Two-dimensional materials and applications

2. Properties of Graphene

Overview of Graphene

Properties of Graphene

1 nm

Exceptional Properties:

- Zero-bandgap Semiconductor with mobility up to 120,000 cm²/V-s at RT [b]
- Low Mass
- Stiff: Young's modulus = 1TPa
- Strong: elastic strain of 25 %

Ease of Integration:

- Wafer-scale CVD graphene quality equivalent to pristine [c-e]
- CMOS-friendly transfer techniques available

[e] N. Petrone, et al., Nano Letters, 2012

[a] P.Y. Huang, et al., Nature, 2011
[b] K.I. Bolotin, et al., Solid State Communications, 2008
[c] S. Bae, et al., Nature Nano, 2010
[d] G. Lee, et al., Submitted, 2013

Electronic Structure of Graphene

Crystal structure of graphene

Band structure of graphene

Electrical Transport in Graphene

Carrier mobility

15,000 cm²V⁻¹s⁻¹ to 200,000 cm²V⁻¹s⁻¹ at a carrier density of 10^{12} cm⁻² and at room temperature

Resistivity

 $10^{-6} \Omega \cdot cm$ (< resistivity of silver)

Measurement of carrier mobility

1 K 0 T Β, Slope $=\frac{d(1/\rho)}{d(1/\rho)}$ ρ (kΩ) dV_{a} V_g induces surface charge density (*n*) Hall mobility 3 $\epsilon_0\epsilon$: permittivity of SiO_2 -30 0 $n = \frac{\epsilon_0 \epsilon V_g}{te}$ $\frac{\epsilon_0 \epsilon}{t}$ $\frac{\epsilon_0 \epsilon}{t}$ $\frac{\epsilon_0 \epsilon}{t}$ $\frac{\epsilon_0 \epsilon}{t}$ $\frac{\epsilon_0 \epsilon}{t}$ $\frac{\epsilon_0 \epsilon}{t}$ $V_{\rm q}$ (V) $V_H = \frac{\mathbb{B}}{net}$ e : electron charge Field effect mobility Hall coefficient $(R_H) = \frac{1}{ne}$ $\rho = \frac{W}{L} \frac{V_{23}}{I_{14}}$ $\mu_{FE} = \frac{1}{C} \frac{d\sigma}{dV_a} = \frac{1}{C} \frac{d(1/\rho)}{dV_a}$ $\mu_{Hal} = \frac{1}{ne\rho} = \frac{R_H}{\rho}$ at specific n $\mu = -$ A. K. Geim and K. S. Novoselov. Nature Mater. (2007) J.H. Chen, et al. Nature Nanotechnol. (2008)

Hal bar and error

Geometrical error sources in the Hall bar arrangement are caused by deviations of the actual measurement geometry from the ideal of a rectangular solid with constant current density and point-like voltage contacts.

The first geometrical consideration with the Hall bar is the tendency of the end contacts to short out the Hall voltage. If the aspect ratio of sample length to width $l \not w = 3$, then this error is less than 1%.¹⁵ Therefore, it's important $l / w \ge 3$.

The finite size of the contacts affects both the current density and electric potential in their vicinity, and may lead to fairly large errors. The errors are larger for a simple rectangular Hall bar than for one in which the contacts are placed at the end of arms.

For a simple rectangle, the error in the Hall mobility can be approximated (when $\mu B << 1)$ by 16

$$\frac{\Delta \mu_H}{\mu_H} = 1 - (1 - e^{-\pi l/2w})(1 - 2c / \pi w).$$

Here, $\Delta \mu_H$ is the amount μ_H must *increase* to obtain a true value. If l/w = 3, and c/w = 0.2, then $\Delta \mu_H / \mu_H = 0.13$, which is certainly a significant error.

Reduce the contact-size error to acceptable levels by placing contacts at the ends of contact arms.¹⁷ The following aspect ratios yield small deviations from the ideal $p \approx c, c \leq w/3, l \geq 4w$

Figure A-8 Hall Bar With Contact Arms

electrical resistivity (ρ)

$$\rho = R \frac{A}{\ell},$$

Resistivity (ρ) has SI units of Ω ·m or Ω ·cm.

R: electrical resistance of a uniform specimen of the material (measured in Ω)

l : length of the piece of material (measured in m)

A: cross-sectional area of the specimen (measured in m²).

Conductivity (σ)

 $\sigma =$

$$\frac{1}{\rho}$$
. Conductivity has SI units of S/m.

Sheet resistance (R_s)

$$R = \rho \frac{L}{A} = \rho \frac{L}{Wt}$$
$$R = \frac{\rho}{t} \frac{L}{W} = R_s \frac{L}{W}$$

 $\rho = R_s \cdot t$

If the film thickness is known, the bulk resistivity (in $\Omega \cdot cm$) can be calculated by multiplying the sheet resistance by the film thickness in cm. Sheet resistance has SI units of $\Omega/\Box = \Omega$.

Fundamentals of 2D field-effect transistors

water tap

MOSFET	Тар	Common features			
Electron	Water	The substance which flows			
Sou	urce	Where electron(water) comes from			
Dra	ain	Where electron(water) comes out			
V_{ds}	Pressure of water	Driving force, Always applied			
V _g Valve		Switching, Variable, ex) n-type FET: turn off at V _g < 0, turn on at V _g > 0			

Two-probe measurement

A. Kis et al. Nature Nanotechnol. (2011)

Effect of contact resistance

$$\begin{split} R_{total} &= V_d / I_d \\ R_{total} &= 2R_{contact} + R_{channel} \\ If R_{contact} &<< R_{channel}, R_{channel} \sim V_d / I_d \\ If R_{contact} &> R_{channel}, R_{contact} \sim V_d / I_d \text{ when } L = 0 \\ Because R_{channel} = R_{sheet} \times (L / W) \end{split}$$

Transmission Line Method / Transfer Length Method (TLM)

 L_T : transfer length or effective contact length

(For validity of TLM, $L_T \ll L_C$)

TLM device of graphene

Nat. Nanotechnol. 6, 179 (2011)

$$n = \frac{\epsilon_0 \epsilon V_g}{te} \qquad n = a \times (V_{\rm G} - V_{\rm Dirac})$$

For 300 nm SiO_2 ;

 $a = 7.2 \times 10^{10} (\text{cm}^{-2}\text{V}^{-2})$

Improving R_c

Contacting Material	Stack layers (thickness in nm)	Deposition technique	Graphene	Measurement technique	Contact resistivity (Ωμm)	Notes	Contacting Material	Stack layers (thickness in nm)	Deposition technique	Graphene	Measurement technique	Contact resistivity (Ωμm)	Notes
Ag	Ag Ag/Au (100/10)	E-Beam	CVD Exfoliated	TLM TLM	1400 2000	Rapid thermal annealing	Pt	Pt/Au (25/50)	Evaporator	CVD	TLM	1100	
Au – Gold	Au Au (20)		CVD CVD	TLM 2p/4p	630 340	Rapid thermal annealing	Ti – Titanium	Ti/Al (10/70) Ti/Au (10/20)	E-Beam Th. Evaporator	Exfoliated Exfoliated	2p/4p CBK	<250 10 ³ ÷ 10 ⁶	
	Au	E-Beam	CVD	TLM	1200	Metal on Bottom		Ti/Au (10/25)	E-Beam	Exfoliated	TLM	$600 \div 1000$	
	Au (20) grains	Th. Evaporator	Extoliated	TLM	130	Grains on whole surface		Ti/Au (10/40) Ti/Au (100/10)	Evaporator E-Beam	Exfoliated Exfoliated	2p/4p TLM	<400 800	
	Au (250)	Evaporator	CVD	TLM	456	Patterned holes in graphene/edge contact		Ti/Au (20/80)	E-Beam	CVD	TLM 2a/4a	568	UV-ozone treatment
	Au (81)	Evaporator	CVD	TLM	500	gruphene cuge contact		Ti/Au (5/50) Ti/Au (5/50)	E-Beam E-Beam	CVD	2р/4р тт м	7500	Doning by PVP/PMF
	Au/Cu/Au (20/200/60)	Th. Evaporator	Exfoliated	TLM	50	Resist free fabrication process		Ti/A:: (0/90)	E Beam	Exfediated	20/40	2000	insulator
Со	Co/Au (100/10)	E-Beam	Exfoliated	TLM	300	10		Ti/Au (9/80)	Sputtering	Exfoliated	2p/4p	104	
Cr – Chromium	Cr/Au (10/20)	Th	Exfoliated	CBK	$10^{3} \div 10^{6}$			Ti/Au(70/70)	Sputtering	Exfoliated	TLM	3 ·10 ⁴	
er en onnan	cifila (10fb0)	Evaporator	Lationated	con	10 . 10			Ti/Pd/Au (0.5/20/30)	E-Beam	CVD	2p/4p	750	
	Cr/Au (100/10)	E-Beam	Exfoliated	TLM	3000			Ti/Pd/Au (0.5/30/30)	E-Beam	CVD	2p/4p	~320	Double contact
	Cr/Au (5/150)	Sputtering	Exfoliated	2p/4p	5000			Ti/Pd/Au (0.5/30/30)	E-Beam F-Beam	CVD	2p/4p 2p/4p	~325	Rottom contact
	Cr/Pd (0.5/40)	Evaporator	Exfoliated	HTA	350 ÷ 750	Des aller and the state and the		Ti/Pd/Au (1.5/45/15)	E-Beam	CVD	2p/4p 2p/4p	200 ÷ 500	Al can layer
	Cr/Pa/Au (1/15/50)	E-Beam	CVD	1LM	270	edge contact		Ti/Pd/Au (1.5/45/15)	E-Beam	CVD	2p/4p	2000 ÷ 2500	in cap age.
	Cr/Pd/Au (1/15/60)	E-Beam	Exfoliated	TLM	100	Edge contact to		Ti/Pt/Au	E-Beam	6 H-SiC	TLM	$20 \div 80$	
						encapsulated graphene in BN	Fe	Fe/Au (100/10)	E-Beam	Exfoliated	TLM	2000	
Cu – Copper	Cu		CVD	тім	8800		Nb	Nb/Au (15/25)	Sputtering	Exfoliated	TLM	1.9-104	
en copper	Cu		CVD	TLM	2900	Rapid thermal annealing		Nb/Au (25/75)	Sputtering	Exfoliated	2p/4p	2.4.104	
	Cu (35)	Th. Evaporator Th. Evaporator	Exfoliated	I TLM	1160	As prepared	Ni – Nichel	Ni (100)	Th. Evaporator	Exfoliated	2p/4p	100	
	Cu (35)		Exfoliated	TLM	620	Annealed at 260 °C		Ni (25)	Th.	Exfoliated	СВК	500	
	Cu (50)	E-Beam	6H-SiC	2p/4p	125	Cuts patterned		Ni (60)	E-Beam	Exfoliated	TLM	2500	
	Cu/Au (5/50)	E-Beam	CVD	TLM	92	Doping by PVP/PMF		Ni (75)	Evaporator	CVD	TLM	2200	
						insulator		Ni/Au (100/10)	E-Beam	Exfoliated	TLM	300	
								Ni/Au (25/50)	Evaporator	CVD	TLM	400	
								Ni/Au (30/20)	E-Beam	CVD	2p/4p	2100	
								Ni/Au(70/50) Ni/Cu/Au (20/200/60)	Th	Exfoliated	2n/4n	1000	
								nijedina (20/200/00)	Evaporator	Enformed	~P/ 4P	1000	
							Pd – Palladium	Pd		CVD	TLM	570	Rapid thermal annealing
								Pd (50)	E-Beam	6H-SiC	2p/4p	457	Cuts patterned
								Pd (75) Pd/Au (100/10)	Evaporator E. Roam	Exfoliated	TIM	970	
								Pd/Au (20/30)	Th.	CVD	2p/4p	200 ÷ 400	Antidote arrays under
								1 april (20130)	Evaporator		26/3F	200 . 100	metal electrode
								Pd/Au (20/60)	E-Beam	CVD	2p/4p	88	Laser cleaning of contact area
								Pd/Au (25/25)		Exfoliated	TLM	230÷900	Bias dependent
								Pd/Au (30/50) Pd/Au (5/50)	E-Beam E-Beam	Exfoliated CVD	TLM TLM	69 122	Doping by PVP/PMF

Prog. Surf. Sci. 92, 143-175 (2017)

insulator

Is Graphene Contacting with Metal Still Graphene?

<u>K. Nagashio</u>*, T. Moriyama, R. Ifuku, T. Yamashita, T. Nishimura and A. Toriumi Department of Materials Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan *nagashio@material.t.u-tokyo.ac.jp

Abstract:

This paper focuses both electrical transport and Raman characteristics of graphene underneath the metal. We have found that there is only a weak interaction between metal and graphene, while graphene is significantly affected by the substrate underneath graphene.

to the Fermi level to induce carriers. The most striking consequence in this work is that Ni does not affect graphene characteristics, which means that the band structure alternation by defect formation and π -d coupling is negligibly small. The linear dispersion in graphene is obviously maintained. Main thing that takes place at the metal/graphene interface is the charge transfer, although the degree of the band alternation by the graphene/metal interaction should be studied quantitatively.

On the other hand, the band calculation [8] and experimental characterization of graphene grown on Ni(111) [9] suggest that the linear dispersion is strongly altered by the π -d coupling for graphene contacting transition metals.

shift, which implies that the bonding interaction at metal/graphene is unexpectedly weak, and (ii) the doping type in graphene is affected by "mixed" interactions with metal and substrate. These findings are crucial to control FET properties.

In search of quantum-limited contact resistance: understanding the intrinsic and extrinsic effects on the graphene-metal interface

Anindya Nath^{1,2}, Marc Currie², Anthony K Boyd², Virginia D Wheeler², Andrew D Koehler², Marko J Tadjer², Zachary R Robinson³, Karthik Sridhara⁴, Sandra C Hernandez², James A Wollmershauser², Jeremy T Robinson², Rachael L Myers-Ward², Mulpuri V Rao¹ and D Kurt Gaskill²

¹ George Mason University, 4400 University Dr Fairfax, Virginia, VA 22030, USA

- ² US Naval Research Laboratory, 4555 Overlook Ave., SW, Washington, DC 20375, USA
- ³ The College at Brockport, SUNY, 350 New Campus Dr, Brockport, NY 14420, USA
- ⁴ Texas A&M University, 401 Joe Routt Blvd, College Station, TX 77843, USA

probability, as exemplified by the Landauer–Büttiker model, which is dependent on the presence or absence of end-contacts and dopant/work-function mediated conduction. The model predicts the need for both end-contacts and a clean graphene–metal interface as necessary conditions to approach quantum limited contact resistance.

2D Mater. 3 025013 (2016)

Doping Graphene with Metal Contacts

G. Giovannetti,^{1,2} P. A. Khomyakov,² G. Brocks,² V. M. Karpan,² J. van den Brink,^{1,3} and P. J. Kelly² ¹Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands ²Faculty of Science and Technology and MESA⁺ Institute for Nanotechnology, University of Twente,

P.O. Box 217, 7500 AE Enschede, The Netherlands

³Institute for Molecules and Materials, Radboud Universiteit, Nijmegen, The Netherlands (Received 15 February 2008; published 10 July 2008)

Making devices with graphene necessarily involves making contacts with metals. We use density functional theory to study how graphene is doped by adsorption on metal substrates and find that weak bonding on Al, Ag, Cu, Au, and Pt, while preserving its unique electronic structure, can still shift the Fermi level with respect to the conical point by -0.5 eV. At equilibrium separations, the crossover from *p*-type to *n*-type doping occurs for a metal work function of -5.4 eV, a value much larger than the graphene work function of 4.5 eV. The numerical results for the Fermi level shift in graphene are described

FIG. 5 (color online). Fermi level shifts $\Delta E_{\rm E}(d)$ as a function of the graphene-metal surface distance. The dots give the calculated DFT results, the solid lines give the results obtained from the model, Eq. (1) [23]. PRL 101, 026803 (2008)

Formation of "Good" Contacts

Metal types

Edge contacts

 Short distance of metal and interfacial atom (O) induces overlapped orbitals, which promote transport of charges at contacts

Formation of "Good" Contacts

Combination of edge & top contacts

Acs Nano 7, 3661–3667 (2013)

Laser nano-welding

ACS Nano 10, 1, 1042-1049 (2016)

- Selective etching with atomic precision
- Atomic scale etch masks and etch stops

J.Y. Son, J.Y. Kwon, <u>G.H. Lee</u>, * A. van der Zande* **Nature Communications** 9, 3988 (2018)

J.Y. Son, J.Y. Kwon, <u>G.H. Lee</u>, * A. van der Zande* **Nature Communications** 9, 3988 (2018)

J.Y. Son, J.Y. Kwon, <u>G.H. Lee</u>, * A. van der Zande* Nature Communications 9, 3988 (2018)

Simulation of charge transfer at interface of metal and graphene

J.Y. Son, J.Y. Kwon, <u>G.H. Lee</u>, * A. van der Zande* Nature Communications 9, 3988 (2018)

3D-integrated Graphene Devices

Multi-stacked GFETs

J.Y. Son, J.Y. Kwon, <u>G.H. Lee</u>, * A. van der Zande* Nature Communications 9, 3988 (2018)

Graphene Via Contact Architecture

Step-by-step fabrication process of via contact

Electrical measurements and TEM analysis

Graphene via contact architecture

Graphene Via Contact Architecture

hBN-encapsulated TMD-FET with via contacts

Vertically integrated CMOS inverter with FG, 1E/FG via contacts

Carrier mobility

: How quickly an electron or hole can move through a metal or semiconductor, when pulled by an electric field.

Drift velocity in an electric field

 $v_d = \mu E$

E : magnitude of the electric field applied to a material

 v_d : magnitude of the electron drift velocity caused by the electric field

 μ : electron mobility

Conductivity

$$\sigma = ne\mu = e(n\mu_e + p\mu_h).$$

 $n \& p_{i}$: number densities of electrons and holes $\mu_{e\&} \mu_{h}$: mobilities of electron and hole

Boltzmann transport equation

$$\frac{df}{dt} = \frac{\mathbf{F}_{\mathbf{t}}}{\hbar} \cdot \nabla_{\mathbf{k}} f(\mathbf{k}) + \mathbf{v} \cdot \nabla_{\mathbf{r}} f(\mathbf{k}) + \frac{\partial t}{\partial t}$$

Scattering Mechanism in Graphene

- (1) Short-range scattering: Lattice defect ~ constant
- (2) Long-range scattering
 - : Scattering form ripple, charged impurity (depending on carrier density)

At small V_{g}

short range scattering dominates.

slope of linear curve proportional to carrier mobility (high $k \rightarrow$ reduced short range scattering)

At high V_{g}

long range scattering dominates.

constant conductivity (as n increases, μ decreases.) (high k \rightarrow increased long range scattering)

Fig. 1. This shows the dependence of conductivity on substrate dielectric constant κ . Filled blue circles show experimental data of Ref. [2]. Solid, dashed and broken lines show theoretical results for $\kappa = 3.9, 10, 80$, respectively. For large κ short-range scattering dominates while for small κ Coulomb scattering dominates. The inset shows that for a fixed gate voltage, the conductivity has a non-monotonic dependence on κ which is a consequence of the competition between short-range and long-range scattering.

By doping (substitution of impurities)

long-range scattering is more dominant. Increased doping reduces mobility. (smaller slope)

S. Adam et al. Physica E (2008); J. -H. Chen et al. New J. Phys. (2008)

Transport and scattering mechanism for 2D materials

- Acoustic & optical phonon scattering
- Coulomb scattering (ionized impurities)
- Surface interface phonon scattering
- Roughness scattering

Matthiessen's rule

Temperature dependency of carrier mobility in 2D materials

F. Xia et al. Nature Nanotechnol. (2011)

S. Kim et al. Nature Commun. (2012)

Temperature dependence of mobility								
	Si	Ge	GaAs					
Electrons	∝T ^{−2.4}	\propto T ^{-1.7}	\propto T ^{-1.0}					
Holes	∝T ^{-2.2}	∝T ^{−2.3}	∝T ^{-2.1}					

- The temperature dependencies of these scattering mechanism can be determined by $\mu \sim T^{-\gamma}$
- At lower temperatures, ionized impurity scattering dominates, while at higher temperatures, phonon scattering dominates.

Doping issue in 2D Materials

PP

For highly conductive graphene, doping is required. However, doping induces degradation in mobility.

Doping of graphene by charge transfer

Remote doping of TMDs

Nature Electronics (2021)

Transparency of Graphene

@100

BREVIA

Fine Structure Constant Defines Visual Transparency of Graphene

R. R. Nair,¹ P. Blake,¹ A. N. Grigorenko,¹ K. S. Novoselov,¹ T. J. Booth,¹ T. Stauber,² N. M. R. Peres.² A. K. Geim¹

where are few phenomena in condensed matter physics that are defined only by the fundamental constants and do not

depend on material parameters. Examples are the resistivity quantum, h/e^2 , that appears in a variety of transport experiments, including the quantum Hall effect and universal conductance fluctuations, and the magnetic flux quantum, h/2e, playing an important role in the physics of superconductivity (h is Planck's constant and e the electron charge). By and large it requires sonhisticated facilities and special measurement conditions to observe any of these phenomena. In contrast, we show that the opacity of suspended graphene (1) is defined solely by the fine structure constant, $\alpha = e^2/\hbar c \approx$ 1/137 (where c is the speed of light), the parameter that describes coupling between light and relativistic electrons and that is traditionally associated with quantum electrodynamics rather than materials science Despite being only one atom thick. graphene is found to absorb a significant ($\pi \alpha = 2.3\%$) fraction of incident white light, a consequence of graphene's unique electronic structure

It was recently argued (2, 3) that the highfrequency (dynamic) conductivity G for Dirac fermions (1) in graphene should be a universal constant equal to $e^2/4h$ and different from its universal dc conductivity, $4e^2/\pi h$ [however, the experiments do not comply with the prediction for dc conductivity (1)]. The universal G implies (4) that observable quantities such as graphene's optical transmittance T and reflectance R are also universal and given by $T \equiv (1 + 2\pi G/c)^{-2} = (1 + c)^{-2}$ $\frac{1}{2}\pi\alpha^{-2}$ and $R \equiv \frac{1}{2}\pi^{2}\alpha^{2}T$ for the normal light incidence. In particular, this yields graphene's opacity $(1 - T) \approx \pi \alpha$ [this expression can also be derived by calculating the absorption of light by two-dimensional Dirac fermions with Fermi's golden rule (5)]. The origin of the optical properties being defined by the fundamental constants lies in the two-dimensional nature and gapless electronic spectrum of graphene and does not directly involve the chirality of its charge carriers (5)

We have studied specially prepared graphene crystals (5) such that they covered submillimeter apertures in a metal scaffold (Fig. 1A inset). Such large one-atom-thick membranes suitable for

Fig. 1. Looking through one-atom-thick crystals. (A) Photograph of a 50-µm aperture partially covered by graphene and its bilayer. The line scan profile shows the intensity of transmitted white light along the yellow line. (Inset) Our sample design: A 20-um-thick metal support structure has several apertures of 20, 30, and 50 um in diameter with graphene crystallites placed over them. (B) Transmittance spectrum of single-layer graphene (open circles). Slightly lower transmittance for $\lambda < 500$ nm is probably due to hydrocarbon contamination (5). The red line is the transmittance $T = (1 + 0.5\pi \alpha)^{-2}$ expected for two-dimensional Dirac fermions, whereas the green curve takes into account a nonlinearity and triangular warping of graphene's electronic spectrum. The gray area indicates the standard error for our measurements (5). (Inset) Transmittance of white light as a function of the number of graphene layers (squares). The dashed lines correspond to an intensity reduction by no with each added layer

> optical studies were previously inaccessible (6). Figure 1A shows an image of one of our samples in transmitted white light. In this case, we have chosen to show an aperture that is only partially covered by suspended graphene so that opacities of different areas can be compared. The line scan across the image qualitatively illustrates changes in the observed light intensity. Further measurements (5) yield graphene's opacity of $2.3 \pm 0.1\%$ and negligible reflectance (<0,1%), whereas optical spectroscopy shows that the opacity is practically independent of wavelength, λ (Fig. 1B) (5). The opacity is found to increase with membranes' thickness so that each graphene layer adds another 2.3% (Fig. 1B inset). Our measurements also yield a universal dynamic conductivity $G = (1.01 \pm 0.04)$ $e^{2}/4h$ over the visible frequencies range (5), that is, the behavior expected for ideal Dirac fermions.

The agreement between the experiment and of Physics, University of Minho, P-4710-057 Braga, Portugal theory is striking because it was believed that the *To whom correspondence should be addressed. E-mail universality could hold only for low energies geim@man.ac.uk

6 JUNE 2008 VOL 320 SCIENCE www.sciencemag.org

 $(E \le 1 \text{ eV})$, beyond which the electronic spectrum of graphene becomes strongly warped and nonlinear and the approximation of Dirac fermions breaks down. However, our calculations (5) show that finite-E corrections are surprisingly small (a few %) even for visible light. Because of these corrections, a metrological accuracy for a would be difficult to achieve, but it is remarkable that the fine structure constant can so directly be assessed practically by the naked eye.

- References and Notes 1. A. K. Geim, K. S. Novoselov, Nat. Mater. 6, 183 (2007). 2. T. Ando, Y. Zheng, H. Suzuura, J. Phys. Soc. Jpn. 71,
- 1318 (2002). 3. V. P. Gusynin, S. G. Sharapov, J. P. Carbotte, Phys. Rev.

number of layers

600

4. A. B. Kuzmenko, E. van Heumen, F. Carbone D. van der Marel, Phys. Rev. Lett. 100, 117401 (2008)

. J. S. Bunch et al., Science 315, 490 (2007).

www.sciencemag.org/cgi/content/full/1156965/DC1

25 February 2008: accented 26 March 2008

10.1126/science.1156965 Include this information when citing this paper

¹Manchester Centre for Mesoscience and Nanotechnolog

University of Manchester, M13 9PL Manchester, UK. ²Departmen

Office of Naval Research.

Supporting Online Material

Published online 3 April 2008:

Materials and Methods

SOM Text

Figs. S1 to S5

Materials and methods are available on Science Online

. We are grateful to A. Kuzmenko, A. Castro Neto. P. Kim

and L Eaves for illuminating discussions. Supported by Engineering and Physical Sciences Research Council (UK)

the Royal Society, European Science Foundation, and

2 3 4 4

700

2.3%

gra

The opacity of suspended graphene is defined solely by the fine structure constant. $\alpha = e^2/hc = 1/137$ (where c is the speed of light), the parameter that describes coupling between light and relativistic electrons and that is traditionally associated with quantum electrodynamics rather than materials science. Despite being only one atom thick, graphene is found to absorb a significant ($\pi \alpha$ = 2.3%) fraction of incident white light, a consequence of graphene's unique electronic structure.

0 -0

bilaver

R. R. Nair et al. Science (2008) C. M. Weber et al. Small (2009)

Interband Absorption in Graphene

K. F. Mak Solid State Commun. 152, 1341-1349 (2012)

Optical Properties of Graphene

Graphene quantum dots

Fabrication

Top-down method : nanolithography, acidic oxidation, hydrothermal, etc.

Bottom-up method : stepwise solution chemistry, microwave-assisted, etc.

GQD size : 3-20nm (<5L)

Shape

: circular, elliptical, triangular, quadrate, hexagonal

Surface group : Modification of optical structure

Graphene Quantum Dots (GQDs)

• PL control of GQDs by adjusting size and adding functional groups at edges.

Mechanical Properties of Graphene

Measurement of stiffness and strength of graphene

C. Lee et al. Science (2008)

Mechanical Properties of Graphene Grain Boundary

Structure of CVD Graphene

P. Y. Huang et al, Nature (2011)

Strength Measurement of Grain Boundary

Growth Control of Graphene

- Large Grain Graphene (LG) -

- Pressure: <50 mTorr
- Flow rate: 1 sccm Methane
- Enclosed copper foil (by Ruoff group)
- \rightarrow single-grain graphene with 100-150 μm

Sample Preparation for Nano-indentation

Dry Transfer Process

Nano-indentation

nm +20 2000-0 Semi-empirical relationship 1500-1µm 1µm $F \approx \sigma_0^{2D} (\pi a) \left(\frac{\delta}{a}\right) + E^{2D} (q^3 a) \left(\frac{\delta}{a}\right)^3$ Load (nN) -20 1000covered σ_0^{2D} = 2D pre-tension (N m⁻¹) E^{2D} = 2D stiffness (N m⁻¹) 500 -Experiment 0 - Fitting un-covered 0 80 60 20 40 100 0 3µm Indentation depth (nm) hole

AFM and Nanoindenter

Statistical Analyses of Mechanical Properties

G.H. Lee, J. Hone Science (2013)

Non-Linear Elasticity of Graphene

Large-grain graphene sheet without grain boundaries is as strong as pristine graphene. Furthermore, polycrystalline graphene with grain boundaries can also act as a large-area ultrastrong material.

<u>G.H. Lee</u>, J. Hone *Science* (2013)

Strength of Grain Boundary

Direct Indentation on Grain Boundary

Simulation

Realistic

G.H. Lee, J. Hone Science (2013)

Is Graphene Practically Strong?

"It would take an elephant, balanced on a pencil, to break through a sheet of graphene the thickness of Saran Wrap."

Graphene Bulletproof vest

Graphene has 8~12 times higher specific penetration energy than steel.

J. H. Lee et al. Science (2014)

Mechanical Properties of Graphene

Fatigue test

Elastic straining test

Nature Comm. 11, 284 (2020)

Diamene

Nanotechnology 13 (2), 133–138. (2017)

9000000000000 900000000000

Nature Nanotechnology 15, 59–66 (2020)

Chemical and Bio Properties of Graphene

3D structure

Nature Nanotechnology 14, 107–119 (2019)

Chemical and Bio Properties of Graphene

Bio application

Nano Today 26, 57–97 (2019)

Chemical and Bio Properties of Graphene

3D printing

Communications Chemistry 3, 8 (2020)

Nano Today 26, 57–97 (2019)