
Functional Programming
with Lists

Scheme, a dialect of LISP

Interact with a scheme
interpreter

 Online interpreter

 https://inst.eecs.berkeley.edu/~cs61a/fa14/assets/interpreter/scheme.
html

 Supply an expression to be evaluated

 Bind a name to a value

 e.g., (define pi 3.14159)

 Names

 Contain special characters but not parentheses

 e.g., long-name, research!emlin, back-at-5:00pm.

 Begin with any character but not a number

 Ignore the distinction between uppercase and lowercase letters
e.g., pi, Pi, pI and PI are all the same name

 Comments begin with a semicolon and continue to the end of the
line

Write an expression

 Use a form of prefix notation in which parentheses
surround an operator and its operands
 Infix: 1 + 2

 Prefix + 1 2

 Postfix 1 2 +

 The general form of an expression in Scheme
(E1 E2 … Ek)

 E1: an operator

 E2, E3 … Ek: operands

 e.g.,

 (* 5 7) ; (5*7)

 (+ 4 (* 5 7)) ; 4+(5*7)

Define a function

 (define (<function-name> <formal-parameters>)
<expression>)

 e.g., (define (square x) (* x x))
(square 5) ;apply function square to 5

 (define <function-name> (lambda (<formal-
parameters>) <expression>))

 e.g., (define square (lambda (x) (* x x)))

 define supports recursive functions

Define a function

 (define (<function-name> <formal-parameters>)
<expression>)

 e.g., (define (mult x y) (* x y))
(mult 5 7) ;apply function square to 5

 (define <function-name> (lambda (<formal-
parameters>) <expression>))

 e.g., (define mult (lambda (x y) (* x y)))

 define supports recursive functions

Define a function

 Anonymous function values

 (lambda (<formal-parameters>) <expression>)

 e.g., ((lambda (x) (* x x)) 5)
;unnamed function applied to 5

 Can appear within expressions, either as an
operator or as an argument

 Recursion is not supported directly

Conditions

 Predicates
 number? / symbol? / equal?

 If
 (if P E1 E2) ; if P then E1 else E2

 Cond
 (cond (P1 E1) ; if P1 then E1

… ; …
(Pk Ek) ; else if Pk then Ek
(else Ek+1)) ; else Ek+1

Quoting

 A quoted item evaluates to itself

 Quoting is used to choose whether spelling is
treated as a symbol of a variable name

 e.g.,

 pi ; variable name, bound to 3.141592

 ‘pi ; the spelling of the symbol

 e.g.,

 (define f *) ; * represent the multiplication
function

 (define f ‘*) ; ‘* represent the symbol *

The Structure of Lists

List Element

 List

 A sequence of zero or more values

 Potential list elements : booleans, numbers,
symbols, other list and functions

 Parentheses enclose list elements

 Example

 (): empty list (null list) with zero elements

 (it seems that): The list has three symbols of it,
seems and that.

Examples of lists

 Structure of lists

it

me ()

seems

you

like

that ()

()

((it seems that) you (like) me)

seemsit that

()

(it seems that)

(seems that)

Expression and List

 Is (+ 2 3) an expression or a list ?

 The Answer is both.

 The Scheme interpreter treats it as an expression.

 Quoting tells the interpreter to treat (+ 2 3) as a list

 (+ 2 3) -> expression

 Result : 5

 ‘(+ 2 3) -> list

 Result : (+ 2 3)

 Single quote is sufficient to say that the construct
immediately following the quote stands for itself.

 e.g., ‘(no quotes at (nested levels))

 Result : (no quotes at (nested levels))

Operations on Lists

 Basic operations on lists

 (null? x) : True if x is the empty list and false otherwise
 (null? ()) -> #t -> empty list

 (null? nil) -> #f -> not empty list

 nil need not be synonym for ()

 (car x) : The first element of a nonempty list x
 (car ‘(a b c)) -> a

 a is an element, not list. (a) is a list which has one element a

 (cdr x) : The rest of the list x after the first element is removed
 (cdr ‘(a b c)) -> (b c)

 (cons a x) : A value with car a and cdr x; that is,
 (cons ‘a ‘(b c)) -> (a b c)

 (car (cons ‘a ‘(b c))) -> a

 (cdr (cons ‘a ‘(b c))) -> (b c)

 (cons ‘d ‘(a b c)) -> (d a b c)

Storage Allocation For Lists

 A list is made up of cells.

 A cells with pointers to the head and
tail of a list.

 Cons allocates a single cell

to tail

to head

5

 (cons ‘a ‘(it seems that))

 (a it seems that)

seemsit that

()

(a it seems that)

a

seemsit that

()

(it seems that)

Cons Allocates Cells (1)

 Lists are built out of cells capable of
holding pointers to the head(car) and
tail(cdr) of a list.
 car : “Contents of the Address part of

Register”

 cdr : “Contents of the Decrement part
of Register”

 Cons : allocates a word and stuffed
pointers to the car and cdr of a list.

7

Cons Allocates Cells (2)

 The empty list () is a special pointer.

 Think of () as a special address that is not
used for anything else.

 (cons ‘it (cons ‘seems (cons ‘that ‘())))

seemsit that

()

8

Cons Allocates Cells (3)

 null? : compares its argument for equality
with ().

 car : returns the pointer in the first field.

 cdr : returns the pointer in the second field.

seemsit that

()

(car ‘(it seems that)) (cdr ‘(it seems that))

9

How to Build lists

 Cons operation builds
 (cons a x) create a value with head a and tail x

 Alternative “dotted” notation for (cons a x) is (a . x)

 More precisely, a cons operation builds a pair from its
operands.

 The name ‘list’ is reserved for a chain of pairs ending
in an empty list.
 Repeated application of cdr eventually results in the empty

list ().

 (cons ‘it (cons ‘seems (cons ‘that ‘())))

 = ‘(it . (seems . (that . ()))) = (list ‘it ‘seems ‘that)
 Result : (it seems that)

 (that . ()) = (that)

 (seems . (that . ())) = (seems that)

Practice for Scheme

To define cadr function
 (define (square x) (* x x))

(square 5) ;apply function square to 5
 Predicates

 null? ; empty list?
 Cond

 (cond (P1 E1) ; if P1 then E1
… ; …

(Pk Ek) ; else if Pk then Ek
(else Ek+1)) ; else Ek+1

 (cadr ‘(2 4 6 1)) : 4

(define (cadr List)
(cond ((null? List) (display 'error))

((null? (cdr List)) (display 'error))
(else (car (cdr List)))))

cadr

 (cadr ‘(2 4 6 1)) : 4

(define (cadr List)
(cond ((null? List) (display 'error))

((null? (cdr List)) (display 'error))
(else (car (cdr List)))))

Find the second element in
a list

 (second ‘(2 4 6 1)) : 4

(define (second List)
(cond ((null? List) (display 'error))

((null? (cdr List)) (display 'error))
(else (cadr List))))

Find the last element in a
list

 (last '(2 4 6 1)) : 1

(define (last List)
(cond ((null? List) (display 'error))

((null? (cdr List)) (car List))
(else (last (cdr List)))))

Find the length of a list

 (length ‘(2 4 6 1)) : 4

(define (length List)
(if (null? List) 0
(+ 1 (length (cdr List)))))

Find the sum of elements
in a list

 (sum ‘(2 4 6 1)) : 13

(define (sum List)
(if (null? List) 0

(+ (car List) (sum (cdr List)))))

Find the maximum value
in a list

 (maximum ‘(2 4 6 1)) : 6

(define (maximum List)
(cond ((null? List) (display ‘error))

((null? (cdr List)) (car List))
(else (max (car List)
(maximum (cdr List))))))

(define (max x y)
(if (> x y) x y))

Find the minimum value in
a list

 (minimum ‘(2 4 6 1)) : 1

(define (minimum List)
(cond ((null? List) (display ‘error))

((null? (cdr List)) (car List))
(else (min (car List)
(minimum (cdr List))))))

(define (min x y)
(if (< x y) x y))

	1-1_Scheme(1)
	1-2_Scheme(2)

