Introduction

Water Contaminants

- Instructor: Yongju Choi, 35-307, <u>ychoi81@snu.ac.kr</u>
- Course material/textbook:
 - 1. Lecture notes: uploaded on eTL prior to the class
 - Schwarzenbach, Gschwend, Imboden, Environmental Organic Chemistry, 2nd ed., John Wiley & Sons, 2003

Office hour

- 5:00-5:30 pm Mon & 9:00-9:30 am Fri
- Via Zoom
- With the instructor
 - Announcement will be made for cancellation; use emails for Q&A when office hour is cancelled

Zoom link:

https://snu-ac-kr.zoom.us/j/8675573197 (Meeting ID 867 557 3197)

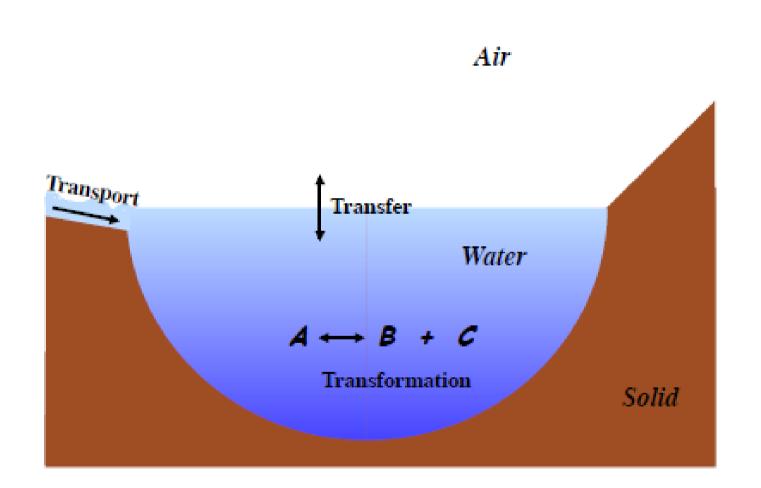
Water Contaminants

- Study different types of water contaminants and their fate in various settings of water environment
- Some background on environmental organic chemistry
- Focus on organic contaminants and the physicochemical mechanisms involved in their fate

Student presentation & paper discussion

- Only one exam for this class? But...
- Four students lead 1 class
- Topic & paper selection & posting
 - Select a topic & a paper (relevant to the class!) and submit a brief presentation plan at least <u>3 business days prior to</u> <u>the class assigned</u>

(Mon class \rightarrow Wed; Wed class \rightarrow Fri)

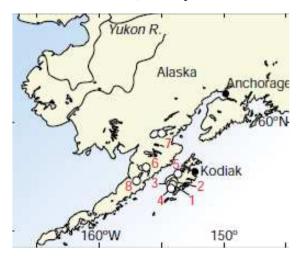

 Post the paper link to eTL at least <u>2 business days prior to</u> <u>the class assigned</u>

(Mon class \rightarrow Thu; Wed class \rightarrow Mon)

Student presentation & paper discussion

- Contents
 - Brief background on the selected topic
 - <u>CRITICAL</u> review of the selected paper
 - Presentation (10 min) + Discussion (5-10 min)
- Construct your presentation in a way that can promote student discussion
 - e.g., throw out questions to your colleagues
 - Note that <u>YOU</u> are the discussion leader for your presentation

Transport, phases, interphases



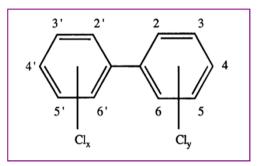
7

Contaminant fate?

http://www.virginmedia.com/sciencenature/wildlife

- Sediment PCB conc. proportional to # salmon spawning/km²
- PCB congener distribution in <u>salmon lakes'</u> <u>sediments similar</u> to distribution in salmon; <u>different</u> from distribution in <u>no-salmon</u> <u>lakes' sediments</u>
- Pacific salmon
 - Amadramous: move from salt to freshwater to breed or spawn
 - Semelparous: die after spawning

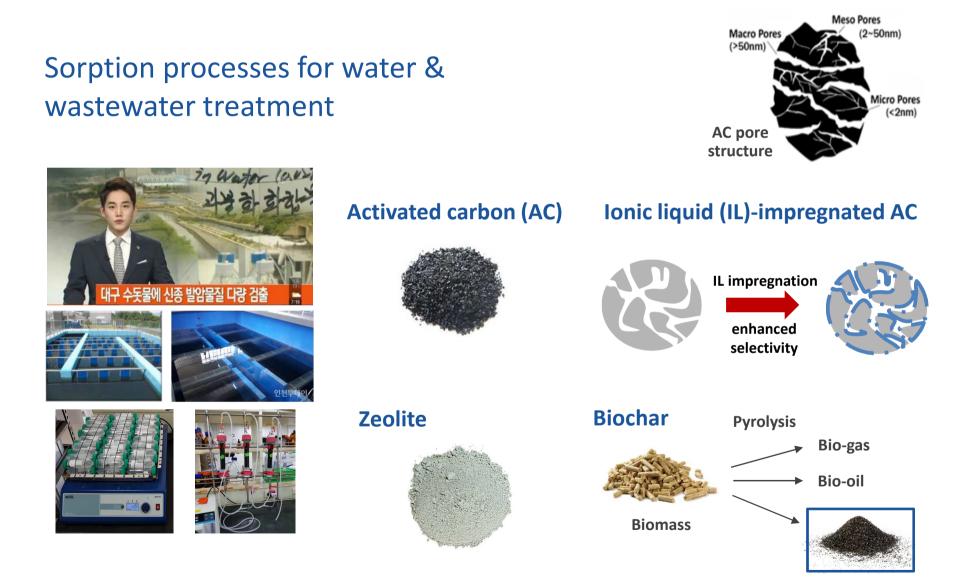
Krummel et al., 2003, Nature, 425:255-256


Transport against hydraulic gradient

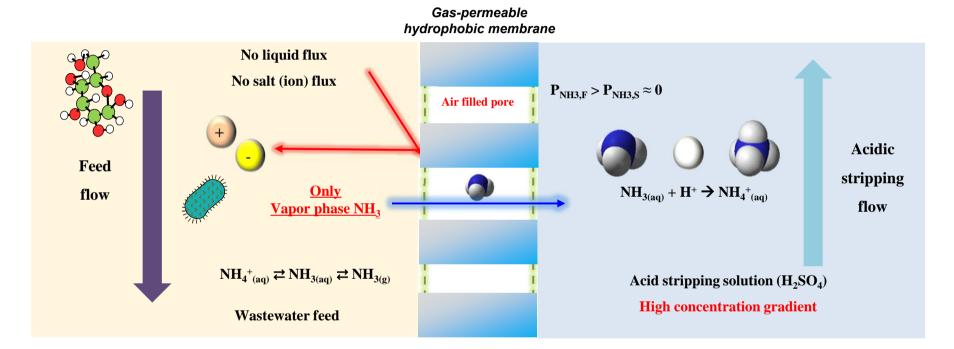
• Salmons concentrate PCBs (biovectors)

Bioconcentration of PCBs in Lake Ontario

	microgram PCB per *				
PCB congener	52	66	153		
MW	291.97	291.97	360.71		
dissolved	6.3E-0.5	3.1E-0.5	5.0E-0.5		
bottom sediment	25	46	25		
suspended sediment	15	27	23		
plankton	2.4	1.6	2.2		
mysids	3.5	15	30		
amphipods	22	30	45		
oligochaetes	6.3	8.3	7.5		
small smelt	7.6	2.7	64		
large smelt	18	72	130		
trout/salmon	62	160	430		

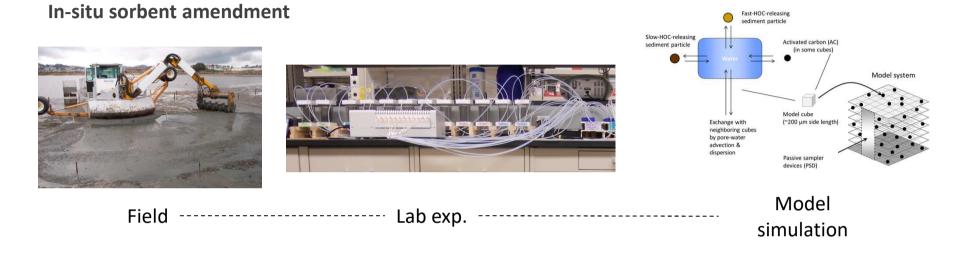

PCB molecular structure

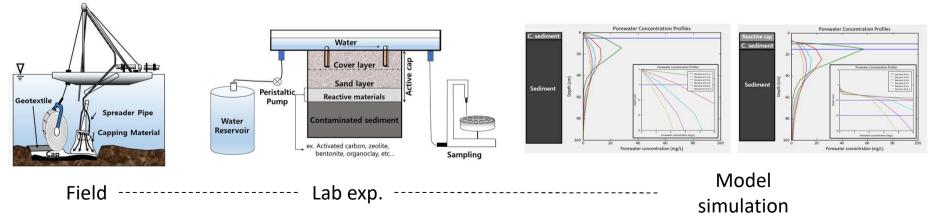
*liter for dissolved; kg dry wt. for sediments; kg wet wt. for organisms


Oliver & Nilmi, 1988, ES&T, 22:388-397

9

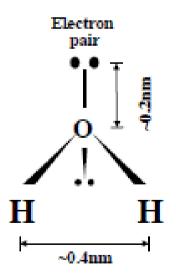
Water Quality & Environment Lab.


Resource recovery from wastewater using gas-permeable membrane



Treatment of sediment impacted by hazardous chemicals

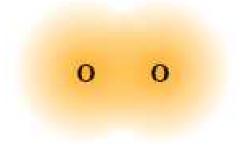
In-situ capping

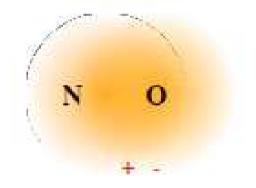


Uniqueness of water

Water – a unique solvent

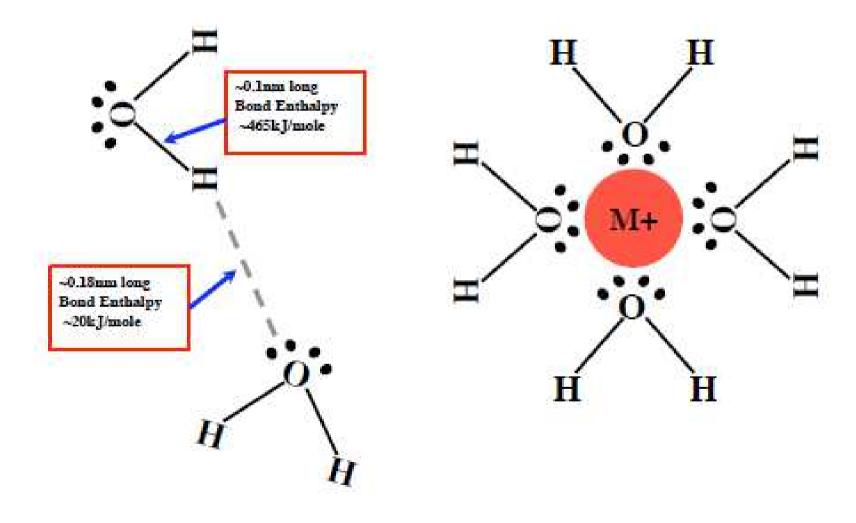
Property	H ₂ O	H ₂ S	CH ₄	CH₃OH
Molecular weight	18	34	16	32
Dipole moment (Debyes)	2.0	0.9	0.0	1.7
Boiling point (°C)	100	-60	-161	65
Enthalpy of vaporization (kJ/g)	2.30	0.55	0.88	1.10
Melting point (°C)	0	-85	-181	-94
Enthalpy of fusion (kJ/g)	0.33	0.07	0.06	0.10



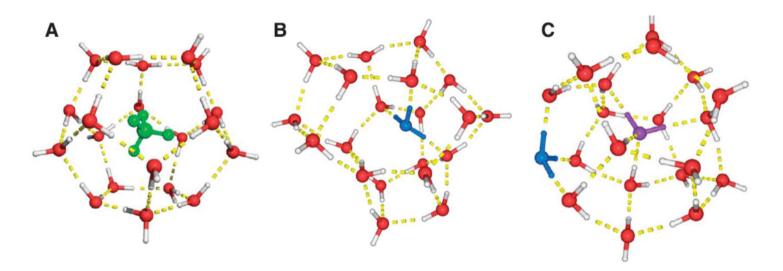


A molecule has a dipole moment if the center of the molecule's positive charges is not at the same spot as the molecule's negative charges

O₂ – no dipole moment



NO – dipole moment



Electron density shifted to oxygen

Water – hydrogen bonding & dipole moment

Hydrogen bonding

Stable water clusters. (A) Methane clathrate consists of a dodecahedral water cage surrounding a methane molecule (green). The n = 21 protonated water cluster suggested by analogy has the H₃O⁺ ion (blue) taking up a position inside the clathrate cage (B) or on its surface (C), displacing a neutral water molecule (purple) to the cage interior. The hydrogen bonds are indicated by the dashed lines in yellow.

Zweir, 2004, Science, 21:1119

- H₂O structure promotes incorporation of hydrogen bonding, polar, ionic entities
- Non-hydrogen bonding, non-polar, non-ionic entities disrupt water's structure

Basics of basics of water chemistry

Ionic strength, activity, molarity

Ionic strength

 $I = \frac{1}{2} \sum_{i} (C_i \times z_i^2)$ $C_i = \text{concentration of ionic species i (M)}$ $z_i = \text{charge of ionic species i}$

- Significance: in dilute solutions ($I \sim < 10^{-3}$ M) the ions behave independently of each other, but as ion concentration increases, ion interactions become significant, <u>decreasing the activity</u> of the ions
- Activity vs. molarity ({ } vs. [])

 $\{i\}=\gamma_i[i]$

- $-\gamma_i \cong 1$ in dilute solutions (for most natural waters except for seawater, this would be acceptable for crude calculations)
- Güntelberg equation (for *I* < 0.1):

$$\log_{10} \gamma_i = -\frac{0.5 {z_i}^2 I^{0.5}}{1 + I^{0.5}}$$

7

Electroneutrality principle

$$\sum$$
 cations (in eq/L) = \sum anions (in eq/L)

* equivalent [eq] of an ion: (eq) = (mole) x (valence)

• May use the following condition to determine the accuracy of water ion content analysis

$$\left|\sum anions - \sum cations\right| \le \left(0.1065 + 0.0155 \sum anions\right)$$

* ∑ values in meq/L

Aqueous chemistry parameters

- Units
 - Mass/vol
 - #/vol
 - Transferable electrons or protons/vol
 - Mole fraction

• Why different units?

- Engineers vs. chemists
- Specific needs of the problem

kg/m³, mg/L, ... mole/L, # of organisms/mL eq./L, meq./L mole/∑mole

Aqueous chemistry parameters

Aggregate parameters

- Characterize important properties of mixtures
 - __OD (oxygen demand)
 - TO___ (total organic carbons (C), halides (X))
 - Total hardness, Alkalinity, ...
 - Total PCBs, Total PCTs, ...
- Conduct one analysis instead of many

__per__as___

- mg/L as CaCO₃ (for alkalinity & hardness)
- mg/L as N
- % as P_2O_5 or K_2O

Measures of (oxidizable) organic matter

• BOD – Biochemical Oxygen Demand

- Measure of a water's biologically oxidizable constituents
 - Analyze [DO] in a water sample before & after controlled incubation
 - 5 day incubation is common

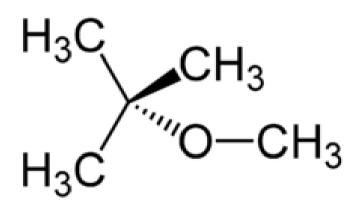
• COD – Chemical Oxygen Demand

- Measure of a water's chemically oxidizable constituents
 - 2-3 hour reaction time
 - Generates liquid hazardous wastes
- Does not oxidize organic N

• TOC, DOC – Total/Dissolved Organic Carbon

- Measure of a water's organic carbon content
 - Analyze mass/concentration of CO₂ produced after chemical oxidation of a sample
 - Sampling time a few minutes

BOD₅ vs COD vs TOC


Compound	Formula	MW	BOD ₅	COD	тос	COD/TOC	TOC/MW	COD/MW
Methane	CH ₄	16	??	64	12	5.3	0.75	4.0
MTBE		88	~0	240	60	4.0	0.68	2.7
Benzene	C ₆ H ₆	78	??	240	72	3.3	0.92	3.1
Glucose	$C_{6}H_{12}O_{6}$	192	~192	192	72	2.7	0.38	1.0

 $CH_4 + 2O_2 \iff CO_2 + 2H_2O$

 $C_5H_{12}O + 7.5O_2 \iff 5CO_2 + 6H_2O$

 $C_6H_6 + 7.5O_2 \iff 6CO_2 + 3H_2O$

 $C_6H_{12}O_6 + 6O_2 \iff 6CO_2 + 6H_2O$

[MTBE]

$$pH = -log_{10} \{H^+\} \approx -log_{10} [H^+]$$

- For most natural waters, 5 < pH < 9
 - Most aquatic life adapted for this range
- Self ionization constant of water, K_w

$$K_w = \{H^+\}\{OH^-\} = 10^{-14}$$

 $pK_w = pH + pOH = 14$ @ 25 °C

• Chemical speciation can be highly pH dependent $ROH \iff RO^- + H^+$ – If pH < pK_a, protonated (associated) $K_a \approx \frac{[RO^-][H^+]}{[ROH]}$ – If pH > pK_a, deprotonated (dissociated)