data-center environments

 Why?
1. Changes in data management algorithms

 Log-structured/COW file systems and LSM-Tree become popular
2. Changes in I/O access patterns

 I/O access patterns become mostly sequential
3. Changes in storage media

 Low latency storage media (e.g., Flash and 3D-XPoint)
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Changes in Data Mgmt. Algorithms
 Modern web services rely upon two types of workloads for 

small objects
 Interactive workloads: “in-place update” storage optimized for random 

reads and worst case write latencies
 B-Tree or B+ Tree algorithms

 Analytical workloads: “out-of-place update” storage optimized for high 
write throughput and sequential reads
 LSM-tree algorithms

B+ Tree LSM-Tree
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Changes in Data Mgmt. Algorithms  (Cont.)
 Often use two different storage management policies
 Fast-path processing tasks with “in-place update” storage;
 Asynchronous analytical tasks with “out-of-place update” storage
 Limitations

 Take several hours for ML models to react to users’ behavior
 Force operators to manage redundant infrastructure

 Hyperscale companies (e.g., Google, Yahoo, Facebook, …) prefer
the “out-of-place update” policy
 Writes account for a larger portion of the total I/Os

 For interactive workloads, 10-20% in 2010  50% in 2012
 Better algorithms for LSM-Tree

 e.g., Bloom filter, key sorting, better merge scheduling, …
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Changes in I/O Access Patterns
 LSM-tree algorithm is based on an append-only write policy
 Writes sent to storage are almost sequential

 Suitable for append-only storage like Flash and SMR

Always append data

LSM-Tree Compaction
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Changes in Storage Media
 Existing storage stacks are so complicated!!!

 Okay for slow HDDs with millisecond latencies
 Not okay for fast non-volatile memories with microsecond latencies (e.g., 

flash and PRAM)  Software overheads are becoming a new bottleneck

Storage Firmware & Controller

Low Level Device Driver

SATA Translation

SCSI Mid-layer

I/O Scheduler

Generic Block Layer

File System

Virtual File System
PC

Ie

User Space Applications

Kernel Space

HW

Storage Media (e.g, NAND flash or 3D-XPoint)

Add several ten microseconds 
latencies (10-20 µs)



8

Today
 Write-optimized Storage Systems
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I/O Characteristics in Data Center
 In data canters, small-write traffic to a storage system is managed by a 

log-structured merge (LSM) tree
 e.g., Google’s BigTable, Baidu’s CCDB, Yahoo’s PNUTS, HBase, Cassandra, 

LevelDB, SQLite, MongoDB 3.0, …

 With LSM, almost all of the write requests become sequential only with 
few random writes

 Commodity SSDs are not designed to effectively support or to take 
advantage of such new workloads
 In terms of I/O performance, capacity, and costs
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Problems with Commodity SSDs
 I/O performance
 The effective bandwidth received at the storage system serving real 

world workloads can be much lower
 I/O requests from upper-level software (e.g., file systems and 

databases) are not optimized to generate SSD-friendly access patterns

 Space efficiency
 A large amount of flash space is reserved for overprovisioning and is 

not available for storing user data

 Costs
 With hundreds of thousands of servers, commodity SSDs have severe 

implications, in terms of both initial and recurring costs
 Increase hardware costs, energy costs, physical space requirement, 

and maintenance costs
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Over-provisioning Ratio
 Throughput of SSDs (Intel 320) when various fractions of its raw capacity 

are allocated as over-provisioning space
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SDF: Software-Defined Flash
 Motivated by a significant workload characteristic in data centers 

supporting Internet-wide services
 Redesign SSDs and I/O stacks in a data center with its particular workload 

characteristics

 SDF’s approaches
 (1) Exposing the channels/ways/blocks in SSD hardware to software

 Get rid of upper-level software
 (2) Host software to explicitly manage SSD hardware

 Better understand host workloads
 Make a device simpler

 (3) No reserve space for internal GC
 All raw flash space available for storing user data
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SDF Hardware
 Virtex-5: PCIe DMA and chip-to-chip bridging
 Expose all the channels to the host transparently

 Spartan-6: Independent FTL for each of 11 channels
 Perform block-level mapping, dynamic wear-leveling, and bad block 

management
Logical-to-physical

mapping
Bad-block mgmt. Dynamic WL

Buffering
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SDF Hardware (Cont.)
 SDF’s hardware includes features and functionalities that are 

proven truly necessary in web-scale storage environments

 (1) No static wear leveling
 Mainly used as a cache for HDDs – data that is rarely accessed is not 

expected to reside in the cache for a long time
 Simplify HW design and reduce I/O variations

 (2) No DRAM for caching
 Data is cached in a host DRAM – a storage device is not expected to 

have strong temporal locality
 Write requests are acknowledged only after the data is stored on flash
 No or less amount of DRAM and no battery/capacitor
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SDF Hardware (Cont.)
 (3) No parity-based data protection
 Use software-managed replication which can be done by the host 

software
 Only BCH ECC for flash error correction
 Simplify HW design and reduce I/O variations

 (4) No over-provisioning area
 Since software manages SSD directly (Baidu’s CCDB), there is no 

need for GC inside SSD
 20% to 50% cost reduction
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SDF Interface
 Expose the asymmetry in the read/write/erase operations to 

the software
 The block erasure is explicitly done by the software
 The read unit is kept small (e.g., one or a few flash pages)
 The write unit size is set a multiple of the flash erase block size, and 

write addresses are required to be block-aligned
 Valid and invalid pages do not coexist in the same block

 Expose the device’s internal parallelism to the software
 Each channel is exposed to the applications as an independent device

 e.g., /dev/sda0 through /dev/sda43
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Flash
CH_0

Flash
CH_1

Flash
CH_N

SDF Interface (Cont.)

SSD Controller

Flash
CH_0

Flash
CH_1

Flash
CH_N

…

/dev/sda

Conventional SSDs

Abstraction:
Linear logical block 

address space

Operation:
Read, Write, Trim

(4 KB)

Flash
CH_0

Flash
CH_1

Flash
CH_N

SSD Ctrl

Flash
CH_0

Flash
CH_1

Flash
CH_N

…

/dev/sda0

SDF

Operation:
Small Read (4 KB), 
Bulk Write (8 MB), 

Erasure (2 MB)

SSD CtrlSSD Ctrl …

/dev/sda1 /dev/sdaN



18

SDF I/O Stack

SSD Controller

Flash
CH_0

Flash
CH_1

Flash
CH_N…

Low Level Device Driver

SATA Translation

SCSI Mid-layer

I/O Scheduler

Generic Block Layer

File System

Virtual File System

PC
Ie

User Space

Conventional SSDs

SSD Ctrl

Flash
CH_0

Flash
CH_1

Flash
CH_N…

PCIe Driver

User Space

SDF

Kernel Space IOCTRL

12 µs 2~4 µs

 Provide a unified user-space block layer to the applications, bypassing 
almost all of kernel modules (e.g., file system, block layer, and so on)

SSD CtrlSSD Ctrl
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SDF Data Management Systems
 Various data management applications, file system, database, and 

key-value store, run atop multiple slices
 Slices are based on LSM-tree algorithms and talk with SDF hardware 

directly

SSD Ctrl

Flash
CH_0

Flash
CH_1

Flash
CH_N

…

Kernel Space

SSD CtrlSSD Ctrl

Slice
(based on 

LSM)

Slice
(based on 

LSM)

Slice
(based on 

LSM)

SDF Hardware

Slices

Data Management 
Systems

Database

File system

Key-Value Store

Hashed to different slices

/dev/sda0 /dev/sda1 /dev/sdaN

…
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Experimental Results
 Latencies of write requests

 I/O Throughputs
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Today
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FTL is a Complex Piece of Software

 FTL runs complicated firmware algorithms to avoid in-place 
updates and manages unreliable NAND substrates

 Requires significant hardware resources (e.g., 4 CPUs / 1-4 GB DRAM)
 Incurs extra I/Os for flash management (e.g., GC)
 Badly affects the behaviors of host applications

Flash Translation Layer (FTL)

NAND Flash

Databases File-systems KV Store

Address
Remapping

Garbage 
Collection

I/O
Scheduling

Wear-leveling 
&

Bad-block
Flash Device

Host System

…

…

Block I/O Layer

 But, FTL is a root of evil in terms of HW resources and performance
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However, 

Functionality of FTL is Mostly Useless
 Many host applications manage underlying storage in a log-like 

manner, mostly avoiding in-place updates

 This duplicate management not only (1) incurs serious performance 
penalties but also (2) wastes hardware resources

Databases File-systems KV Store …

NAND Flash

Log-structured Host Applications

Block I/O Layer

Flash Device

Host System
Object-to-storage

Remapping
Versioning & 

Cleaning I/O Scheduling …

Flash Translation Layer (FTL)

Address
Remapping

Garbage 
Collection

I/O
Scheduling

Wear-leveling 
&

Bad-block
…Address

Remapping
Garbage 

Collection
I/O

Scheduling

Wear-leveling 
&

Bad-block
…

Flash Translation Layer (FTL)

Duplicate Management
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Which Applications???

F2FS

WAFL

Btrfs
NILFS

RethinkDBLevelDB
RocksDB

FlexVol

BlueSky

LogBase

Hyder

SpriteLFS

BigTable

MongoDB

Cassandra

HDFS

Which 
Applications

???
LSM-Tree

File Systems

Key-value Stores Databases

Storage Virtualization
What if we removed FTL from storage devices and 
allowed applications to directly manage NAND flash?
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Application-Managed Flash (AMF)

Host Applications (Log-structured)

Block I/O Layer

Flash Device

Host System
Object-to-storage

Remapping
Versioning & 

Cleaning I/O Scheduling …

NAND Flash

Flash Translation Layer (FTL)

Address
Remapping

Garbage 
Collection

I/O
Scheduling

Wear-leveling 
&

Bad-block
…

…

NAND Flash

Light-weight Flash Translation Layer

(2) The host runs almost all of the complicated algorithms
- Reuse existing algorithms to manage storage devices

(1) The device runs essential device management algorithms
- Manages unreliable NAND flash and hides internal storage architectures

AMF Block I/O Layer (AMF I/O)

(3) A new AMF block I/O abstraction enables us to separate the roles 
of the host and the device

Log-structured Host Applications

Object-to-storage
Remapping

Versioning & 
Cleaning I/O Scheduling ……
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AMF Block I/O Abstraction (AMF I/O)
 AMF I/O is similar to a conventional block I/O interface
 A linear array of fixed-size sectors (e.g., 4 KB) with existing 

I/O primitives (e.g., READ and  WRITE)

Host Applications

A logical layout exposed to applications Sector (4KB)
READ and WRITE

AMF Block I/O LayerHost System

Flash Device …

Minimize changes in existing host applications
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Append-only Segment
 Segment: a group of 4 KB sectors (e.g., several MB)
 A unit of free-space allocation and free-space reclamation

 Append-only: overwrite of data is prohibited

Host Applications

Host System AMF Block I/O Layer

Flash Device …
Segment (MB)

Appending new data (WRITE)Overwrite TRIMAppending

Only sequential writes with no in-place updates

→ Minimize the functionality of the FTL
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Case Study with File System

Host Applications (Log-structured)

AMF Block I/O Layer

Object-to-storage
Remapping

Versioning & 
Cleaning I/O Scheduling ……

NAND Flash

AMF Log-structured File System (ALFS)
(based on F2FS)

Host System

Flash Device AMF Flash Translation Layer (AFTL)

Segment-level Address
Remapping

Wear-leveling &
Bad-block
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AMF Log-structured File System (ALFS)
 ALFS is based on the F2FS file system
 How did we modify F2FS for ALFS?
 Eliminate in-place updates

 F2FS overwrites check-points and inode-map blocks
 Change the TRIM policy

 TRIM is issued to individual sectors

 How many new codes were added?

0 4000 8000 12000 16000

ALFS F2FS

<A comparison of source-code lines of F2FS and ALFS>

1300 lines
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How Conventional LFS (F2FS) Works

LFS

PFTL

Check-Point
Segment

Inode-Map
Segment

Data
Segment 0

Data
Segment 1

Data
Segment 2Segment

Block with 2 pages

* PFTL: page-level FTL
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How Conventional LFS (F2FS) Works

LFS
CP

Check-Point
Segment

Inode-Map
Segment

CP

Data
Segment 0

Data
Segment 1

Data
Segment 2

IM
#0 A B C D E B F GCP IM
#0

B

Invalid

Check-point and inode-map blocks are overwritten

CP

PFTL

* PFTL: page-level FTL
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How Conventional LFS (F2FS) Works

LFS
CP

Check-Point
Segment

Inode-Map
Segment

CP

Data
Segment 0

Data
Segment 1

Data
Segment 2

IM
#0 A B C D E B F GCP IM
#0

B

IM
#0

A B C D E F GBCP CP CPIM
#0

The FTL appends incoming data to NAND flash

PFTL

* PFTL: page-level FTL



33

How Conventional LFS (F2FS) Works

LFS
CP

Check-Point
Segment

Inode-Map
Segment

CP

Data
Segment 0

Data
Segment 1

Data
Segment 2

IM
#0 A B C D E B F GCP IM
#0

B

IM
#0

A B C D E F GBCP CP CPIM
#0

A C D E

The FTL triggers garbage collection

A C D E

:  4 page copies and 4 block erasures

PFTL

* PFTL: page-level FTL
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How Conventional LFS (F2FS) Works

LFS
CP

Check-Point
Segment

Inode-Map
Segment

CP

Data
Segment 0

Data
Segment 1

Data
Segment 2

IM
#0 A B C D E B F GCP IM
#0

B

IM
#0

A B C D E F GBCP CP CPIM
#0

A C D EA C D E

The LFS triggers garbage collection

A C DA C D

A C DDA C

TRIM

:  3 page copies

PFTL

* PFTL: page-level FTL
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How ALFS Works

ALFS

AFTL

Check-Point
Segment

Inode-Map
Segment

Data
Segment 0

Data
Segment 1

Data
Segment 2Segment

Segment with 2 flash blocks
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How ALFS Works

ALFS

AFTL

Check-Point
Segment

Inode-Map
Segment

Data
Segment 0

Data
Segment 1

Data
Segment 2

A B C D E B F GCP IM
#0

CP IM
#0

BCPCP IM
#0

CP

CP A B C D
IM
#0

CP E B F GIM
#0

CP

No in-place updates

No obsolete pages – GC is not necessary
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How ALFS Works

ALFS

AFTL

Check-Point
Segment

Inode-Map
Segment

CP IM
#0

CP IM
#0

CPCP IM
#0

CP

CP A B C D
IM
#0

CP E B F GIM
#0

CP

Data
Segment 0

Data
Segment 1

Data
Segment 2

A B C D E B F GB A C DA C D

A B C D

TRIM

A C D

The ALFS triggers garbage collection: 3 page copies and 2 block erasures
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Comparison of F2FS and AMF

F2FS AMF

File System PFTL File System

3 page copies 4 copies + 4 erasures 3 copies + 2 erasures

7 copies + 4 erasures 3 copies + 2 erasures

Duplicate Management
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Performance with FIO

 For random writes, AMF shows better throughput
 F2FS is badly affected by the duplicate management problem
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Performance with Databases

 AMF outperforms EXT4 with more advanced GC policies
 F2FS shows the worst performance



41

Resource (DRAM & CPU)

 FTL mapping table size

 Host CPU usage

SSD Capacity Block-level FTL Hybrid FTL Page-level FTL AMF

512 GB 4 MB 96 MB 512 MB 4 MB

1 TB 8 MB 186 MB 1 GB 8 MB
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 LightNVM: The Linux Open-Channel SSD Subsystem
 Reference
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Open-Channel SSDs
 Open-channel SSDs are emerging on the market
 Excellent platform for addressing SSD shortcomings and managing 

trade-offs related to throughput, latency, power, and capacity
 Examples:

 Fusion-IO and Violin Memory: a storage stack that manages NAND media 
and provides a block I/O interface

 Baidu’s SDF: a key-value store integrated with underlying storage media
 AMF: a new SSD interface, compatible with the legacy block device 

interface, exposing error-free and append-only segments

 The integration of open-channel SSDs into the storage 
infrastructure has been limited
 A single point in the design space is explored with a fixed collection of 

trade-offs



44

Design of LightNVM
 LightNVM is the first open, generic subsystem for Open-

Channel SSDs and host-based SSD management

NVMe SSDs

NVMe Device Driver

Application(s)nvme_cli

FTL

Admin control 
commands Generic Block I/O Layer

Logical Block Addr

File System
File I/O

Logical Block Addr



45

Design of LightNVM
 LightNVM is the first open, generic subsystem for Open-

Channel SSDs and host-based SSD management

Open-Channel SSDs               

Application(s)nvme_cli

Admin control 
commands Generic Block I/O Layer

LightNVM Subsystem

File System

pblk (Host FTL)

Logical  Block Addr
Ve

ct
or

ed
 R

/W
/E

Ge
om

et
ry

DFlash (Lib)

File I/O

Logical Block Addr

Physical Block Addr

NVMe Device Driver

Error Handling Wear-Leveling
Block Mgmt
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Use Case #1: Block I/O Device
 The Physical Block Device (pblk) is a fully associative, host-based FTL that 

exposes a block I/O interface
 Dealing with controller- and media-specific constraints (e.g., write buffering)
 Flushes – forces pblk’s in-flight data to the device
 Map logical addresses onto physical addresses
 Garbage collection
 Handling error

 pblk allows us to run 
existing apps and file 
systems on top of Open-
channel SSDs
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Use Case #2: Application-specific SSD
 Exposes flash geometry to the applications, which allows us 

to implement SSD-optimized applications
 Target applications
 Key-value store: RocksDB optimized for LightNVM is under 

development by CNEXLab
 Application-specific FTL implementation 

(as a user-level library)
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Use Case #2: Application-specific SSD (Cont.)
 RocksDB with LightNVM

Memtable Management
(e.g., B+ Tree, Skip List, Cuckoo hash)

LSM Management
(e.g., Indexing, Bloom filer, Compaction)

Storage Engine

Posix HDFS LightNVM Library

Traditional File System
(e.g., Ext4 and F2FS)

Flash Translation Layer

NAND Flash

Generic Block I/O Interface LightNVM Subsystem

NAND Flash

U
se

r S
pa

ce
Ke

rn
el

 S
pa

ce
SS

D

GC

GC

GC
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LightNVM Address Space
 Expose to the host a collection of channels, 

each containing a set of Parallel Units (PUs) 
(a NAND die)

 Each PU is decomposed into either (blocks, 
plane, page, sector) or (block, sector)

 The existing NVMe cmd format is used to specify PPA for LightNVM

Generic Block I/O Layer

NVMe Device Driver

NVMe Controller

Logical Block Address

Generic Block I/O Layer

LightNVM Subsystem

LightNVM Controller

Logical Block Address

NVMe Command Format

LBA… …

NVMe Command Format

PPA… …
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Vector I/O
 Obtain higher throughput through parallel units
 Large overhead if I/Os is separately issued 
 Introduce vector I/O interface to enable host to submit I/Os to multiple PUs 

using one command
 Vector Read/Write/Erase using scatter/gather address list 

LightNVM Controller

PU0

PU2

PU1

PU3

Vector I/O
LBA#

0 CH0, PU0, Sector 120
1 CH0, PU3, Sector 64
2 CH0, PU2, Sector 212
3 CH0, PU1, Sector 513

PPA List

NVMe Command
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Write Buffering – Host-side
 (1) Host-side write buffering

 Sector writes (4 KB) are buffered until enough data is gathered to fill a flash 
page (e.g., 16-32 KB); paired pages must be handled similarly

 In case of a flush, add padding in the command
 (+) Avoid interference between the host and devices
 (+) Acknowledged as reads hit the cache
 (–) The contents loss in case of a power failure

 The current implementation of LightNVM
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Write Buffering – Device-side
 (2) Device-side write buffering

 Sector writes are buffered on the device side
 (+) High durability with on-device battery or capacitor
 (–) Unpredictability (interfere with host reads)

 (3) Device-side write buffering with Controller Memory Buffer (CMB)
 Sector writes are buffered on the device, but explicitly flushed by the host
 (+) High durability and predictability
 (–) Complicated implementation

Future direction
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Performance

 Read latency comparison (4KB random reads / 64 KB writes)

 Latencies for OLTP and OLAP on NVMe SSD and OCSSD
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