
Functional Programming
with Lists

Scheme, a dialect of LISP

Interact with a scheme
interpreter

 Online interpreter

 https://inst.eecs.berkeley.edu/~cs61a/fa14/assets/interpreter/scheme.
html

 Supply an expression to be evaluated

 Bind a name to a value

 e.g., (define pi 3.14159)

 Names

 Contain special characters but not parentheses

 e.g., long-name, research!emlin, back-at-5:00pm.

 Begin with any character but not a number

 Ignore the distinction between uppercase and lowercase letters
e.g., pi, Pi, pI and PI are all the same name

 Comments begin with a semicolon and continue to the end of the
line

Write an expression

 Use a form of prefix notation in which parentheses
surround an operator and its operands
 Infix: 1 + 2

 Prefix + 1 2

 Postfix 1 2 +

 The general form of an expression in Scheme
(E1 E2 … Ek)

 E1: an operator

 E2, E3 … Ek: operands

 e.g.,

 (* 5 7) ; (5*7)

 (+ 4 (* 5 7)) ; 4+(5*7)

Define a function

 (define (<function-name> <formal-parameters>)
<expression>)

 e.g., (define (square x) (* x x))
(square 5) ;apply function square to 5

 (define <function-name> (lambda (<formal-
parameters>) <expression>))

 e.g., (define square (lambda (x) (* x x)))

 define supports recursive functions

Define a function

 (define (<function-name> <formal-parameters>)
<expression>)

 e.g., (define (mult x y) (* x y))
(mult 5 7) ;apply function square to 5

 (define <function-name> (lambda (<formal-
parameters>) <expression>))

 e.g., (define mult (lambda (x y) (* x y)))

 define supports recursive functions

Define a function

 Anonymous function values

 (lambda (<formal-parameters>) <expression>)

 e.g., ((lambda (x) (* x x)) 5)
;unnamed function applied to 5

 Can appear within expressions, either as an
operator or as an argument

 Recursion is not supported directly

Conditions

 Predicates
 number? / symbol? / equal?

 If
 (if P E1 E2) ; if P then E1 else E2

 Cond
 (cond (P1 E1) ; if P1 then E1

… ; …
(Pk Ek) ; else if Pk then Ek
(else Ek+1)) ; else Ek+1

Quoting

 A quoted item evaluates to itself

 Quoting is used to choose whether spelling is
treated as a symbol of a variable name

 e.g.,

 pi ; variable name, bound to 3.141592

 ‘pi ; the spelling of the symbol

 e.g.,

 (define f *) ; * represent the multiplication
function

 (define f ‘*) ; ‘* represent the symbol *

The Structure of Lists

List Element

 List

 A sequence of zero or more values

 Potential list elements : booleans, numbers,
symbols, other list and functions

 Parentheses enclose list elements

 Example

 (): empty list (null list) with zero elements

 (it seems that): The list has three symbols of it,
seems and that.

Examples of lists

 Structure of lists

it

me ()

seems

you

like

that ()

()

((it seems that) you (like) me)

seemsit that

()

(it seems that)

(seems that)

Expression and List

 Is (+ 2 3) an expression or a list ?

 The Answer is both.

 The Scheme interpreter treats it as an expression.

 Quoting tells the interpreter to treat (+ 2 3) as a list

 (+ 2 3) -> expression

 Result : 5

 ‘(+ 2 3) -> list

 Result : (+ 2 3)

 Single quote is sufficient to say that the construct
immediately following the quote stands for itself.

 e.g., ‘(no quotes at (nested levels))

 Result : (no quotes at (nested levels))

Operations on Lists

 Basic operations on lists

 (null? x) : True if x is the empty list and false otherwise
 (null? ()) -> #t -> empty list

 (null? nil) -> #f -> not empty list

 nil need not be synonym for ()

 (car x) : The first element of a nonempty list x
 (car ‘(a b c)) -> a

 a is an element, not list. (a) is a list which has one element a

 (cdr x) : The rest of the list x after the first element is removed
 (cdr ‘(a b c)) -> (b c)

 (cons a x) : A value with car a and cdr x; that is,
 (cons ‘a ‘(b c)) -> (a b c)

 (car (cons ‘a ‘(b c))) -> a

 (cdr (cons ‘a ‘(b c))) -> (b c)

 (cons ‘d ‘(a b c)) -> (d a b c)

Storage Allocation For Lists

 A list is made up of cells.

 A cells with pointers to the head and
tail of a list.

 Cons allocates a single cell

to tail

to head

5

 (cons ‘a ‘(it seems that))

 (a it seems that)

seemsit that

()

(a it seems that)

a

seemsit that

()

(it seems that)

Cons Allocates Cells (1)

 Lists are built out of cells capable of
holding pointers to the head(car) and
tail(cdr) of a list.
 car : “Contents of the Address part of

Register”

 cdr : “Contents of the Decrement part
of Register”

 Cons : allocates a word and stuffed
pointers to the car and cdr of a list.

7

Cons Allocates Cells (2)

 The empty list () is a special pointer.

 Think of () as a special address that is not
used for anything else.

 (cons ‘it (cons ‘seems (cons ‘that ‘())))

seemsit that

()

8

Cons Allocates Cells (3)

 null? : compares its argument for equality
with ().

 car : returns the pointer in the first field.

 cdr : returns the pointer in the second field.

seemsit that

()

(car ‘(it seems that)) (cdr ‘(it seems that))

9

How to Build lists

 Cons operation builds
 (cons a x) create a value with head a and tail x

 Alternative “dotted” notation for (cons a x) is (a . x)

 More precisely, a cons operation builds a pair from its
operands.

 The name ‘list’ is reserved for a chain of pairs ending
in an empty list.
 Repeated application of cdr eventually results in the empty

list ().

 (cons ‘it (cons ‘seems (cons ‘that ‘())))

 = ‘(it . (seems . (that . ()))) = (list ‘it ‘seems ‘that)
 Result : (it seems that)

 (that . ()) = (that)

 (seems . (that . ())) = (seems that)

Practice for Scheme

To define cadr function
 (define (square x) (* x x))

(square 5) ;apply function square to 5
 Predicates

 null? ; empty list?
 Cond

 (cond (P1 E1) ; if P1 then E1
… ; …

(Pk Ek) ; else if Pk then Ek
(else Ek+1)) ; else Ek+1

 (cadr ‘(2 4 6 1)) : 4

(define (cadr List)
(cond ((null? List) (display 'error))

((null? (cdr List)) (display 'error))
(else (car (cdr List)))))

cadr

 (cadr ‘(2 4 6 1)) : 4

(define (cadr List)
(cond ((null? List) (display 'error))

((null? (cdr List)) (display 'error))
(else (car (cdr List)))))

Find the second element in
a list

 (second ‘(2 4 6 1)) : 4

(define (second List)
(cond ((null? List) (display 'error))

((null? (cdr List)) (display 'error))
(else (cadr List))))

Find the last element in a
list

 (last '(2 4 6 1)) : 1

(define (last List)
(cond ((null? List) (display 'error))

((null? (cdr List)) (car List))
(else (last (cdr List)))))

Find the length of a list

 (length ‘(2 4 6 1)) : 4

(define (length List)
(if (null? List) 0
(+ 1 (length (cdr List)))))

Find the sum of elements
in a list

 (sum ‘(2 4 6 1)) : 13

(define (sum List)
(if (null? List) 0

(+ (car List) (sum (cdr List)))))

Find the maximum value
in a list

 (maximum ‘(2 4 6 1)) : 6

(define (maximum List)
(cond ((null? List) (display ‘error))

((null? (cdr List)) (car List))
(else (max (car List)
(maximum (cdr List))))))

(define (max x y)
(if (> x y) x y))

Find the minimum value in
a list

 (minimum ‘(2 4 6 1)) : 1

(define (minimum List)
(cond ((null? List) (display ‘error))

((null? (cdr List)) (car List))
(else (min (car List)
(minimum (cdr List))))))

(define (min x y)
(if (< x y) x y))

	1-1_Scheme(1)
	1-2_Scheme(2)

