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Chapter 1

Introduction to Rotor Dynamics

The objective of this chapter is to introduce the topic of rotor dynamics, as applied to rotorcraft.
Helicopters are the most common form of a rotorcraft. It has a single main rotor, and a smaller tail
rotor. Some rotorcraft have multiple main rotors like the tandem, co-axial, and tilt-rotor aircraft.
Some have unusual configurations like a compound with a wing and propeller, a stopped or slowed
rotor, or a quad tilt-rotor with two wings and 4 main rotors. The main rotor, or rotors form the
heart of every rotorcraft. To begin the study of rotor dynamics one needs familiarity with the
following concepts. The purpose of this chapter is to introduce these concepts.

1) Basic rotor aerodynamics

2) Basic Structural Dynamics

3) Aero-elastic Response

4) Loads

5) Helicopter trim

Typically, a helicopter rotor has a large diameter, and produces thrust at disk loadings (thrust
per unit area) of 2-10 lbs/ft2 (200-450 N/m2). It consists of two, three, four or sometimes five to
seven blades. The blades are like large aspect ratio wings (chord/Radius ∼ 15), made of special
airfoil sections. The U.S. manufactured blades rotate counter clockwise (looking from above facing
toward helicopter). The rotor RPM is generally around 300-400. The tip speeds are of the order
of 700 ft/sec. The speed at which it sucks in air, called the downwash velocity, is in comparision
around 30-50 ft/sec. There is a small diameter rotor at the far end of the body called the tail
rotor. The purpose of the tail rotor is to counterbalance the shaft torque reaction of main rotor
and provide directional stability to the vehicle. Let us briefly examine the aerodynamics of two
major flight modes of the helicopter, hover and forward flight.

1.1 Basic Rotor Aerodynamics

1.1.1 Hover

Hover is a flight condition of the helicopter with zero forward speed and zero vertical speed. The
flow condition on the rotor disk is axisymmetric. Momentum theory is widely used to calculate
the minimum power that is necessary to generate a given thrust using a given disk area. First,
the velocity with which the surrounding air needs to be sucked in through the rotor to generate
the thrust, is calculated. This velocity is also called rotor downwash or inflow. The power is then
simply the thrust multiplied with inflow. Larger the rotor diameter, smaller the inflow for a given
thrust, and hence smaller the power requirement.

Momentum theory does not tell us whether a rotor will be able to generate a given thrust. The
rotor may stall before an intended thrust level is achieved. The blade element theory can be used
to calculate the maximum thrust capability. The blade element theory is discussed later.

9
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Momentum Theory

Momentum theory assumes a uniform, incompressible, zero-swirl flow through the rotor disk. It
uses the three basic laws of fluid mechanics: conservation of mass, conservation of momentum, and
conservation of energy. It solves for the three unknowns: the inflow velocity, v, the velocity of the
fully contracted far wake, w, and the fully contracted flow area, A4. The flow around a rotor in
hover is shown in Fig. 1.1 The total pressures at each of the four stations are

Station 1

Station 2
Station 3

Station 4

Thrust T

Area   A

inflow v

      w

Area   A4

Pr
es

su
re 3 4

T A
-

3 4
T A

+

p �

p �

p �

Figure 1.1: Flow around a rotor in hover

p01 = p∞ static pressure far upstream
p02 = p2 +

1
2ρv

2

p03 = p3 +
1
2ρv

2

p04 = p∞ + 1
2ρw

2

As no force is applied on the fluid between sections 1 and 2, and then between sections 3 and 4,
there is no change in total pressure.

p02 = p01
p03 = p04

Force is only applied on the fluid between sections 2 and 3, leading to the pressure differential

p3 − p2 =
T

A

Thus

p2 = p02 − 1
2ρv

2

= p∞ − 1
2ρv

2

p3 = p03 − 1
2ρv

2

= p04 − 1
2ρv

2

= p∞ + 1
2ρw

2 − 1
2ρv

2
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Therefore

p3 − p2 =
1

2
ρw2

Equating this with the pressure differential we have

T =
1

2
ρAw2

where A is the disk area. Upto this was conservation of energy. Conservation of momentum gives

T = mass flow rate . change in fluid velocity
= ρAv(w − 0)

Equating the expressions from conservation of momentum and conservation of energy we have

w = 2v

Thus the air which is at rest far upstream is accelerated by the rotor to velocity v at the disc, and
then to velocity 2v far downstream. It follows

T = 2ρAv2

The induced velocity and induced power are then

v =

√
T

2ρA

P =
T 3/2

√
2ρA

In addition, from conservation of mass, the far downstream flow area is

A4 =
A

2

The pressures above and below the rotor disk are given as

p2 = p∞ − 1
2ρv

2

= p∞ − 1
4
T
A

p3 = p∞ + 1
2ρw

2 − 1
2ρv

2

= p∞ + 3
2ρv

2

= p∞ + 3
4
T
A

The induced velocity v can be non-dimesionalized as

λ =
v

ΩR

where

Ω = rotational speed (rad/sec)
R = rotor radius (ft)

The thrust and power can be non-dimensionalized as

CT =
T

ρA(ΩR)2
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CP =
P

ρA(ΩR)3

Using T = 2ρAv2 in the above expression produces a relation between inflow ratio λ and the thrust
coefficient

λ =

√
cT
2

Note that this relation is based on uniform flow through the entire rotor disk. To cover nonuniform
flow, tip losses, and momentum loss due to swirl flow, an empirical correction factor κh is used

λ = κh

√
cT
2

Typically, κh = 1.15. The power coefficient then becomes

CP = λCT = κh
C

3/2
T√
2

The Momentum theory assists in the preliminary evaluation of a rotor and helps in the comparison
of various rotors. However, the theory does not help directly with the design of a rotor.

Blade Element Theory

To calculate the aerodynamic force distribution on the blade, the simple blade element theory is
widely used. It is also called 2-dimensional (2D) Strip Theory. Each blade element is a 2D airfoil
which is assumed to operate independantly of the other elements. The aerodynamic forces acting
on each blade element are the lift, drag, and pitching moments. They are called air loads.

���

�� � �

��

θ

α

φ

�
�	

�


���

��
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UT = tangential velocity (in the plane of rotation)

UP = normal velocity

V = resultant velocity
√

U2
P + U2

T

∼= U2
T

θ = pitch angle

α = effective angle of attack

= θ − tan−1 UP

UT

∼= θ − UP

UT

dL = lift generated on an element of length dr located at a radial station r

=
1

2
ρV 2cl c dr

c = chord

cl = lift coefficient

= a

(
θ − Up

UT

)
a = airfoil lift curve slope (linear below stall)

dD = element drag force

=
1

2
ρV 2cd c dr

Resolved force components are

dFz = dL cosφ− dD sinφ
∼= dL

=
1

2
ρU2

T ca

(
θ − UP

UT

)
dr

=
1

2
ρca
(
θU2

T − UPUT

)
dr

dFx = dL sinφ+ dD cosφ

∼= Up

UT
dL+ dD

=
1

2
ρca
(
θUTUP − U2

P

)
dr +

1

2
ρU2

T ccddr

The rotor thrust T, torque Q, and power P are

T = Total forces from Nb blades

= Nb

∫ R

0
dFz

Q = Total torque from Nb blades

= Nb

∫ R

0
rdFx

P = ΩQ

Assume, for simplicity, an uniform induced inflow on the disk. Later on we will see that this
assumption is strictly true only for ideally twisted blades. Before we study ideal twist, and other
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twist distributions, consider a zero twist case. For a zero twist rotor, the blades have a constant
pitch angle, θ across the blade span. We have

cl = a

(
θ − UP

UT

)

For hover

UT = Ωr

Up = λΩR

Consider the following non-dimensionalizations. First, define a solidity ratio as the ratio of total
blade area to disk area. For uniform chord blades

σ =
Nbc

πR

A local solidity ratio can be defined as

σ(r) =
Nbc(r)

πR

Also

x =
r

R

ut =
UT

ΩR
= x

up =
UP

ΩR
= λ

Thrust coefficient

cT =
T

ρA(ΩR)2

=
Nb

∫ R
0

1
2ρca

(
θu2t − uput

)
dr

ρ(πR2)

=
1
2aNbc

∫ 1
0

(
θx2 − λx

)
dx

πR

=
σa

2

∫ 1

0

(
θx2 − λx

)
dx

=
σa

2

(
θ

3
− λ

2

)

Now consider a linear twist distribution

θ = θ75 + θtw

(
r

R
− 3

4

)
Here θ75 is the pitch at 75% radius position and θtw is the linear twist distribution. Again assuming
a uniform induced inflow λ, one obtains

cT =
σa

2

∫ 1

0

(
θ75x

2 + θtwx
3 − 3

4
θtwx

2 − λx

)
dx

=
σa

2

(
θ75
3

− λ

2

)
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Note that the twist distribution θtw has got cancelled. Thus, it is a general relationship valid
for both uniform pitch and linearly twisted blades. From momentum theory, induced inflow is

λ = κh

√
cT
2

The thrust level is related to the pitch setting

cT =
σa

2

(
θ75
3

− 1

2
κh

√
cT
2

)

θ75 = 6
cT
σa

+
3

2
κh

√
cT
2

Thus, blade element theory gives the blade setting required to generate an inflow of κh

√
CT
2 , which

in turn is necessary to produce a particular thrust coefficient CT . Note that the assumption here
is that the airfoils do not stall at angle of attack produced by this pitch setting, and operates at at
the lift curve slope a.

Now consider the torque coefficient for a constant pitch setting and uniform chord.

Torque Q = Nb

∫ R

0
r dFx

= Nb

∫ R

0

1

2
ρca

(
UPUT θ − U2

P + U2
T

Cdo

a

)
rdr assuming cd = cdo

The Torque coefficient is

CQ =
Q

ρ(πR2)(ΩR)2R

=
Nb

1
2ρac

∫ R
0

[
λΩR.Ωrθ − (λΩR)2 + (ΩR)2 cdoa

]
rdr

ρ(πR2)(ΩR)2R

=
σa

2

∫ 1

0

(
θλx2 − λ2x+

cdo
a

x3
)
dx

= λ
σa

2

∫ 1

0

(
θx2 − λx

)
dx+

σa

2

∫ 1

0

cdo
a

x3dx

= λCT +
σa

2

∫ 1

0

cdo
a
x3dx

= λCT +
σcdo
8

For example, using the CT expression for uniform pitch we can get

CQ =
σa

2
λ

(
θ

3
− λ

2

)
+

σ

8
Cdo

Note that CQ has broken up into two parts, one related to CT , the other related to sectional drag.

CQ = CQi +CQo

These are called the induced torque, and profile torque.
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The Power coefficient, by definition, is identical to the torque coefficient. Thus the induced
power and profile power are identical to induced torque and profile torque.

CP =
P

ρ(πR2)(ΩR)3

=
ΩQ

Ωρ(πR2)(ΩR)2R

= CQ

= CPi +CPo

The induced power is the power spent to generate thrust. It is an absolute minimum, without
which the thrust cannot be sustained. It is spent to push the airflow downwards. In an ideal case
the entire induced power would be spent on pushing the airflow downwards. In reality a part of
the induced power is lost in swirl flow, tip losses, non-uniform inflow. This can be accounted for,
as we saw before, using the factor κh. The profile power is spent to overcome drag. We would like
this to be minimized as much as possible. An important parameter is used to estimate the hover
performance of a rotor. It is called the Figure of Merit, M. The Figure of Merit, M, is defined as
the ration of ideal power to the actual power.

M =
(Cpi)ideal

(Cpi)real +Cpo

=
(λCT )ideal

(λCT )real +
σ
8Cdo

=

C
3/2
T√
2

κh
C

3/2
T√
2

+ σ
8Cdo

Typically, the value of M lies between 0.6 to 0.8. The higher value is more true for recent
rotors. From the above expression it seems that a rotor operating at high CT would have a high
M, other factors remaining constant. Indeed, as CT increases, M assymptotes to κh. In reality it is
different. Airfoil stall prevents the other factors from remaining constant. Even though CT is high,
the sectional cl should still be below stall. The sectional cl is directly related to rotor CT

σ . Thus
the solidity, σ, has to be increased as well. Alternatively, the sectional cl may be pushed up close
to stall. In this case the airfoil drag increases. Using simply cdo as a constant drag is no longer an
acceptable assumption. Thus it is impossible to keep increasing CT indefinitely without increasing
the second factor in the denominator.

Shaft horsepower

HP =
P

550
(P ft-lb)

Example 1.1: In a circulation-controlled airfoil, a thin jet of air is blown from a spanwise slot
along a rounded trailing edge. Due to the Coanda effect, the jet remains attached by balance of
centrifugal force and suction pressure. For a CCR, the thrust can be controlled by geometric pitch
as well as blowing.
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Assuming lift coefficient cl = c1α+ c2μ, establish a relationship between thrust coefficient, cT ,
geometric pitch, θo (uniform), and blowing coefficient, cμ (uniform), for a hovering rotor. Assume
a uniform inflow condition.

For hover

UP = λΩR

UT = Ωr

T = Nb

∫ R

0
dFz

= Nb

∫ R

0

1

2
ρcΩ2r2cldr

cl = c1α+ c2μ

= c1

(
θ0 − λ

x

)
+ c2μ
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cT =
T

ρπR2(ΩR)2
and σ =

Nbc

πR

=
σ

2

∫ 1

0
x2
[
c1

(
θ0 − λ

x

)
+ c2cμ

]
dx

=
σ

2

[
c1

(
θ0
3

− λ

2

)
+

1

3
c2cμ

]
λ = κh

√
cT
2

θ0 =
6cT
σc1

+
3

2
λ+

c2
c1
cμ

Momentum Theory in Annular Form

In the earlier derivations, the induced velocity was assumed to be uniform over the rotor disk.
In reality, the inflow is highly non-uniform. The non-uniformity in inflow can be calculated and
accounted for by using what is called the Combined Blade Element Momentum Theory. It combines
Blade Element Theory with Momentum Theory. The momentum theory is used in its annular form.
The idea is simple. The momentum theory is simply applied to an annular ring of thickness, dr ,
located at radial position, r , extended both far upstream and far downstream. For this elemental
ring, the induced velocity in the far wake is again twice the induced velocity at the disk. Thus the
thrust on the annular ring

dT = = mass flow rate . change in fluid velocity

= ρdAv(w − 0)

= ρ(2πrdr)v(2v − 0)

= 4ρv2πrdr

dCT = 4λ2xdx

Combined Blade Element Momentum Theory

Combines momentum theory and blade element theory to obtain non-uniform spanwise induced
velocity, or inflow, distribution. From blade element theory we had the following expressions.

dCT =
Nb dFz

ρA(ΩR)2

=
1

2
σa

(
θ − λ

x

)
x2dx

=
1

2
σcl(x)x

2dx

Earlier when we integrated the above expression to obtain CT , we assumed σ(x) = σ, a constant
for convenience. Here, we leave it in general to be a function of radial station. Thus is it the local
solidity.

cl(x) = a(θ − λ

x
)
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dCP = dCQ

=
Nb r dFx

ρA(ΩR)2R

=
1

2
σ (clφ+ cd)x

3dx where φ =
λ

x

=
1

2
σclφx

3dx+
1

2
σcdx

3dx

= dCPi + dCP0

Let us obtain an expression for sectional bound circulation. The bound circulation is obtained
using 2D Kutta condition. The Kutta condition relates the span-wise gradient of blade lift dL

dr to
the bound circulation Γ(r) using following the simple relation

dL

dr
= ρUΓ(r)

where U is the local incident flow velocity. Keeping in mind, that the blade lift in hover is simply
the rotor thrust divided by the number of blades, it follows

dL(r) = ρUTΓ(r)dr

dT (r) = NbρUTΓ(r)dr

dCT (r) =
Nb

ΩA
xΓ(x)dx Now use blade element expression on the left

1

2
cl(x)x

2dx =
Nb

ΩA
xΓ(x)dx From here it follows

Γ(x) =
1

2
Ω
σA

Nb
cl(x)x

=
1

2
Ωc(x)Rcl(x)x dimension m2/s

γ(x) =
Γ(x)

ΩR

=
1

2

c(x)

R
cl(x)x non-dimensional

Now we have all the necessary equations to study the results of Combined Blade Element
Momentum Theory. The theory gives us a method to calculate non-uniform inflow across the span.
Simply relate the dCT expressions from Blade Element and Annular Momentum theories.

1

2
σa

(
θ − λ

x

)
x2dx = 4λ2xdx

Solve for λ as a function of x

λ(x) =
√

A2 +Bθx−A (1.1)

where

A =
σa

16

B =
σa

8
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Another interesting expression can be obtained as follows. Instead of really solving for λ we
can re-arrange the above equation to read as

1

2
σ(x)clx

2dx = 4λ2dx

1

2
σ(x)aαx2dx = 4λ2dx

which gives

λ =

√
σxaα

8
(1.2)

Note that, the α above is the sectional angle of attack θ− λ/x, with a λ hiding inside. Let us now
study the effect of different twist distributions. Consider the following cases one by one.

Case I : θ = θ75 = const

λ(x) ∼= linear ∼= λ0x

cl(x) ∼= a(θ75 − λ0) = constant

Γ(x) ∼= linear

dCT (x) ∼= parabolic

CT =
1

2
σa

(
θ75
3

− λ

2

)

Case II : θ(x) = θ0 + xθtw

λ(x) = non-uniform

cl(x) = non-uniform

Γ(x) = non-uniform

dCT (x) = non-uniform

CT =
1

2
σa

(
θ0
3

+
θtw
4

− λ

2

)
=

1

2
σa

(
θ75
3

− λ

2

)

Case III : θ(x) =
θtip
x

λ(x) = const

= φx

= φtip

cl(x) =
1

x
a(θtip − φtip)

=
1

x
αtip hyperbolic

Γ(x) = const

dCT (x) = linear

=
1

2
σaαtipxdx

CT =
1

4
σaαtip assume constant σ
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Thus for the twist distribution given above, αtip has to equal 4CT
σa to produce a given thrust CT .

The lift coefficient distribution, cl, then equals 4CT
σx . Two ideas follow: (1) the inflow distribution

is λ =
√

σxcl/8 =
√

CT /2. This is the uniform inflow expression as obtained earlier using the
momentum theory. Recall that momentum theory gives the absolute minimum power that must
be supplied to the rotor to sustain a given thrust. Thus the above twist requires minimum induced
power. (2) θtip =

4CT
σa + φtip =

4CT
σa +

√
CT /2. Thus the twist depends on one particular CT value.

The twist distribution, as it minimizes induced power, is called ideal twist, and such a rotor an
ideal rotor. Note that it is ideal only for a given CT . If CT changes it no longer remains ideal. For
example, if a higher (or lower) CT is required a constant pitch must be added (or subtracted) to
the hyperbolic distribution. This makes the inflow distribution non-uniform again.

A similar case is that of an optimum rotor. An optimum rotor, given as Case IV below, seeks to
minimize both induced and profile power at the same time. Again, it is optimum only for a given
thrust level. Minimum induced power can be achieved only if the inflow is forced to be uniform
λ =

√
CT /2. The question is, what should be the form of twist θ(x) that would minimize profile

power in addition to induced power.

Case IV : Choose θ(x) = α0 +
λ
x , where α0 is an unknown. λ is known, and must be uniform

with value
√

CT /2 in order to minimize induced power.

α(x) = θ(x)− λ

x
= constant = α0

cl(x) = constant = aα0

Now equate the inflow expressions and solve for solidity

λ =

√
σ(x)xaα0

8
=

√
CT

2
Thus the solidity must be choosen such that it equals

σ(x) =
4CT

aα0
=

σtip
x

This value of solidity will realize the minimize induced power criteria. The only unknown that
remains is α0. However, we know that this is the angle of attack all sections will operate in. What
angle of attack do we want the sections to operate in ? Such, that the profile power is minimized.
Using the expression for profile power obtained above, and remembering that the sectional drag cd
remains constant along the span (because the angle of attack remains constant α0) we have

CP0 =
1

2

∫ 1

0
σ(x)cdx

3dx

=
4CT

aα0

∫ 1

0
cdx

2dx

=
2

3
CT

cd
cl

So to minimize profile power, simply choose α0 such that it maximizes Cl/Cd based on airfoil
property data. Once this α0 has been choosen, the geometric properties of the optimum rotor are
set as

σ(x) =
1

x

4CT

aα0

θ(x) = α0 +
1

x

√
CT

2



22 CHAPTER 1. INTRODUCTION TO ROTOR DYNAMICS

Solidity Ratio

To examine the performance of non-rectangular blades, we saw that the local solidity can be defined
as

σ(r) =
Nbc(r)

πR

where c(r) is the local chord at station r and Nb is total number of blades. For rectangular blades,
the overall solidity, σ, is the same as the local solidity, σ. For non-rectangular blades, often, there
is a needs to define an equivalent solidity, σe. That is, what would be the solidity of a rectangular
blade that is equivalent to a given non-uniform blade ? Then the question is, equivalent in what
sense ? Generates same thrust ? Or requires same power ? Naturally then, there are two types of
equivalent solidities, thrust basis and power basis. The power basis is based on profile power. First
equate the following two expressions

CT =
1

2
σe

∫ 1

0
clx

2dx =
1

2

∫ 1

0

Nbc(x)

πR
clx

2dx

CP0 =
1

2
σe

∫ 1

0
cdx

3dx =
1

2

∫ 1

0

Nbc(x)

πR
cdx

3dx

Then assume cl, cd to be constant over span to obtain

σe = 3Nb
πR

∫ 1
0 cx2 dx thrust basis (x = r

R )

σe = 4Nb
πR

∫ 1
0 cx3 dx power basis

The equivalent solidity is used for performance comparison of two different rotors. They are of
limited importance however, because of the following assumptions : (1) the sectional coefficients
remain constant over span, and (2) the sectional coefficients would remain the same between the
real and equivalent rotors. In reality, none of them hold true. The best way to compare two rotors
is simply to compare their power requirements at the same thrust, or their Figure of Merits.

Taper Ratio

Linear variation of solidity is sometimes expressed as a taper ratio. For linearly tapering planform,
the taper ratio is defined as root chord over tip chord.
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For partial linear tapered planform

taper ratio =
extended root chord

tip chord
=

cer
ct

For large diameter rotors, the taper appears viable for performance gains.

1.1.2 Axial Climb

Upto now only the hover condition was considered. The analysis of axial climb and descent are
shown using momentum theory, and combined blade element momentum theory. The theories, as
before, are methods to related rotor inflow to rotor thrust.

Axial climb: Momentum theory

The fluid flow around the rotor looks very similar to that of hover, except that now a constant
downwash, Vc is superimposed on the velocities. Thus the total far upstream, disk, and far down-
stream velocities are now 0 + Vc, vi + Vc, and w + Vc respectively. Again, as in the case of hover,
the thrust T can be easily related to the far downstream induced velocity w, using a momentum
balance. The next step is then to simply relate w to vi. This is done using energy balance. It can
be shown that w is again equal to 2vi. The slipstream contraction then, follows obviously from
mass balance. The steps are shown below.

In hover, the energy balance was formulated by conserving total pressure. It can also be
formulated easily by conserving kinetic energy. The kinetic energy of the fluid moving out of the
control volume per unit time is 1

2ṁ(vc +w)2. The kinetic energy moving in per unit time is 1
2ṁv2c .

The balance is the work done on the fluid per unit time, i.e., thrust times the displacement of the
fluid per unit time T (vc + vi). Thus

T (vc + vi) =
1

2
ṁ(vc + w)2 − 1

2
ṁv2c energy balance

T = ṁ(vc + w)− ṁvc = ṁw momentum balance

Using the second expression in the first equation it follows, w = 2vi.
Keeping in mind ṁ = ρA(vc + vi), we have T = ρA(vc + vi)w. This can be expressed either in

terms of only vi or w. Thus T = 2ρAvi(vc + vi) = ρAw(vc + w/2). The first expression is usually
used to directly relate vi to T. Often, instead of T, vi is related to the hover induced velocity, i.e.,
what vi would be in case of hover. Recall, that vi in case of hover is related to thrust by the relation
v2h = T

2ρA . Thus we have

v2h = (vc + vi)vi

It follows

vi
vh

= − vc
2vh

±
√(

vc
2vh

)2

+ 1

The positive sign provides the physically meaningful solution, as vi should always be positive, i.e,
downwards, for a positive thrust T upwards. The power required to climb, as a fraction of power
required to hover, is simply

P

Ph
=

Pi + Pc

Ph
=

T (vi + vc)

Tvh
=

vi
vh

+
vc
vh

=
vc
2vh

±
√(

vc
2vh

)2

+ 1
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where the positive sign provides the physically meaningful solution.

Consider a case when the rate of climb is such that vc/vh << 2.

vi
vh

∼= − vc
2vh

+ 1

vi ∼= vh − 1

2
vc

Pi = T (vh − 1

2
vc) + Tvc + P0

= Tvh + P0 + T
vc
2

= Ph + T
vc
2

assuming profile power remains same as in hover

This means that the increased power required for steady climb is half the rate of change of potential
energy. Which means that if the maximum power of an aircraft is Pmax, and the hover power is
Ph, then a steady rate of climb of twice the excess power to thrust ratio can be established,
vc = 2(Pmax − Ph)/T . This approximation holds as long as the rate of climb remains much lesser
compared to the hover induced velocity.

Note that the initial climb rate is (Pmax − Ph)/T , but a final steady-state climb rate of twice
this value can be reached. This is because the induced velocity in steady climb is reduced by twice
the climb velocity from induced velocity in hover.

Axial climb: Combined Blade Element Momentum theory

We have for an annulus

dT = ρ(2πrdr)(vc + vi)(2vi − 0)

dCT = 4λ(λ− λc)xdx

where

λ =
vc + vi
ΩR

λc =
vc
ΩR

Then equate dCT Blade Element theory and Momentum theory

1

2
σa

(
θ − λ

x

)
x2dx = 4λ(λ− λc)xdx

Solve for λ as a function of x

λ(x) =
√

A2 +Bθx−A (1.3)

where

A =
σa

16
− λc

2

B =
σa

8
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1.1.3 Axial Descent

Descending flight is similar to ascent, except that vc is negative. For example, a descent of 5 m/s
can be viewed as an ascent of -5 m/s. However the same expressions as ascent cannot be used.

Note that in all three conditions, hover, ascent, and descent the thrust must act upwards. Thus
the force on the fluid must be downwards. The control volumes therefore have a similar geometry,
constricted below the rotor and expanded above. In all three cases the rotor pushes the fluid down.
However, during descent, unlike in hover and climb, the freestream velocity is from below the rotor.
As a result, the fluid, in response to the rotor pushing it down, slows down or decelerates above
the rotor. The far upstream, disk, and far downstream velocities are still vc, vc + vi, and vc + w,
except far upstream is now below the rotor, and far downstream is above the rotor.

Axial descent: Momentum theory

Define positive direction to be downwards.

T (vc + vi) =
1

2
ṁ(vc)

2 − 1

2
ṁ(vc + w)2 energy balance

T = ṁ(vc)− ṁ(vc + vi) = −ṁw momentum balance

Using the second expression in the first equation it follows, w = 2vi.
Following the same procedure as in axial climb we have

T = −ṁw = −2ρA(vc + vi)vi

v2h = −(vc + vi)vi

It follows

vi
vh

= − vc
2vh

±
√(

vc
2vh

)2

− 1

The negative sign provides the physically meaningful solution. The power required to climb, as a
fraction of power required to hover, is simply

P

Ph
=

Pi + Pc

Ph
=

T (vi + vc)

Tvh
=

vi
vh

+
vc
vh

=
vc
2vh

±
√(

vc
2vh

)2

− 1

where the negative sign provides the physically meaningful solution.

Axial climb: Combined Blade Element Momentum theory

We have for an annulus

dT = −ρ(2πrdr)(vc + vi)(2vi − 0)

dCT = −4λ(λ− λc)xdx

where

λ =
vc + vi
ΩR

λc =
vc
ΩR
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Then equate dCT Blade Element theory and Momentum theory

1

2
σa

(
θ − λ

x

)
x2dx = −4λ(λ− λc)xdx

Solve for λ as a function of x

λ(x) =
√

A2 +Bθx−A (1.4)

where

A =
σa

16
+

λc

2

B = −σa

8

1.1.4 Forward Flight

In hovering flight, there is an axial symmetry of airflow, whereas, in forward flight there is no axial
symmetry of airflow. There is a periodic aerodynamic environment. For an anti-clockwise rotation
from the top, the blades on the starboard side advances into the oncoming airflow, and the blades
on the port side retreates from it.

�

�

x

Ω

ψ

��������	
���
� �
��	��	
���
�

Clearly is a greater velocity of airflow on the advancing side of the disk as compared to the
retreating side. This results in periodic variation of air loads on the blade. Left to themselves, the
blades would generate more lift on the advancing side than on the retreating side and the aircraft
would roll over to the left. The remedy is to put a flap hinge at the blade root, so that the blades
can freely flap up about the hinge, without rolling the whole aircraft over. The idea was suggested
by Charles Renard (1904), patented by Louis Breguet (1908), and applied successfully by Juan de
la Cierva on the autogyro (1923). When the blades are allowed to flap, the problem is now reversed.
For a lifting rotor, transitioning from hover to forward flight, the aircraft now rolls to the right.
We shall see later why. The remedy is to introduce a mechanism for cyclic pitch variations along
with a flap hinge. The roll moment can now be completely controlled. In addition to flapping,
the other important blade motions are lag and torsion. The lag motion is extremely important
for aero-elastic stability. The elastic twist is extremely important for aero-elastic loads. The blade
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motions are created in response to the airloads. In turn, the motions change the trajectory of the
blades in space, and determine the airloads. During a steady flight, the variation of airloads are
periodic. Even though the airloads vary with azimuth, they vary in exactly the same manner over
every rotor revolution. During unsteady flights, like evasive turns, rolling pull-outs, pull-up, diving
turns, and other maneuvers, the airloads are not periodic. We shall consider only steady flight in
this chapter.

V cos α

V sin α + v

V R

α

Disk Plane

α

V

v

Thrust, T

Disk Plane

Shaft

V

w

Figure 1.2: Flow around a rotor in forward flight

Momentum theory : Glauert’s combination

Glauert (1926) combined momentum theory in hover with forward flight theory of fixed wings. A
thin planer wing with elliptical loading has an induced drag given by

Di =
T 2

2ρAV 2

The induced power and power to thrust ratio then becomes

Pi = DiV

=
T 2

2ρAV
Pi

T
=

T

2ρAV

Now replace Pi/T with vi from the rotor result. This gives

vi =
T

2ρAV
T = 2ρAviV

According to Glauert, for a rotor in forward flight replace V with
√

(V cosα)2 + (V sinα+ vi)2 to
have

T = 2ρAvi
√

(V cosα)2 + (V sinα+ vi)2

The goal was simply to achieve the following: at high speed vi ∼= 0, we get back fixed wing result
T = 2ρAviV = 2ρA(Pi/T )V = 2ρA(DiV/T )V ; at low speed V = 0, we get back rotor hover result
T = 2ρAv2i .

Thus, Glauert postulated the momentum theory for forward flight by mathematically connecting
the fixed wing and the hovering rotor results. The theory satisfies the outer limits (end conditions)
and strangely, it is satisfactory even for intermediate flight conditions.
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Momentum theory: Physical interpretation

A physical interpretation of Glauert’s theory is as follows. Figure 1.2 shows the flow around the
rotor disk in forward flight.

V = forward speed of the helicopter

v = normal induced velocity at the disk

w = far wake induced velocity

α = disk tilt

then, in keeping with the axial flow results, the induced velocity at the far wake is assumed to be
twice the induced velocity at the disk.

w = 2v

T = ṁ2v

ṁ = ρAVR

where VR is the resultant velocity through the disk, see figure 1.2.

VR =
√

(V cosα)2 + (V sinα+ v)2

T = 2ρAv
√

(V cosα)2 + (V sinα+ v)2

Now define advance ratio μ and inflow ratio λ as follows.

μ =
V cosα

ΩR
=

tangential velocity at the disk

Tip velocity

λ =
V sinα+ v

ΩR
=

Normal velocity at the disk

Tip velocity

λ = μ tanα+ λi

Typically μ = 0.25 to 0.4 and λi is of order 0.01 where λi = v
ΩR , induced inflow ratio. Non-

dimensionalising the thrust expression we have

CT = 2λi

√
λ2 + μ2

λi =
CT

2
√

λ2 + μ2

λi =
λ2
h√

λ2 + μ2

Thus the inflow equation becomes

λ = μ tanα+
CT

2
√

λ2 + μ2

The inflow equation is nonlinear and therefore an iteration procedure is used to solve it. Johnson
suggested a Newton-Raphson solution scheme,

λn+1 = λn − (f/f ′)n
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where

f(λ) = λ− μ tanα− cT
2

1√
μ2 + λ2

Therefore

λn+1 = λn − λn − μ tanα− CT
2 (μ2 + λ2

n)
1
2

1 + CT
2 (μ2 + λ2

n)
− 3

2λn

=

⎛⎝μ tanα+ cT
2

(μ2+2λ2)

(μ2+λ2)3/2

1 + cT
2

λ
(μ2+λ2)3/2

⎞⎠
n

Usually 3 to 4 iterations are enough to achieve a converged solution. Figures 1.3 and 1.4 show
example solutions of this equation with changing thrust levels, and shaft tilt angle.

0 0.1 0.2 0.3 0.4 0.5

0.02

0.04

0.06

Advance ratio, μ

In
flo

w
λ α = 5 degs. 

α = 7 degs. 

λ = μ tan α + λ
i α = 0 degs. 

Hover
λ = λh

α = 2 degs. 

Figure 1.3: Inflow variation with forward speed for different disk tilt angles; CT = 0.006

Note that, in the induced inflow expression given earlier

λi =
λ2
h√

μ2 + λ2

λh can, in general, be modified with the empirical correction factor κp
√
CT /2. κp is often replaced

with a different correction factor in forward flight κf .

λi = μ tanα+
κfCT /2√
μ2 + λ2

∼= μ tanα+ κf
CT

2μ
valid for μ > 1.5λh

Thus, the effect of forward flight is to reduce induced velocity as a result of increased mass flow
through the disk and thus reduce the induced power. The result is based on the assumption of
uniform inflow over the entire disk. In reality, the induced power may increase at high speeds due
to nonuniform inflow.
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0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Advance ratio, μ

In
flo

w
,λ

Hover λ = λh

CT = 0.008

CT = 0.004

λ = μ tan α + λi

Figure 1.4: Inflow variation with forward speed for different thrust levels; α = 5o

The blade element theory for forward flight is quite similar to the one discussed for hover flight,
except that the flow components, ut, up, are modified. Consider a model rotor in a wind tunnel with
shaft held fixed vertically. Assume that the blades are not allowed any other motion but rotation.
This can be called a rigid rotor. The airflow velocity at a radial station r is Ωr + V sinψ where V
is the incoming wind velocity and Ω is the rotational speed. Thus the non-dimensional sectional
air velocities are

ut = x+ μ sinψ

up = λ

ur = μ cosψ

The advancing blade encounters higher velocity than the retreating blade. If the pitch is held
fixed, the lift on the advancing side is greater than that on the retreating side. This creates periodic
bending moments at the root of the blade which rolls the rotor from the advancing side towards
the retreating side, i.e. roll left for counter clockwise rotation. For example, the sectional lift, in
non-dimensional form, is

dFz

ρca(ΩR)2R
∼= dL

ρca(ΩR)2R

=
1

2
(θu2t − uput)dx

=
1

2
(θx2 + 2xμθ sinψ + θμ2 sin2 ψ − λx− μλ sinψ)dx

=

(
θ
x2

2
+ θ

μ2

4
− λx

2

)
+

(
θμx− λx

2

)
sinψ +

(
−θ

μ2

4

)
cos 2ψ

In the simple example above, the lift has a constant part, a sinψ part and a cos 2ψ part. The
constant part is called the steady lift. The sinψ part is called 1 per revolution (1/rev, or 1p) lift.
It is an oscillatory lift which completes one cycle of variation over one rotor revolution, i.e., it
completes one cycle of variation as the blade moves from ψ = 0, through ψ = 90, 180, 270 degrees
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back to ψ = 360 = 0 degrees. At ψ = 0 it has a value of 0, at ψ = 90 degrees it reaches the
maximum value θμx − λx

2 , at ψ = 180 degrees it is again 0, at ψ = 270 degrees it reaches the

minimum value −(θμx− λx
2 ), and finally back to 0 at ψ = 360. Similarly the cos 2ψ part is called

2/rev lift. The bending moment produced by the lift at the root of the blade is

dM

ρca(ΩR)2R2
=

rdL

ρca(ΩR)2R2

=

(
θ
x3

2
+ θ

μ2

4
x− λx2

2

)
+

(
θμx2 − λx2

2

)
sinψ +

(
−θ

μ2

4
x

)
cos 2ψ

which is simply the lift expression multiplied by x. The net bending moment at the shaft is obtained
by simply integrating the above expression over the span.

M =
1

ρacΩ2R4

∫ R

0
r dFz

=

(
θ

8
+ θ

μ2

8
− λ

6

)
+

(
θ
μ

3
− λ

6

)
sinψ +

(
−θ

μ2

8

)
cos 2ψ

M is the aerodynamic root moment. Like lift it has a steady and two oscillatory components. Note
that the root moment occurs at the blade root and has a direction perpendicular to the blade span.
As the blade rotates around the azimuth, the direction of the root moment rotates along with the
blade. Therefore the root moment is also termed hub rotating moment. The rotating moment can
be resolved along two fixed axes, say the aircraft roll and pitch axes. The resolved moments do not
change in direction and are called the hub fixed moments. The roll and pitch moments are

MR = +M sinψ positive to left

MP = −M cosψ positive nose up

This leads to 2 important concepts. First, Note that the hub fixed moments are hub rotating
moments multiplied with a 1/rev variation. Thus a steady rotating moment generates a 1/rev hub
fixed moment. A 1/rev rotating moment generates steady and 2/rev hub fixed moments. A 2/rev
rotating moment generates 1/rev and 3/rev hub fixed moments, and so on. In general, a N/rev
rotating moment generates N ± 1/rev hub fixed moments. Our Mβ expression had steady, 1 and
2/rev. Therefore our MR and MP expressions would have a highest harmonic of 3/rev. Assume
MR to have the following general form.

MR(ψ) = m0 +m1 sin(ψ + φ1) +m2 sin(2ψ + φ2) +m3 sin(3ψ + φ3)

where the phase lags φ1, φ2, and φ3 are introduced to account for both sin and cos components of
the harmonics.

Now, imagine there are three identical blades. The root moments from each will be identical,
except shifted in phase by 360/3 = 120 degrees. This is because when blade 1 is at ψ = 0, blade
2 is at ψ = 120, and blade 3 is at ψ = 240 degrees, where ψ is always referred with respect to
blade 1. Physically it means that at ψ = 0 the root moment is made up of three contributions.
Contribution 1 is from blade 1 at ψ = 0. Contribution 2 is from blade 2. The value of this
contribution is exactly same as the root moment blade 1 would have when it reaches ψ = 120
degrees. Thus, the contribution from blade 2 is easily found by putting ψ = 120 degrees in the
expression for blade 1 root moment. Similarly, contribution 3 is from blade 3, and it is easily found
by putting ψ = 240 degrees in the expression for blade 1 root moment. The concept applies to hub
fixed moments as well. When blade 1 contributes MR(ψ) as a hub fixed load, blade 2 contributes
MR(ψ+120), and blade 3 contributes MR(ψ+240). All three contributions are added at the hub.
The end result from simple trigonometry is only steady and 3/rev.

MR(ψ)total = (MR)blade1 + (MR)blade2 + (MR)blade3

= MR(ψ) +MR(ψ + 120) +MR(ψ + 240)

= 3m0 + 3m3(3ψ + φ3)
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In general, for Nb blades, the fixed frame moments (and forces in general) are always steady, and
pNb/rev components where p is an integer.

High 1/rev blade root moments, and the high steady hub fixed moment that it generates was a
major cause of early rotor failures. The question is quite natural, how to minimize this oscillatory
bending moment at the root and how to reduce the aircraft rolling moment. The advent of flap
hinge (Renard - 1904) relieved the blade root moment, by allowing the blades to flap freely in
response to oscillatory aerodynamic flap moments.

1.2 Basic Structural Dynamics

The dynamics of a single degree of freedom system is reviewed. It is then applied to a simple rotor
blade flapping model.

1.2.1 Second-Order Systems

Consider a second-order ordinary differential equation describing the motion of a mass spring
system.

mq̈ + kq = f(t)

where q describes the motion, and q̈ is the second derivative with respect to time t. Q(t) is the
external forcing. The motion exhibited by the mass m in absence of external forcing is called
natural motion. Such is the case when the mass is given an initial displacement or velocity and
then released. The motion is then governed by the homogenous equation

mq̈ + kq = 0

where the forcing f(t) is set to zero. We seek a solution of the following type.

q(t) = Aest

Substituting in the equation we have

(ms2 + k)A = 0

A = 0 yields a trivial solution q = 0. For a non-trivial solution, one must have

ms2 + k = 0

which leads to

s = ±i
√

k/m = iωn

where

ωn =
√

k/m

Thus the governing equation allows a solution of the above type only for these two values of s. These
are called the eigen-values and ωn (rad/s) the natural frequency of the system. The homogenous
solution is then

q(t) = A1e
iωnt +A2e

−iωnt (1.5)

The physical interpretation of the solution can be found using the Euler’s theorem. Euler’s theorem
states

e±iωt = cosωt± i sinωt
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It follows from above

eiπ/2 = i; e−iπ/2 = −i

eiπ = −1; e−iπ = 1
(1.6)

The term A1e
iωnt can now be physically interpreted. the first term is expanded as

A1e
iωnt = A1 cosωnt+ iA1 sinωnt (1.7)

The two resulting terms A1 cosωnt and A1 sinωnt are simply the projections of a rotating vector
of magnitude A1 along two mutually perpendicular axes. The rotation speed is ωn radians/second,
and the vector is initially aligned with the horizontal axis. In this sense A1e

iωnt represents a rotating
vector. Similarly A2e

−iωnt represents another rotating vector. It has magnitude A2 and rotates
with the same speed ω rad/s, but, rotates in a direction opposite to A1e

iωnt. This is easily seen
from below.

A2e
−iωnt = A2 cosωnt− iA2 sinωnt = A2 cos(−ωnt) + iA2 sin(−ωnt) (1.8)

It follows that an expression of the form A1e
±i(ωnt+φ), where φ is a constant, represents a pair of

counter-rotating vectors (corresponding to the ‘+’ and ‘−’ signs), which are always ahead of the
vectors A1e

±iωnt by an angle φ in the direction of their respective rotations. φ is called a phase
angle. The horizontal and vertical directions are simply two orthogonal directions; one of them can
be chosen arbitrarily. Conventionally they are referred to as the Real and Imaginary directions.

The time derivative of q(t) in eqn. 1.5 yields the following expression for velocity

q̇(t) = A1iωne
iωnt + iA2(−i)ωne

−iωnt (1.9)

which, using the expressions for i and −i from eqns. 1.6 produce

q̇(t) = A1ωne
i(ωnt+π/2) + iA2ωne

−i(ωnt+π/2) (1.10)

Thus the expression for velocity represents two counter-rotating vectors of magnitudes A1ωn and
A2ωn which rotate ahead of the displacement vectors by π/2 in the direction of their respective
rotations. Thus the velocities are ahead of the displacement by a phase angle of π/2 radians.
Similarly the expression for acceleration represents two counter-rotating vectors which lead velcity
vectors by π/2 radians in phase, and therefore the displacement vectors by π.

q̈(t) = A1i
2ω2

ne
iωnt +A2(−i)2ω2

ne
−iωn

= A1ωne
i(ωnt+π) + iA2ωne

−i(ωnt+π)
(1.11)

To summarize, each of the two terms in eqn. 1.5 represents two projections of a rotating vector
along two perpendicular directions. Each projection defines a harmonic oscillator. The combination
of the two counter-rotating vectors leads to two harmonic oscillators of different magnitudes along
the Real (or cosine) and Imaginary (or sine) axes.

p(t) = (A1 +A2) cos ωnt+ i(A1 −A2) sinωnt (1.12)

This implies that the physical displacement of the mass m is a combination of cosine and sine
harmonics of different amounts, and could be expressed in the following form

q(t) = A sinωnt+B cosωnt (1.13)

It can also be expressed in a pure sine form by substituting A = sinφ1 and B = cosφ1

q(t) = C sin(ωnt+ φ1); C =
√

A2 +B2; φ1 = tan−1(A/B) (1.14)
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Figure 1.5: Projections of rotating vectors along orthogonal axes produce harmonic
motion

or in a pure cosine form by substituting A = cosφ2 and B = sinφ2

q(t) = C cos(ωnt− φ2); C =
√

A2 +B2; φ2 = tan−1(B/A) (1.15)

They are identical, i.e. they yield exactly the same value at a given time t, as tan−1(A/B) +
tan−1(B/A) = π/2. Two unknown constants appear in every form which are determined from the
initial conditions q(0), q̇(0). These are the intial displacement and velocities. The final solution is
called the natural response of the system. It represents perpetual motion in response to an initial
perturbation.

In reality systems contain damping. Response to an initial perturbation decays depending on
the amount of damping. Consider a real system with damping c in Newtons per m/s.

mq̈ + cq̇ + kq = f(t) (1.16)

For natural response, set f(t) = 0, and solve the resulting homogenous equation. For convenience
the equation is divided by m and expressed in the following form

q̈ + 2ξwnq̇ + w2
nq = 0

Note that k/m has been expressed in terms of the natural frequency of the system (derived earlier).
c/m has been replaced with a damping ratio ξ which changes with wn even if the physical damper
c remains same. c/m = 2ξωn. As before, we seek a solution of the form q = Aest. Substituting in
the differential equation we obtain

s = (−ξ ±
√

ξ2 − 1)ωn

Case 1: ξ = 0 undamped
Roots same as shown earlier, imaginary.

s = ±iωn

Case 2: ξ = 1 critically damped
Equal roots, real and negative.

s1 = −ωn

s2 = −ωn
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Figure 1.6: The rotating vectors representing velocity and acceleration lead the dis-
placement by π/2 and π radians

In case of repeated roots the solution is of a slightly different from than the rest

q(t) = A1e
−ωnt +A2te

−ωnt

= (A1 +A2t)e
−ωnt

Case 3: ξ > 1 over damped
Unequal roots, real and negative

s1,2 = (−ξ ±
√
ξ2 − 1)ωn

q(t) = A1e
s1t +A2e

s2t

= e−ξωnt(A1e
√

ξ2−tωnt +A2e
−
√

ξ2−tωnt)

Case 4: 0 < ξ < 1
The above were all special cases, for a realistic system the damping coefficient is less than one.

In this case
√

ξ2 − 1 is imaginary, and better expressed as i
√

1− ξ2. Thus,

s1,2 = (−ξ ± i
√

1− ξ2)ωn

q(t) = e−ξωnt(A1e
i
√

1−ξ2ωnt +A2e
−i
√

1−ξ2ωnt)

= e−ξωntA cos(
√

1− ξ2ωnt− φ)

A and φ are two arbitrary constants that can be determined from the initial conditions. The
damped frequency wd is given by

wd =
√

1− ξ2ωn

The decay envelope of the oscillatory response in case 4 is given by

E(ξ, ωn, t) = e−ξωnt

In summary, the solution to

q̈ + 2ξωnq̇ + ω2
nq = 0
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is given by

q(t) = e−ξωntA cos(
√

1− ξ2ωnt− φ) 0 < ξ < 1

= A cos(ωnt− φ) ξ = 0

= no oscillations ξ ≥ 0
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ω/ωn << 1

ω/ωn = 1
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Figure 1.7: (a) General relationship between spring force, damper force, inertia force
and external force in forced vibration; (b) when ω/ωn << 1 both inertia and damper
force small, φ small; (c) when ω/ωn = 1 damper force equal and opposite to external
force, inertial equal and opposite to spring force, φ = π; (d)ω/ωn >> 1 external force
almost equal to inertial force, φ approaches π

Now consider the forced response of the system. Here we want to solve the inhomogenous

system as given by eqn. 1.16. Let the external forcing be f(t) = f0 cosωt. The equation then takes
the following form.

mq̈ + cq̇ + kq = f0 cosωt

It is easy to check by substitution that the equation accepts a solution of the form

q(t) = c1 cosωt+ c2 sinωt

i.e. the response is at the same frequency as that of the forcing, ω. Note that, here we have
taken the forcing to be the real axis projection of a rotating vector. One can use both projections
by representing the forcing as f(t) = f0e

iωt. The form of the solution should then be taken as
q(t) = cei(ωt−φ). The real (or imaginary) part of the solution would then be exactly same as the
solution obtained by using the real (or imaginary) part of the forcing expressions alone.

c1 and c2 (or c, if one performs the calculations using the complex notation) are not arbitrary
constants, as earlier in the case of natural response. Forced response of a linear system does not
depend on initial conditions. The magnitude of forcing f0 can be written as ka, where k is the
spring stiffness, and a a displacment. Expressing f0 as f0 = ka and dividing throughout by m we
have

q̈ + 2ξωnq̇ + ω2
nq = ω2

na cosωt
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Figure 1.8: Transfer function between forcing and displacement
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Figure 1.9: Transfer function between forcing and velocity

Substitute q(t) in the equation, and determine c1 and c2 by equating the cos and sin components
(for complex domain calculations equate the real and imaginery parts to find c and φ). The final
solution has the following form.

q(t) =
f0/k√[

1−
(

ω
ωn

)2]2
+
[
2ξ ω

ωn

]2 cos(ωt− φ) := aGd cos(ωt− φ)

φ = tan−1
2ξ ω

ωn

1−
(

ω
ωn

)2
where φ is the phase angle by which the displacement lags the forcing. The ratio of the magnitude
of displacement to the magnitude of forcing is a transfer function

|q|
|f | =

aGd

f0
=

aGd

ka
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Figure 1.10: Transfer function between forcing and acceleration
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Figure 1.11: Phase by which response (displacement) lags forcing

Re-arrange to obtain

|q|
|f |/k = Gd

The numerator of the left hand side is the maximum displacement including dynamics. The denom-
inator of the left hand side is the maximum displacement ignoring dynamics. Thus the ratio gives
a magnification factor due to the dynamics. This can be termed the displacement gain function,
Gd. Gd is a function of ω/ωn and ξ.

For ξ = 0 and ω/ωn = 1 we have an infinite response. Physically, the response blows up in time
domain. The equation and the solution take the following form.

q̈ + ω2
nq = ω2

na cosωnt

q(t) =
a

2
ωnt cos(ωnt− π/2)

The velocity-force, and acceleration-force transfer functions are |q̇|/|F | and |q̈|/|F |. To express
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them as functions of ω/ωn non-dimensionalize as

|q̇|
|f |
k ωn

= Gd
ω

ωn
= Gv

|q̈|
|f |
k ω2

n

= Gd

(
ω

ωn

)2

= Ga

Note that the denominator of the left hand side expression for Ga represents the rigid body accel-
eration of m in absence of dynamics. To obtain the phase by which the velocity and acceleration
lags the forcing, differentiate the response

q̇(t) = −aGdω sin(ωt− φ) = aGdω cos(ωt− [φ− π/2]) = aGdω cos(ωt− φv)

q̈(t) = aGdω cos(ωt− [φ− π]) = aGdω cos(ωt− φa)

It follows, as we expect

φv = φ− π/2

φa = φ− π

The displacement, velocity, and acceleration transfer functions are shown in figures 1.8, 1.9,
and 1.10. The displacement phase lag with respect to forcing is shown in figure 1.11.

The total response of the system, for a realistic case, then becomes

q(t) = e−ξωntA cos(
√

1− ξ2ωnt− φ) +
a√[

1−
(

ω
ωn

)2]2
+
[
2ξ ω

ωn

]2 cos(ωt− φ)

By realistic case, it is assumed that 0 ≤ ξ < 1, and ω �= ωn if ξ = 0.

The first part is the initial condition response. The second part is the steady state response. In
case of numerical integration both are obtained as part of the solution. If the periodic response is
desired, one must wait till the initial condition response dies down. For high damping, the initial
condition response dies down quickly. For low damping, it takes a long time. For zero damping it
remains forever. Methods like Harmonic Balance and Finite Element in Time are used to obtain
the steady state solution in such cases, when the steady state solution is desired uncontaminated
with the initial condition response.

1.2.2 Reduction to First-Order Form

The second-order eqn. 1.16 can be reduced to first-order form by the substitution

x1 = q, x2 = q̇

It follows

ẋ1 = q̇ = x2

ẋ2 = q̈ = (−c/m)x2 + (−k/m)x1 + (1/m)f

leading to(
ẋ1
ẋ2

)
=

[
0 1

−k/m −c/m

](
x1
x2

)
+

(
0

f/m

)
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In matrix notation

ẋ = Ax+ f (1.17)

x is the vector of states describing the system and f is a vector of excitations. For a general
second-order system with n degrees of freedom, q1, q2, . . . , qn, eqn. 1.16 becomes

Mq̈+Cq̇+Kq = F

The corresponding first-order system now has a state vector x of size 2n containing q1, q2, . . . , qn
and q̇1, q̇2, . . . , q̇n, with

A =

[
0 In

−M−1K −M−1C

]
of size 2n× 2n

f =

[
0

M−1F

]
of size 2n × 1

The forcing F can be a superposition of m seperate excitations u1, u2, . . . , um.

F = Gu

where G is of size n×m. The first-order system then takes the following form

ẋ = Ax+Bu (1.18)

where B is now given as

B =

[
0

M−1G

]
of size 2n×m

In the previous section we had obtained transfer functions between q, q̇ and f , directly using the
solution of the second-order equation. The same transfer functions can also be obtained using the
first-order eqn. 1.18. For this simple case, n = m = 1, G = 1, u = f , and

B =

[
0

1/m

]
Under many circumstances, often encountered in control theory, the second-order system has

the following form

q̈+A′q̇+B′q = C′ü+D′u̇+E′u

where the forcing is a function of the excitation and its derivatives. The corresponding first-order
form is given by

A =

[
0 In

−B′ −A′

]
of size 2n× 2n

B =

[
B1

B2

]
of size 2n×m

where

B1 = D′ −A′C′

B2 = E′ −A′B1 −B′C′

The states are defined as

x1 = q−C′u

x2 = q̇−C′u̇−B1u
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1.2.3 Rotor Blade Dynamics

The rotor blades undergo three dominant dynamic motions.

β : flap motion

normal to the plane of rotation

positive for upward motion

ζ : lag motion

motion in the plane of rotation

positive lag opposes rotation lead-lag is in opposite direction to lag-motion

θ : pitch motion

rotation of blade about elastic axis

positive for nose up motion

������������

������������
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�����


θ

β

ζ

Ω

The flap motion of the blades, we shall see, relieves the root moments. The letting the blades
flap freely, in response to lift, the blades are allowed to take up a certain orientation in space. The
direction of the rotor thrust is determined by this orientation.

The flap motion will induce Coriolis moment in the lag direction. To relieve this lag moment
at the root of the blade, a lag hinge is introduced.

The pitch motion is a blade dynamic response to aerodynamic pitching moments. The pitch
control angle, θcon(ψ), on the other hand, is a pilot input provided via a hub mechanism e.g. a
pitch bearing or torque tube. Note that the net pitch angle at a blade section consists of three
components: (1) pitch motion θ(r, ψ), (2) pitch control angle θcon(ψ), and (3) the in-built twist
θtw(r). The first component, pitch motion, is also called elastic twist. The second component,
pitch control angle, is a means to control the direction of thrust vector. The blades are still free to
flap, but they flap in response to a lift distribution which is influenced via the pitch control angles.
Thus the blade orientation in space, and the resultant thrust direction can be controlled. The pitch
control angles have a steady (called collective) and 1/rev components. The sin part of the 1/rev
component is called the longitudinal cyclic, and the cos part is called the lateral cyclic.

The advent of cyclic pitch (Pescare - 1924) helped to control the thrust vector. The thrust
vector can be oriented to the desired direction without changing the shaft orientation. Therefore,
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the inclusion of the flap hinge and the cyclic pitch converts a static problem into a dynamic one
because the blade motion now becomes important.In this chapter we shall study the flap motion
to understand the basic principles behind the rotor and moments generated by the rotor.

The next figure shows a typical articulated rotor blade with mechanical flap and lag hinges,
and a pitch bearing.

For hingeless rotor, the mechanical flap and lag hinges are eliminated. Virtual hinges are
introduced by making the the blade quite flexible structurally near the root so that it behaves as
if there are hinges for flap and lag motions.
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1.2.4 Flap motion of a rotor blade

Consider the general model where a blade flaps about a hinge located at a distance e from the shaft
axis. See Fig. 6.2. The equation governing the blade flapping motion is obtained as follows

offset = e

z

y
spring = kβ

AF : dFz

CF : mdr Ω2 r

(r-e) β

r

 β
IF : -mdr (r-e)β

..

Figure 1.12: Flapping motion about a hinge

External moments about hinge = (Blade inertia about hinge).(angular acceleration β̈)
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The right hand side of the above equation can be defined as the negative of inertial moment about
the hinge. Then we have

External moments about hinge = −Inertial moment about hinge

External moments about hinge + Inertial moment about hinge = 0

Net moments about hinge = 0

The blade inertia about the hinge is
∫ R
e m(r−e)2dr. Thus the inertial moment is − ∫ Re m(r−e)2β̈dr.

This is a moment generated by the spanwise integration of a force −m(r−e)β̈dr acting on an element
of length dr. This is defined here as the inertial force (IF) on the element. The external moments
are the moments generated by the aerodynamic force (AF) and the centrifugal force (CF), and the

restoring spring moment. The moment due to aerodynamic force is
∫ R
e (r − e)dFz . The moment

due to centrifugal force is
∫ R
e (mdr)Ω2r(r − e)β. The restoring spring moment is kββ. The forces

are shown in Fig. 6.2. The moment balance about the hinge is then as follows.∫ R

e
(r − e)dFz −

∫ R

e
(mdr)Ω2r(r − e)β − kββ =

∫ R

e
m(r − e)2β̈dr

which can be re-arranged to read∫ R

e
(r − e)dFz −

∫ R

e
(mdr)Ω2r(r − e)β −

∫ R

e
m(r − e)2β̈dr = kββ

Physically, the above equation means that the aerodynamic moment is cancelled partly by the
centrifugal moment, used partly to generate acceleration in flap, and the remainder is balanced by
the spring at the hinge. Thus the net balance of moments at the hinge is provided by the spring,
where kββ is the spring moment. This quantity is called the hinge moment or the root moment.
Note that, in the case of perfectly articulated blade with a free hinge, i.e. kβ = 0, then the balance
of aerodynamic and centrifugal moments is used up entirely by the blade acceleration. The root
moment in this case is forced to zero. For hingeless blades or articulated blades with a spring the
root moment is kββ. Often a pre-cone angle βp pre-set to reduce the hinge moment. For example
βp could be an estimate of steady flap angle. The equation then becomes∫ R

e
rdFz −

∫ R

e
(mdr)Ω2r(r − e)β −

∫ R

e
m(r − e)2β̈dr = kβ(β − βp) (1.19)

Define

Iβ =

∫ R

e
(r − e)2mdr

Sβ =

∫ R

e
(r − e)mdr

The moment balance then becomes

kβ(β − βp) =

∫ R

e
(r − e)dFz − Iββ̈ −

(
1 +

eSβ

Iβ

)
Ω2Iββ (1.20)

The above expression is important. It says that the root moment can be calculated either using
the left hand side, or the right hand side. They are identical, and their equality generates the flap
equation. The expression can be further simplified. First club the β terms together to obtain

Iββ̈ +

(
1 +

eSβ

Iβ
+

kβ
IβΩ2

)
Ω2Iββ =

∫ R

e
(r − e)dFz + kββp
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Then define
(
1 +

eSβ

Iβ
+

kβ
IβΩ2

)
= ν2β.

Iββ̈ + ν2βΩ
2Iββ =

∫ R

e
(r − e)dFz + kββp

Divide by Ib. Ib is the inertia about the shaft axis, i.e.
∫ R
0 r2mdr. Iβ was the inertia about the

hinge. For practical purposes we make the assumption Iβ ∼= Ib. Thus we have

β̈ + ν2βΩ
2β =

1

Ib

∫ R

e
(r − e)dFz +

kβ
Iβ

βp (1.21)

The above equation determines flap dynamics and shows a natural frequency of νβΩ, equal to ωβ

say. The unit of this frequency ωβ is radians per second. Note that the unit of Ω is itself radians per
second. Thus νβ is a non-dimensional number with no units. If it is 1, that means ωβ, the natural
frequency of flap dynamics is simply Ω. Physically, it means that the flap degree of freedom, when
excited, completes one full cycle of oscillation just when the blade finishes one full circle of rotation.
Recall, that this type of motion, which completes one cycle just in time for one circle of rotation,
is called a 1/rev motion. Thus the νβ is 1/rev. It is a non-dimensional frequency such that a
phenomenon at that frequency just has time to finish one cycle within one blade revolution. A νβ
of say 1.15/rev means, that the flap motion when excited finishes one cycle well within one complete
blade rotation and has time for a bit more. It finishes 1.15 cycles within one blade rotation.

The dynamics with time can be recast into dynamics with rotor azimuth, a more physically
insightful expression for rotor problems. Divide by Ω2.

1

Ω2
β̈ + ν2ββ =

1

IβΩ2

∫ R

e
(r − e)dFz + kββp

Now

ψ = Ωt

β̈ =
∂2β

∂t2
= Ω2 ∂

2β

∂ψ2
= Ω2

∗∗
β

The equation takes the following form.

∗∗
β +ν2ββ = γMβ +

ωβ2
0

Ω2
βp where

∗∗
β=

∂2β

∂ψ2
(1.22)

Equation (1.22) describes the evolution of flap angle as the blade moves around the azimuth ψ.

γ =
ρacR4

Ib

Mβ =
1

ρca(ΩR)2R2

∫ R

e
(r − e)dFz

ωβ2
0

=
kβ
Iβ

γ is called Lock number. Mβ is the aerodynamic flap moment in non-dimensional form. It is the
same form as given earlier. ωβ0 is the non-rotating flap frequency. Note that it is zero in case of a
perfect hinge with zero spring constant. νβ is the rotating natural frequency of flap dynamics.
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νβ =

√
1 +

eSβ

Iβ
+

kβ
IβΩ2

non-dimensional in /rev

ωβ = Ω

√
1 +

eSβ

Iβ
+

kβ
IβΩ2

dimensional in radians/sec

Sβ =
1

2
m(R− e)2 for uniform blade

Iβ =
1

3
m(R− e)3 for uniform blade

eSβ

Iβ
∼= 3

2

e

R

(1.23)

Now consider the case where the flap hinge contains both a spring and a damper. Equation
1.20 is then modified to read

kβ(β − βp) + cβ β̇ =

∫ R

e
(r − e)dFz − Iββ̈ −

(
1 +

eSβ

Iβ

)
Ω2Iββ (1.24)

which simply means that the balance of moment at the hinge is provided by the spring and damper
moments. Following the same procedure, equation 1.21 modifies to

β̈ +

(
cβ
Iβ

)
β̇ + ν2βΩ

2β =
1

Ib

∫ R

e
(r − e)dFz +

kβ
Iβ

βp (1.25)

Equation 1.22 modifies to

∗∗
β +

(
cβ
IbΩ

) ∗
β +ν2ββ = γMβ +

ωβ2
0

Ω2
βp

or

∗∗
β +(2ξνβ)

∗
β +ν2ββ = γMβ +

ωβ2
0

Ω2
βp (1.26)

where cβ/IbΩ is conveniently expressed as 2ξνβ. νβ is the flap frequency. ξ is defined as the damping
ratio. This is simply one possible way of expressing the damping. Physically it means

cβ = 2ξνβIbΩ

= 2ξωβIb

cβ is a physical damper value. It does not depend on operating conditions. The damping ratio ξ,
on the other hand, depends on the operating condition Ω, and blade property Ib. In general any
frequency can be chosen to determine a corresponding ξ, as long as the physical value cβ remains
unchanged. For example, in terms of the non-rotating frequency cβ can be expressed as follows.

cβ = 2ξnrωβ0Ib

This ξnr is different from the ξ above obtained using the rotating frequency, but the physical flap
damper value cβ offcourse is the same.

1.3 Aero-elastic Response

Assume that a blade exhibits only flapping motion. Assume further a simple case when the blade
has no pre–cone angle, no root–damper, i.e. βp=0, ξ=0, and the flap hinge is at the center of
rotation.
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1.3.1 Flap response for non-rotating blades

First consider a stationary blade with no rotation. The flap equation 1.21 then becomes

β̈ + ω2
β0β = 0

When perturbed the blade exhibits a motion

β(t) = A cos(ωβ0t− φ)

where A and φ are constants to be determined from the initial conditions β(0) and β̇(0), and
ωβ0 =

√
kβ/Iβ.

1.3.2 Flap response for rotating blades in vacuum

Now consider that the rotor is rotating in a vacuum chamber. There is a centrifugal force but no
aerodynamic force. Equations 1.21 then becomes

β̈ + ω2
ββ = 0

When perturbed the blade exhibits a motion

β(t) = A cos(ωβt− φ)

where A and φ are constants to be determined from the initial conditions β(0) and β̇(0), and

ωβ = Ω

√
1 +

3

2

e

R
+

ω2
β0

Ω2

= Ω

√
1 +

3

2

e

R
if ωβ0 = 0 i.e. kβ = 0

= Ω, if kβ = 0, and e = 0

However, for a rotating blade it is more convenient to non-dimensionalize the governing differential
equation with Ω2 which, as derived earlier, leads to the following

∗∗
β +ν2ββ = 0

β(ψ) = A cos(νβψ − φ)

where A and φ are constants to be determined from the initial conditions β(0) and
∗
β (0), and

νβ =

√
1 +

3

2

e

R
+

ω2
β0

Ω2

=

√
1 +

3

2

e

R
if ωβ0 = 0 i.e. kβ = 0

= 1 if kβ = 0, and e = 0
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1.3.3 Flap response in hover

Consider a rotor in a hover stand. Or a helicopter in hover. From equation 1.22 we have

∗∗
β +ν2ββ = γMβ

where the aerodynamic flap moment is given by

Mβ =
1

ρca(ΩR)2R2

∫ R

0
(r − e)dFz

∼= 1

ρca(ΩR)2R2

∫ R

0
rdFz simplifying assumption for small e

=
1

ρca(ΩR)2R2

∫ R

0
r
1

2
ρcclU

2
Tdr

=
1

ρca(ΩR)2R2

∫ R

0
r
1

2
ρca(θ − UP

UT
)U2

Tdr

=
1

2

∫ 1

0
x(θu2t − uput)dx

For hover we have

UT = Ωr

Up = λΩR+ rβ̇

Note that, compared to the simple blade element formulation given earlier, Up now has an addition
component rβ̇ from blade flapping. Thus the blade dynamics, or elastic deformation affects the
aerodynamic forces. In non-dimensional form we have

ut = x

up = λ+ x
∗
β

Assume θ to be constant in hover, θ0. The aerodynamic hinge moment then becomes

Mβ =
1

2

∫ 1

0
x(θ0x

2 − x2
∗
β −λx)dx

=
θ0
8

− λ

6
−

∗
β

8

The aero-elastic form of the flap equation then becomes

∗∗
β +

γ

8

∗
β +ν2ββ = γ

(
θ0
8

− λ

6

)
The steady state solution is a constant

β0 =
γ

ν2β

(
θ0
8

− λ

6

)
Suppose the pilot provides a 1/rev control input in addition to a collective θ0

θ(t) = θ0 + θ1s sinΩt

θ(ψ) = θ0 + θ1s sinψ
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The steady state response contains not only a constant term but also a periodic term.

β(ψ) = β0 +A sin(ψ − φ)

The constant term is same as before. The magnitude and phase of the periodic term can be obtained
from the expression derived earlier for single degree of freedom systems. We have

ωn = νβ

ω = 1

2ξωn =
γ

8

Using the above expressions we have

A =
θ1s√(

ν2β − 1
)2

+
(γ
8

)2
φ = tan−1

γ
8

ν2β − 1

=
π

2
− tan−1

ν2β − 1
γ
8

Thus the maximum flap response occurs almost 90◦ after maximum forcing. For νβ = 1, φ exactly
90◦. Generally νβ is slightly greater than one. Then φ is close to, but slightly lower than 90◦. The
flap solution is

β(ψ) =
γ

ν2β

(
θ0
8

− λ

6

)
+

θ1s√(
ν2β − 1

)2
+
(γ
8

)2 sin
(
ψ − π

2
+ tan−1

ν2β − 1
γ
8

)

Assume νβ = 1. Then,

β(ψ) = γ

(
θ0
8

− λ

6

)
+

8θ1s
γ

sin(ψ − π

2
)

= γ

(
θ0
8

− λ

6

)
+

(
−8θ1s

γ

)
cosψ

= γ

(
θ0
8

− λ

6

)
+ β1c cosψ

β1c is, by definition, the cosine component of the flap response. Here β1c = (−8θ1s)/γ. Note that a
sine input to the controls produce a cosine response in flap and vice-versa. This is simply because
the flap motion occurs in resonance to the applied forcing, and therefore has a 90◦ phase lag with
respect to it. This is the case for rotors with flap frequency exactly at 1/rev. For slightly higher
flap frequencies, a sine input generates both a cosine as well as a sine output. However, as long
as the flap frequency is near 1/rev (e.g. 1.15/rev for hingeless rotors, and 1.05/rev for articulated
rotors), a sine input generates a dominant cosine output, and vice-versa.

1.3.4 Flap response in forward flight

Consider a rotor in a wind tunnel, or in forward flight. In forward flight the sectional velocity
components vary with azimuth. The pitch variation in forward flight is of the form

θ(r, ψ) = θ0 + θtw
r

R
+ θ1c cosψ + θ1s sinψ (1.27)
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where θ0, θ1c, and θ1s are called trim control inputs. They are provided to influence the steady and
first harmonic flap response. The total flap response in forward flight contains a large number of
harmonics.

β(ψ) = β0 + β1c cosψ + β1s sinψ+ higher harmonics (1.28)

For simplicity, let us consider only the first harmonics for the time being. Retaining only the first
harmonics are often adequate for performance evaluations of a helicopter. By performance we mean
rotor power, lift, drag, and aircraft trim attitudes. We shall study aircraft trim in a later section.
Here, let us first see the sectional velocity components. Then the blade element forces. And then
calculate the flap response.

The airflow components at a section are shown in the following figures.
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φ =
UP

UT

Γ =
UR

UT

where Γ is the incident yaw angle at the section. The sectional drag acts along this angle. UT and
UP are the tangential and perpendicular velocity components at a section. UR is radial, not along
the blade. Along the blade, and perpendicular to the blade components of UR would be

UR cos β = μΩR cosψ cos β

UR sin β = μΩR cosψ sin β
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Let us define the inflow λΩR to be positive downwards acting along the Z axis. The Z axis is
aligned parallel to the rotor shaft. Then the mutually perpendicular velocity components at each
section are

UT = Ωr + μΩR sinψ

UP = λΩR cos β + rβ̇ + μΩR cosψ sinβ

UR = μΩR cosψ

US is the spanwise component acting along the blade. Assume cos β ∼= 1 and sin β ∼= β. Non-
dimensionalize the velocity components w.r.t ΩR to obtain:

ut
ΩR

= x+ μ sinψ

up
ΩR

= λ+ x
∗
β +βμ cosψ

ur
ΩR

= μ cosψ

The blade forces are

dFz = (dL cosφ− dD sinφ) cos β
∼= dL because dD ∼= 0.1dL

=
1

2
ρcaU2

T

(
θ − UP

UT

)
dr

=
1

2
ρca dr

(
U2
T θ − UPUT

)
(1.29)

dFx = dL sinφ+ dD cosφ cos Γ

∼= dFz
UP

UT
+ dD

=
1

2
ρcaU2

T

(
θ − UP

UT

)
UT

UP
dr +

1

2
ρcaU2

TCddr

=
1

2
ρca dr

(
UPUT θ − U2

P +
Cd

a
U2
T

)
(1.30)

dFr = −dL sin β + dD sin Γ
∼= −βdL

= −β
1

2
ρca dr

(
U2
T θ − UPUT

) (1.31)
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The aerodynamic flap moment is then

Mβ =
1

ρacΩ2R4

∫ R

0
r dFz

=
1

2

∫ 1

0
x

[( uT
ΩR

)2
θ −
( up
ΩR

)( uT
ΩR

)]
dx

=
1

2

∫ 1

0
x
(
u2t θ − uput

)
dx

=

(
1

8
+

μ

3
sinψ +

μ2

4
sin2 ψ

)
(θ0 + θ1c cosψ + θ1s sinψ)

+ θtw

(
1

10
+

μ2

6
sin2 ψ +

μ

4
sinψ

)
− λ

(
1

6
+

μ

4
sinψ

)
−

∗
β

(
1

8
+

μ

6
sinψ

)
− μβ cosψ

(
1

6
+

μ

4
sinψ

)
Recall the flap equation (1.22)

∗∗
β +ν2ββ = γMβ +

ωβ2
0

Ω2
βp

where γ is the Lock number, (ρacR4/Ib), ωβ0 is the nonrotating flap frequency, βp is the precone
angle and νβ is the rotating flap frequency in terms of rotational speed. The term ω2

β0
is used

to model a hingeless blade, or an articulated blade with a flap spring. For an articulated blade
without a flap spring, this term is zero. In addition, if there is no hinge offset (teetering blade or
gimballed blade) νβ = 1. The simplified flap equation in this case becomes

∗∗
β +β = γMβ (1.32)

Substitute Mβ and β in the flap equation (1.21) and match the constant, cosψ, and sinψ terms
on both sides to obtain the solution as follows.

ν2ββ0 = γ

[
θ0
8
(1 + μ2) +

θtw
10

(1 +
5

6
μ2) +

μ

6
θ1s − λ

6

]
+

ω2
β0

Ω2
βp

(v2β − 1)β1c = γ

[
1

8
(θ1c − β1s)

(
1 +

1

2
μ2

)
− μ

6
β0

]
(v2β − 1)β1s = γ

[
1

8
(θ1s + β1c)

(
1− 1

2
μ2

)
+

μ

3
θ0 − μ

4
λ+

μ2

4
θ1s +

μ

4
θtw

] (1.33)

The solution to (1.32) can be obtained by simply putting νβ = 1 in the above expressions.

β0 = γ

[
θ0
8
(1 + μ2) +

θtw
10

(1 +
5

6
μ2)− μ

6
θ1s − λ

6

]
β1s − θ1c =

−4
3μβ0

1 + 1
2μ

2

β1c + θ1s =
− (83)μ [θ0 − 3

4λ+ 3
4μθ1s +

3
4θtw

]
1− 1

2μ
2

(1.34)

Recall that we studied the effect of cyclic pitch variation in hover. A sine input in cyclic
produced a cosine output in flap, and vice-versa. This was when the rotor operated under resonance
conditions where νβ = 1. The flap solution in forward flight for νβ = 1 is given above. Substitute
μ = 0 in the above expression to re-obtain the hover results.
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Put μ = 0 in the solution of equation (1.21).

β1s − θ1c = 0

β1c + θ1s = 0

This means for pitch variation

θ = θ0 + θ1c cosψ + θ1s sinψ

The flap response will be

β = β0 + θ1c cos(ψ − 90◦) + θ1s sin(ψ − 90◦)

Therefore, for articulated blades with zero hinge spring and zero hinge offset, the flap response lags
pitch motion by 90◦ (resonance condition).

For a hingeless blades, or articulated blades with non-zero hinge springs, or articulated blades
with non-zero hinge offsets, put μ = 0 in the solution of (1.21).

β0 =
γ

v2β

[
θ0
8

− λ

6

]
+

ω2
β0

Ω2
βp

β1s =
θ1c + (v2β − 1) 8γ θ1s

1 +
[
(v2β − 1) 8γ

]2
β1c =

−θ1s + (v2β − 1) 8γ θ1c

1 +
[
(v2β − 1) 8γ

]2
(1.35)

Thus θ1s produces both β1s and β1c. Similarly θ1c produces both β1s and β1c. This is an
off-resonance condition where the forcing frequency is less than the natural frequency. Lateral flap
deflection is now caused by longitudinal cyclic pitch θ1s, in addition to lateral pitch θ1c. Recall that
the phase lag of flap response with respect to the pitch motion was shown earlier to be

φ = 90◦ − tan−1
(ν2β − 1)

8
γ

1.4 Introduction to Loads

The distribution of aerodynamic and centrifugal forces along the span, and the structural dynamics
of the blade in response to these forces create shear loads and bending loads at the blade root. For
a zero hinge offset, the blade root is at the center of rotation. For a non-zero hinge offset, it is at a
distance e outboard from the center of rotation. By ’loads’ we mean ’reaction’ forces generated by
the net balance of all forces acting over the blade span. Let sx, sr, and sz be the three shear loads,
in-plane, radial, and vertical. Let nf , nt, and nl be the bending loads, flap bending moment, torsion
moment (positive for leading edge up), and chord bending moment (positive in lag direction). They
occur at the blade root, rotate with the blade, and vary with the azimuth angle. Thus they are
called the rotating root loads. Or simply root loads or root reactions.




