Two-dimensional materials and applications

1. History of 2D materials

Rise of Graphene

The Nobel Prize in Chemistry 1996

Sir Harold W. Kroto

Robert F. Curl Jr. Prize share: 1/3

Richard E. Smalley Prize share: 1/3 Prize share: 1/3

The Nobel Prize in Chemistry 1996 was awarded jointly to Robert F. Curl Jr., Sir Harold W. Kroto and Richard E. Smalley "for their discovery of fullerenes".

The Nobel Prize in Physics 2010

Photo: U. Montan Konstantin Novoselov Prize share: 1/2

The Nobel Prize in Physics 2010 was awarded jointly to Andre Geim and Konstantin Novoselov "for groundbreaking experiments regarding the two-dimensional material graphene"

History of Graphene

By Manchester group

History of Graphene

Novoselov's research notebook

EXPERIME	NT SPI-	142	No.	A Latoretrated
			Datun	n: 08 August 20
	03		TTIL	TRI
87777			1=5K	
		6		2000
400	eda 1	0	, O, (1) contact.	s are ≈ 30032
Gate		3	~ 9 KJL	
	a de	7	11 -11	16 1 0
	R	6	Applying SV	AL to (3) and (0)
4			and other cont	acts
13	9	4	ontacts did not c	kange much
T = 5K				
Ist = 100,	A Razza			
Senstivity	to aate	olta yes		
Time sweep	Time	1 Va	Tier	IVA
	0 - 120 s	lov	7205-8405	OV
	1205 -210 s	+20V	840 s - 960s	- 40
	240 - 360 5	OV	960s ->1080	OV
	360 - 480 s	-20V	1 080 - 1200	GOV
	480 - 600 s	OV	1200 - 1320	OV
11. 1	6003 - 720s	+40V	1320 - 1440	-60V
titl: Aug 08	03.001	1	1440 - 1500	ov
			1860 - 1680	801
6.10		1.0	1680 - 1800	ov
- and		0.5	1800 - 1920	-80V
a 6.05-	1 -	0.0 (0)	1920 - 2040	OV
auce .00.	1 -	-0.50	2040 - 2160	900
esist	1 -	-1.0	2160 7 2280	ov
5.95-	1-	-1.5 2	2280 - 2400	-900
	1-	-2.0	2400 - 2520	01
-100 -50	0 50 100)		

World-first hand-made graphene device

And after a lot of hard work ...

down to a single layer; devices down to \sim 3 layers on-off ratios \sim 30 at room *T* and >100 at low *T*

22 OCTOBER 2004 VOL 306 SCIENCE www.sciencemag.org

Electric Field Effect in Atomically Thin Carbon Films

K. S. Novoselov,¹ A. K. Geim,^{1*} S. V. Morozov,² D. Jiang,¹ Y. Zhang,¹ S. V. Dubonos.² I. V. Grigorieva.¹ A. A. Firsov²

resistance changed by as much as ~3%: bad "metallic transistor"

twice rejected by Nature!!

History of Graphene

massless and massive Dirac fermions two new types of the quantum Hall effect metallic in the limit of no charge carriers universal optical conductivity defined by the fine structure constant Klein tunneling tunable-gap semiconductor giant pseudo-magnetic fields by elastic strain new type of chemistry: graphane & fluorographene possibility of carving devices on a true nm scale sensors capable of detecting individual gas molecules superconductivity in magic-angle graphene superlattice

many more beautiful observations by various researchers for a decade...

Graphene research in world

Fame of Graphene

High Conductivity

High strength

distance (μm) Transparency

Easy patterning

Continuous Finding of 2D Materials

Continuous Finding of 2D Materials

Graphene family	Graphene	hBN 'white grapi	hene"	BCN	Fluorograph	iene Graphene oxide
2D	MoS ₂ , WS ₂ , MoSe ₂ , WSe ₂		Semiconducting dichalcogenides:		Metallic dichalcogenides: NbSe ₂ , NbS ₂ , TaS ₂ , TiS ₂ , NiSe ₃ and so on	
chalcogenides			MoTi ZrS _s , ZrS	e _s , WTe _s , e _s and so on	Layered semiconductors: GaSe, GaTe, InSe, Bi ₂ Se ₃ and so on	
2D oxides	Micas, BSCCO	MoO _a , WO _a	s	Perovskite LaNb.O., (Ca.S	type: ń.Nb.O	Hydroxides: Ni(OH) ₂ , Eu(OH) ₂ and so on
	Layered Cu oxides	TiO ₂ , MnO ₂ , V ₂ O TaO ₂ , RuO ₂ and s	O., so on Bi ₄ Ti ₃ O ₁₀ , Ca ₂ Ta ₂ Ti		Ó ₁₀ and so on	Others

Finding 2D materials through Machine learning

Infinite Number of Exfoliable 2D Materials

Nature Nanotechnol. 13, 246–252 (2018)

a set of 1,036 easily exfoliable 2D materials

= 10¹²

Contents of class

Properties	Metal (Graphene), Semiconductor (TMDs), Insulator (hBN), Magnet, Topological insulator Scalability, Quality (Crystallinity & Uniformity), Transfer & Contamination, Heterostructure				
Growth					
Heterostructure	Advantage, Stacking technique, interface between vdW layers, Emerging applications				
Defects	Types (sp ³ , vacancy, hole, grain boundary) Healing, Doping, Defect engineering				
Analytical tools	AFM, Raman & Photoluminescence, TEM, I-V measurement, Standardization				
Applications	Electronics, Photonics, Telecommunications, Spintronics, Energy harvesting & Storage, Composition				