
1.4. INTRODUCTION TO LOADS 53

1.4.1 Root shear load

The vertical, in-plane, and radial root shear are as follows

sz =

∫ R

e

[
dFz

dr
−m(r − e)β̈

]
dr

sx =

∫ R

e

[
dFx

dr

]
dr

sr =

∫ R

e

[
mΩ2r − β

dFr

dr

]
dr

1.4.2 Root bending load

Like in the case of root shears, the root bending loads are obtained by integrating the moments
generated by the sectional forces about the root. The flap bending moment nf is as follows. Recall,
that the same expression was derived in equation (1.19).

nf =

∫ R

e
(r − e)dFz −

∫ R

e
(mdr)Ω2r(r − e)β −

∫ R

e
m(r − e)2β̈dr

= kβ(β − βp)

(1.36)

Now use the non-dimensional form of the flap frequency as given in equation (1.23) to replace kβ
in terms of the flap frequency νβ.

nf = kβ(β − βp)

=

(
ν2β − 1− 3

2

e

R

)
IβΩ

2(β − βp)

=
(
ν2β − 1

)
IβΩ

2(β − βp) for hinge offset e/R = 0

=
(
ν2β − 1

)
IβΩ

2β for e/R = 0, and precone βp = 0

(1.37)

Thus, the flap bending moment at the root is related to the flap frequency, and flap dynamics.
Similarly, later we shall see that the lag and torsion moments depend on lag and torsion frequencies,
and lag and torsion dynamics. Here, we have considered only the flap motion. The lag and torsion
moments then simply become

nl =

∫ R

e

[
(r − e)

dFx

dr

]
dr (1.38)

nt =

∫ R

e

[
dMx

dr

]
dr (1.39)

where dMx is the nose-up aerodynamic pitching moment acting on the airfoils over each section of
length dr. dMx is about the elastic axis, which is generally close to quarter-chord.

1.4.3 Rotating frame hub loads

The rotating frame hub loads are obtained by simply transfering the root loads to the hub. By hub
we mean the center of rotation, i.e. the rotor shaft axis. Note that in the case of zero hinge offset,
e/R = 0, then the root loads are directly the rotating frame hub loads.

fx = sx

fy = sr

fz = sz

mx = nf

my = nt

mz = −nl

(1.40)
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For a non-zero hinge offset

fx = sx

fy = sr

fz = sz

mx = nf + esz

my = nt

mz = −nl − esx

(1.41)

In the case of non-zero hinge offset, mx and mz can be obtained directly by integrating the moments
generated by the blade forces about the hub, instead of about the hinge.

It is important to note that the rotating frame hub loads are associated with each blade. At
any instant of time, each blade produces six rotating frame hub loads. For each blade, they act
in three directions along an axis system stuck to its root. This local axis system rotates with the
blade. Thus, before the contribution from all blades at the hub can be added up, the rotating frame
loads from each blade must be resolved into three fixed directions which do not rotate with any of
the blades. This is called a fixed frame.

1.4.4 Fixed frame hub loads

The fixed frame hub loads are often simply called the hub loads. They are obtained from the
rotating frame loads by the following two steps.

1. Resolve the rotating frame loads of each blade in a fixed frame.

2. Sum the fixed frame loads from all Nb blades.

Let m = 1, 2, ...Nb be the blade number. ψm be the azimuthal location of each blade m. Then we
have

Fx =

Nb∑
m=1

(fy cosψm + fx sinψm)

Fy =

Nb∑
m=1

(fy sinψm − fx cosψm)

Fz =

Nb∑
m=1

fz

Mx =

Nb∑
m=1

(mx sinψm +my cosψm)

My =

Nb∑
m=1

(−mx cosψm +my sinψm)

Mz =

Nb∑
m=1

mz

(1.42)

In general fx, fy, fz and mx,my,mz contain all harmonics 1, 2, 3...∞/rev.

Step 1 redistributes the magnitudes of individual harmonics, but retains all harmonics. For
example in the calculation of Fx, the fy sinψ term would re-distribute a steady fy component into
a 1/rev harmonic, a 1/rev fy component into 0/rev (steady) and 1/rev components. In general,
a p/rev component in the rotating frame loads can, when resolved in a fixed frame, give rise to
p ± 1/rev components. Fz, and Mz are exceptions. Here fz, and mz are not multiplied with sine
or cosine components. Thus p/rev loads remain p/rev loads when resolved in a fixed frame.
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Step2, i.e. the summation over all blades, filters out all non-pNb/rev harmonics. For example
in the case of a four bladed rotor, Nb = 4, the fixed frame hub loads contain only 0, 4, 8, 12, .../rev
harmonics. The Nb/rev harmonic is called the blade passage frequency. Thus the fixed frame hub
loads contain only integral multiples of the blade passage frequency. Consider for example

fz(ψ) = a0 + a1 sinψ + a2 sin 2ψ + a3 sin 3ψ + a4 sin 4ψ

Fz(ψ) = fz(ψ1) + fz(ψ2) + fz(ψ3) + fz(ψ4)

= fz(ψ) + fz(ψ + 90◦) + fz(ψ + 180◦) + fz(ψ4 + 270◦)
= 4a0 + 4a4 sin 4ψ

Note that the assumption here is that all blades have identical root loads, only shifted in phase.
In case the blades are dissimilar this assumption does not hold. The hub loads in that case transmit
all harmonics. Such is the case for damaged or dissimilar rotors. The goal is to make all the blades
identical.

The pNb/rev harmonics of the hub loads, e.g. the 4a4 sin 4ψ component, create enormous
vibration in the fuselage. The steady component, e.g. the 4a0 component is used to trim the
helicopter. The steady component is the average force generated by the rotor. In this case 4a0 was
the rotor thrust. The steady components of Fx, Fy, Fz are often denoted as H,Y, T , the rotor drag,
side force, and thrust. The steady components of Mx and My are denoted as MX and MY , the
roll-left, and pitch-up moments. The steady component of −Mz is denoted by Q, the rotor torque.

The steady components can be more easily obtained by averaging the rotating frame loads over
the rotor disk, and then multiplying by Nb to account for all blades. Using the same example as
above, the thrust can be calculated as

T =
Nb

2π

∫ 2π

0
fz(ψ)dψ

=
4

2π

∫ 2π

0
a0 + a1 sinψ + a2 sin 2ψ + a3 sin 3ψ + a4 sin 4ψ

=
4

2π
2πa0

= 4a0

Thus in general we have the steady rotor forces H,Y, T , and moments MX ,MY , Q as follows.
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Rotor Thrust T:

T =
Nb

2π

∫ 2π

0
fzdψ

=
Nb

2π

∫ 2π

0
szdψ

=
Nb

2π

∫ 2π

0

∫ R

e

[
dFz

dr
−m(r − e)β̈

]
drdψ

=
Nb

2π

∫ 2π

0

∫ R

e
dFzdψ

(1.43)

This is because β̈ cannot have a steady component, and all harmonics integrate to zero over the
azimuth.

Rotor Drag H:

H =
Nb

2π

∫ 2π

0
(fy cosψ + fx sinψ)dψ

=
Nb

2π

∫ 2π

0
(sr cosψ + sx sinψ)dψ

=
Nb

2π

∫ 2π

0

∫ R

e
(dFr cosψ + dFx sinψ)dψ

(1.44)

where the centrifugal component of sr integrates to zero.

Rotor Side Force Y:

Y =
Nb

2π

∫ 2π

0
(fy sinψ − fx cosψ)dψ

=
Nb

2π

∫ 2π

0
(sr sinψ − sx cosψ)dψ

=
Nb

2π

∫ 2π

0

∫ R

e
(dFr sinψ − dFx cosψ)dψ

(1.45)

Rotor Torque Q:

Q = −Nb

2π

∫ 2π

0
mzdψ

=
Nb

2π

∫ 2π

0
(nl + esx)dψ

=
Nb

2π

∫ 2π

0

∫ R

e
[(r − e)dFx + edFx] dψ

=
Nb

2π

∫ 2π

0

∫ R

e
rdFxdψ

(1.46)

Rotor Roll Moment Mx: Assume that the torsion moment is zero, i.e. my = nt
∼= 0.

MX =
Nb

2π

∫ 2π

0
mx sinψdψ

=
Nb

2π

∫ 2π

0
(nf + esz) sinψdψ

=
Nb

2π

∫ 2π

0

(
ν2β − 1− 3

2

e

R

)
IβΩ

2(β − βp) sinψdψ +
Nb

2π

∫ 2π

0

∫ R

e
e dFz sinψdψ

(1.47)
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For e = 0 and βp = 0 an useful expression is obtained

MX =
Nb

2π

∫ 2π

0

(
ν2β − 1

)
IβΩ

2β sinψdψ

= Nb

(
ν2β − 1

)
IβΩ

2 1

Nb

∫ 2π

0
β sinψdψ

= Nb

(
ν2β − 1

)
IβΩ

2β1s

(1.48)

In non-dimensional form we have

CMX =
MX

ρA(ΩR)2R
=

σa

2γ

(
ν2β − 1

)
β1s (1.49)

Rotor Pitch Moment My: Assume that the torsion moment is zero, i.e. my = nt
∼= 0.

MY =
Nb

2π

∫ 2π

0
−mx cosψdψ

=
Nb

2π

∫ 2π

0
−(nf + esz) cosψdψ

= −Nb

2π

∫ 2π

0

(
ν2β − 1− 3

2

e

R

)
IβΩ

2(β − βp) cosψdψ − Nb

2π

∫ 2π

0

∫ R

e
e dFz cosψdψ

(1.50)

For e = 0 and βp = 0 an useful expression is obtained

MY = −Nb

2π

∫ 2π

0

(
ν2β − 1

)
IβΩ

2β cosψdψ

= −Nb

(
ν2β − 1

)
IβΩ

2 1

Nb

∫ 2π

0
β cosψdψ

= −Nb

(
ν2β − 1

)
IβΩ

2β1c

(1.51)

In non-dimensional form we have

CMY =
MY

ρA(ΩR)2R
= −σa

2γ

(
ν2β − 1

)
β1c (1.52)

1.5 Rotor planes of reference

There are various physical planes which can be used to describe the rotor motion. Researchers and
engineers use different planes for different purposes. For example, the expressions for inflow derived
earlier were perpendicular to the plane of the disk tilt. This plane is also called the tip path plane
(TPP). The tip of the blades lie in this plane, hence the name. For the purposes of rotor dynamic
analysis, the hub plane (HP) is the most convenient plane. The hub plane is perpendicular to
the rotor shaft. The rotor RPM, Ω, is along the shaft. Recall fig. 6.2. The vertical axis z was
perpendicular to the hub plane. The inflow λ used in the expression for UP was along z, i.e., it was
perpendicular to the hub plane. This inflow must be calculated from the inflow expression derived
using momentum theory earlier by transformation between TPP and HP. In general, it is often
necessary to transform variables from one type of axes system to another.

For hover and vertical flight, the control is the thrust level which is obtained by the collective
pitch setting. There is no variation of pitch or flap angle along the azimuth.

θ(ψ) = θ0 collective
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HP

TPP
β

0

(a)  Simple coning in hover

(b)  Longitudinal disk tilt in forward flight;
      view from the left ψ = 270
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Figure 1.13: Definition of tip path plane (TPP) and hub plane (HP)

β(ψ) = β0 coning

TPP is parallel to HP, see Fig. 1.13(a). Both are perpendicular to the shaft axis. The thrust vector
acts along the shaft and is normal to both planes. In forward flight, the TPP is tilted longitudinally
and laterally. Consider the following flapping motion.

β(ψ) = β0 + β1c cosψ + β1s sinψ
coning longitudinal lateral

TPP tilt TPP tilt

Figures 1.13(b) and (c) show the longitudinal and lateral tilts for positive β1c and β1s. The tilt of
the tip path plane tilts the thrust vector. The longitudinal tilt is forward. The vertical component
of the thrust balances the weight and the horizontal component of the thrust provides a propulsive
force. The lateral tilt is to the left or right depending on the roll moment requirement to trim the
rotor. The transformation between the TPP and HP is obtained by subsequent rotations of the
hub plane by β1c and β1s. If iH , jH , kH and iT , jT , kT are the unit vectors in HP and TPP, we have⎧⎨⎩

iT
jT
kT

⎫⎬⎭ =

⎡⎣ cβ1c 0 sβ1c
−sβ1csβ1s cβ1s sβ1scβ1c
−sβ1ccβ1s −sβ1s cβ1scβ1s

⎤⎦⎧⎨⎩
iH
jH
kH

⎫⎬⎭ ∼=
⎡⎣ 1 0 β1c

0 1 β1s
−β1c −β1s 1

⎤⎦⎧⎨⎩
iH
jH
kH

⎫⎬⎭ (1.53)

It follows for example,

λH = λTPP − μβ1c

HH = HTPP − β1cTT

YH = YTPP − β1sTT

(1.54)
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The flapping motion is controlled by introducing collective and cyclic pitch angles through the
swashplate.

θ(ψ) = θ0 + θ1c cosψ + θ1s sinψ
collective lateral longitudinal

cyclic cyclic

The cyclic pitch angles lie in a plane. This is a plane from which one observes no variation of
cyclic pitch. The longitudinal and lateral tilts of this plane are shown in Figs. 1.14(a) and (b). The

(b)  Longitudinal tilt of no feathering plane
      view from the left ψ = 270

o 

HP

TPP

β
1c

θ
1s

(b)  Lateral tilt of no feathering plane
      view from the left ψ = 0

o 

HP

TPPβ
1s

θ
1c

NFP

NFP

Figure 1.14: Definition of no feathering plane (NFP), tip path plane (TPP) and hub
plane (HP)

transformation between the NFP and HP is obtained by subsequent rotations of the hub plane by
θ1s and θ1c. If iH , jH , kH and iN , jN , kN are the unit vectors in HP and TPP, we have⎧⎨⎩

iN
jN
kN

⎫⎬⎭ =

⎡⎣ cθ1s 0 −sθ1s
sθ1ssθ1c cθ1c sθ1ccθ1s
cθ1csθ1s −sθ1c cθ1ccθ1s

⎤⎦⎧⎨⎩
iH
jH
kH

⎫⎬⎭ ∼=
⎡⎣ 1 0 β1c

0 1 θ1c
θ1s −θ1c 1

⎤⎦⎧⎨⎩
iH
jH
kH

⎫⎬⎭ (1.55)

It follows for example,

λH = λNFP + μθ1c

HH = HNFP + θ1sTT

YH = YNFP − θ1cTT

(1.56)

It is important to keep in mind the reference frame from which the flap and cyclic pitch angles are
measured. From the hub plane, the flap and pitch angles are β1c, β1s and θ1c, θ1s. From the tip
path plane, the flap angles are zero. Similarly, from the no feathering plane, the cyclic pitch angles
are zero. Note that the angle between any two planes remain the same, irrespective of the plane
from which they are measured. For example, the longitudinal tilt angle between NFP and TPP
when measured from the hub plane is (β1c + θ1s), see fig. 1.14(a). The same angle is only β1c when
measured from NFP. However this β1c is different from the β1c measured from the HP, but is equal
to (β1c + θ1s) as measured from the HP. Thus,

(β1c + θ1s)H = (β1c)N = (θ1s)T
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Similarly for the lateral tilt, we have from fig. 1.14(b),

(β1s − θ1c)H = (β1s)N = −(θ1c)T

In addition to TPP, HP, and NFP, another plane can be defined. This is the plane of the swashplate,
called the control plane (CP). See Fig. 1.15. As shown in the figure, if the pitch links are connected

HP

NFPSwashplate CP

longitudinal swashplate tilt
           produces  θ

1s

la
te

ra
l s

w
as

hp
la

te
 ti

lt
   

   
pr

od
uc
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  θ
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(a) side view from  ψ = 0
o

(b) Top view of rotor, swashplate, and   
pitch link connections. Pitch links are 
connected to the swashplate 90

o
 ahead of 

the blade azimuth

Figure 1.15: Definition of control plane (CP)

90o ahead of the blade azimuth, the CP is parallel to the NFP. In addition, the pitch flap coupling
must be zero for this condition to hold. The different rotor reference planes, and their use are
briefly summarized below.

(a) Tip Path Plane (TPP): This is a plane described by blade tips, so that there is no cyclic
variation of flap angles when measured from this plane. This plane is frequently used for wake
studies and acoustic studies. The expressions for inflow derived earlier using moment theory were
with respect to this plane. The TPP is same as the disk tilt plane.

(b) No Feather Plane (NFP): This is a plane from which there is no cyclic variation of
control pitch. This is often used for performance and stability analysis, especially for autogyros.
In Gessow and Myers’ book, this plane is used for performance studies.

(c) Control Plate (CP): It represents the swashplate plane. This plane is important for
servo-actuators.

(d) Hub Plane (HP): This plane is normal to the rotor shaft. Both cyclic flap and cyclic
pitch control angles are non-zero when measured from this plane. This plane is routinely adopted
for the blade dynamic analysis.

Finally, note that the concept of TPP and NFP is applicable only with the assumption of
1/rev variations of flap and cyclic pitch. In reality the flapping motion contains all harmonics, the
2/rev and higher harmonics create ripples over the tip path plane. Similarly in the case of higher
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harmonic control, when the swashplate is used to input higher harmonics of pitch angle, the NFP is
no longer defined. Also note that, in Gessow and Myers book, the pitch and flap angles (including
higher harmonics) are defined as

θ(ψ) = A0 −A1 cosψ −B1 sinψ −A2 cos 2ψ −B2 sin 2ψ . . .

β(ψ) = a0 − a1 cosψ − b1 sinψ − a2 cos 2ψ − b2 sin 2ψ . . .

where

θ0 = A0

θnc = −An

θns = −Bn

β0 = a0

βnc = −an

βns = −bn

1.6 Helicopter Trim

Trimming an helicopter means maintaining equilibrium in space. The steady forces and moments
generated by the rotor should be equal and opposite to those generated by the other parts of the
helicopter, e.g. the tail rotor, the fuselage, the horizontal stabilizer etc. The steady forces and
moments generated by the rotor should remain the same from one rotor revolution to another. In
order to satisfy this condition it is necessary that the blades exhibit periodic motion. Therefore,
helicopter trim involves two steps:

1. Achieving periodic blade response. Also called uncoupled trim.

2. Achieving periodic blade response such that specific targets are met. Also called coupled trim.

A trimmed flight can be achieved under any steady condition – axial flight, ascent and descent
along a coordinated banked turn, and straight and level flight. In this section we consider a straight
and level flight. Coupled trim is broadly classified into two types:

1. Isolated rotor trim.

2. Full aircraft trim.

For an isolated rotor trim, the three rotor control angles are determined based on three specified
targets, e.g. the thrust, and rotor pitch and roll moments. When the targetted moments are zero, it
is called moment trim. Alternatively, the thrust, and the first harmonic flapping motions, β1c and
β1s, are specified. One popular approach is to specify zero first harmonic flapping. This procedure
is widely used in wind tunnel trim. Isolated rotor trim is used in wind-tunnels to achieve specific
flight conditions in a controlled environment.

Full aircraft trim is also called propulsive trim. The only assumption is that sufficient rotor
power is available from the powerplants. The target rotor forces and moments are equal and
opposite to those produced by the rest of the aircraft. The three rotor controls, the tail rotor
collective, and the two aircraft attitude angles, longitudinal and lateral, are determined using the
six vehicle equilibrium equations.

The trim procedures require the calculation of rotor forces and moments.



62 CHAPTER 1. INTRODUCTION TO ROTOR DYNAMICS

1.6.1 Rotor Forces and Moments

The steady rotor forces and moments in the hub plane can be derived using equations 9.83–8.88,
and equations 1.29–1.31. Assume uniform inflow, linear lift curve slope cl = aα, and a constant
drag coefficient cd = cd0. Recall, that in forward flight we have

ut = x+ μ sinψ

up = λ+ x
∗
β +βμ cosψ

β = β0 + β1c cosψ + β1s sinψ

θ = θ0 + xθtw + θ1c cosψ + θ1s sinψ

where

λ = λH = λTPP − μβ1c

and

λTPP = μ tanα+
kfCT

2
√

μ2 + λ2
TPP

α = αs + β1c + θFP

(1.57)

where αs is the longitudinal shaft tilt angle with respect to the horizontal plane, θFP is the flight
path angle positive for climb. The rotor thrust coefficient CT , same in all planes for small angles,
is given by

CT =
T

ρA(ΩR)2

=
σa

2

1

2π

∫ 2π

0

∫ 1

0

(
u2t θ − uput

)
dx dψ

=
σa

2

[
θ0
3

(
1 +

3

2
μ2

)
+

θtw
4

(
1 + μ2

)
+

μ

2
θ1s − λ

2

] (1.58)

If the twist is expressed as θ75 + (x− 3/4)θtw + θ1c cosψ + θ1s sinψ, then we have

CT =
σa

2

[
θ75
3

(
1 +

3

2
μ2

)
+

θtw
8

μ2 +
μ

2
θ1s − λ

2

]
The inflow can be expressed in NFP and TPP as follows.

CT =
σa

2

[
θ0
3

(
1 +

3

2
μ2

)
+

θtw
4

(
1 + μ2

)− λNFP

2

]
(1.59)

CT =
σa

2

[
θ0
3

(
1 +

3

2
μ2

)
+

θtw
4

(
1 + μ2

)− λTPP

2
+

μ

2
(β1c + θ1s)

]
(1.60)

The rotor drag force is given by

CH =
H

ρA(ΩR)2

=
σa

2

1

2π

∫ 2π

0

∫ 1

0

[(
uputθ − u2p +

cdo
a

u2t

)
sinψ − β cosψ

(
u2t θ − uput

)]
dx dψ

=
σa

2

[
θ0

(
−1

3
β1c +

1

2
μλ

)
+ θtw

(
−1

4
β1c +

1

4
μλ

)
+θ1c

(
−1

6
β0 − 1

8
μβ1s

)
+ θ1s

(
−1

4
μβ1c +

1

4
λ

)
+
3

4
λβ1c +

1

6
β0β1s +

1

4
μ
(
β2
0 + β2

1c

)
+

Cdo

a

(μ
2

)]
(1.61)
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Now use

CHTPP
= CH + β1cCT ; λ = λTPP − μβ1c

to obtain

CHTPP
=
σa

2

[
θ0

(
1

2
μλTPP

)
+ θtw

(
1

4
μλTPP

)
+ θ1c

(
−1

6
β0 − 1

8
μβ1s

)
+ θ1s

(
1

4
λTPP

)
+
1

4
λTPPβ1c +

1

6
β0β1s +

1

4
μβ2

0

]
+

σCd0

4
μ

(1.62)

The rotor side force is given by

CY =
Y

ρA(ΩR)2

=
σa

2

1

2π

∫ 2π

0

∫ 1

0

[
−
(
uputθ − u2p +

cdo
a

u2t

)
cosψ − β sinψ

(
u2t θ − uput

)]
dx dψ

=
σa

2

[
−θ0

(
3

4
μβ0 +

1

3
β1s

)
− θtw

(
1

4
β1s +

1

2
μβ0

)
− θ1c

(
1

4
λ+

1

4
μβ1c

)
−θ1s

(
1

6
β0 +

1

2
μβ1s

)
+

3

4
λβ1s +

3

2
μλβ0 − 1

6
β0β1c +

1

4
μβ1cβ1s

]
(1.63)

Now use

CYTPP
= CY + β1sCT ; λ = λTPP − μβ1c

to obtain

CYTPP
=
σa

2

[
−θ0

(
3

4
μβ0

)
− θtw

(
1

2
μβ0

)
− θ1c

(
1

4
λTPP

)
− θ1s

(
1

6
β0

)
+
1

4
λTPPβ1s +

3

2
μλTPPβ0 − 1

6
β0β1c

] (1.64)

The rotor torque is

CQ =
Q

ρA(ΩR)2R

=
σa

2

1

2π

∫ 2π

0

∫ 1

0
x
(
uputθ − u2p +

cdo
a

u2t

)
dx

=
σa

2

[
λ

(
θ0
3

+
θtw
4

+
1

4
μθ1s − 1

2
μβ1c − λ

2

)
+ μ

(
1

6
θ1cβ0 − 1

3
β0β1s

)
+μ2

(
1

16
β1sθ1c +

1

16
β1cθ1s − 1

4
β2
0 −

3

16
β2
1c −

1

16
β2
1s

)
+
1

8
θ1cβ1s − 1

8
θ1sβ1c − 1

8

(
β2
1c + β2

1s

)]
+

σcd0
8

(
1 + μ2

)

(1.65)

Replace λ with λTPP − μβ1c, in the first term of the above expression to produce

CQ =
σa

2

[
λTPP

(
θ0
3

+
θtw
4

− λTPP

2
+

1

2
μβ1c +

1

4
μθ1s

)
−μ

(
1

3
β1cθ0 +

1

4
β1cθtw − 1

6
θ1cβ0 +

1

3
β0β1s

)
+μ2

(
1

16
β1sθ1c +

1

16
β1cθ1s − 1

4
β2
0 −

3

16
β2
1c −

1

16
β2
1s

)
+
1

8
θ1cβ1s − 1

8
θ1sβ1c − 1

8

(
β2
1c + β2

1s

)]
+

σcd0
8

(
1 + μ2

)
(1.66)
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The expressions given above for torque are exact. It is important that all terms are retained for
accurate predictions beyond advance ratio μ = 0.3. The roll and pitch moment coefficients are
derived from equations 1.47 and 1.50 as

CMX =
σa

2γ

(
ν2β − 1− 3

2

e

R

)
β1s +

e

R

σa

2

1

2π

∫ 2π

0

∫ 1

0

(
u2t θ − uput

)
cosψdx dψ

CMY = −σa

2γ

(
ν2β − 1− 3

2

e

R

)
β1c +

e

R

σa

2

1

2π

∫ 2π

0

∫ 1

0

(
u2t θ − uput

)
sinψdx dψ

Assume e/R ∼= 0 for the following simple expressions.

CMX =
σa

2γ

(
ν2β − 1

)
β1s

CMY = −σa

2γ

(
ν2β − 1

)
β1c

(1.67)

1.6.2 Uncoupled trim

Uncoupled trim is a periodic blade response obtained for a given set of rotor control angles. The
forward speed, shaft tilt angle, and flight path angle are prescribed. The following procedure can
be used.

1. Start with λTPP = μ tan(αs + θFP ), β1c = β1s = 0, μ = V/(ΩR).
2. Calculate β0, β1c, and β1s from eqns. 1.33.
3. Update μ = V cos(αs + β1c + θFP )/(ΩR).
4. Calculate CT from eqn. 1.60.
5. Update λTPP from eqn. 1.57.
Iterate steps 2 to 5 till convergence.

Example 1.2: An articulated rotor model with 4% flap hinge offset is exposed to a wind speed
of 200 ft/sec in the wind tunnel. If the blade tip speed is 600 ft/sec and the blades are set at
collective pitch of 5◦, calculate the tip path plane orientation with shaft angle, αs, of 0

◦, 10◦ and
−10◦. Assume Lock number, γ = 8, solidity ratio, σ = 0.05 and lift curve slope, a = 6.

Use the above procedure to obtain the following results.

αs = 0◦ αs = 10◦ αs = −10◦

μ 0.3323 0.3303 0.3197
β0 0.083 0.017 0.1418
β1c −4.52◦ −2.32◦ −6.44◦

β1s −0.0303 −0.00489 −0.0536
CT 0.00457 0.00066 0.00845
λTPP −0.0194 0.0456 −0.0816
(αs + β1c) −4.52◦ 7.68◦ −16.44◦

For a backward tilt of the shaft of 10◦, the TPP is tilted back further by 16.44◦. For a zero tilt of
the shaft, TPP is tilted back by 4.52◦. The change in TPP tilt is 11.92◦. For a forward tilt of shaft
of 10◦, the TPP is tilted forward by 7.68◦. The change in TPP tilt is 12.2◦. This means that for a
forward tilt of shaft, the TPP tilts forward at a faster rate. This results in an instability of rotor
disk with respect to the angle of attack and is called the angle of attack of instability.

1.6.3 Coupled trim for an isolated rotor

In a coupled trim for an isolated rotor, the three control pitch angles are determined based on
specific targets. The following two targets are useful.
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1. Target rotor thrust and the hub roll and pitch moments.

2. Target rotor thrust and the first harmonic flapping β1c and β1s.

The first type produces similar airloads and structural loads on the rotor as in real flight. The
second type produces similar wake geometries and acoustic characteristics.

The second type is used during wind tunnel tests. For a given longitudinal shaft tilt αs, a
popular set of targets are the thrust and zero first harmonic flapping angles. Such a condition can
occur in free flight only if the aircraft center of gravity is located at the rotor hub.

The following procedure can be used for wind tunnel trim. Here, CT , and β1c, β1s are the
targets. θ0, θ1s, θ1c are the unknowns. Initialize the unknowns to zero.

1 : Calculate λTPP from eqn. 1.57.

2 : Calculate θ0, β0, θ1s, θ1c.

From eqns. 1.33 we have

β0 = γ
v2β

[
θ0
8 (1 + μ2) + θtw

10

(
1 + 5

6μ
2
)
+ μ

6 (θ1s + β1c)− λTPP
6

]
+

ω2
β0

Ω2v2β
βp (1.68)

θ1c = β1s +
1

(1+ 1
2
μ2)

[
8
γ (v

2
β − 1)β1c +

4
3μβ0

]
(1.69)

θ1s = −β1c +
1

(1 + 3
2μ

2)

[
−8

3
μ

(
θ0 +

3

4
θtw − 3

4
λTPP

)
+

8

γ
(v2β − 1)β1s

]
(1.70)

where λ has been replaced with λTPP − μβ1c.

Substituting β1c + θ1s from eqn. 1.70 into eqn. 1.60 we have

θ0 =

6CT
σa (1 + 3

2μ
2)− 3

4θtw(1− 3
2μ

2 + 3
2μ

4) + 3
2λTPP (1− 1

2μ
2) + 12

γ μ(v
2
β − 1)β1s

1− μ2 + 9
4μ

4
(1.71)

Iterate step 2 till convergence.

A similar procedure can be used for moment trim. Here CT , and CMX , CMY are the targets.
θ0, θ1s, θ1c are the unknowns. Initialize the unknowns to zero.

1 : Calculate λTPP from eqn. 1.57.

2 : Calculate β1c, β1s using the pitch and roll moment expressions, e.g., eqns. 1.67.

3 : Calculate θ0 from eqn. 1.71, and β0, θ1s, θ1c from eqns. 1.68, 1.70 and 1.69.

Iterate steps 2 and 3 till convergence.

1.6.4 Coupled trim for a full aircraft

The target is to achieve 3 force and 3 moment equilibriums. It is necessary to have 6 control
variables.

The rotor control angles, which can be set by the pilot, are θ0, θ1c, and θ1s. The yaw control is
via the tail rotor collective θt. The two aircraft attitude angles, the longitudinal tilt αs, and lateral
tilt φs can be used as the two additional control variables. Note that the pilot does not have a
direct control over these variables. The helicopter must be flown into these vehicle orientations to
achieve trim.

Mathematically, the problem is formulated as follows. For a specified aircraft gross weight
and forward speed, the trim solution evaluates rotor controls, θo, θ1c and θ1s, rotor dynamics e.g.
flapping β(ψ), the vehicle orientation, αs and φs, tail rotor collective setting, and the rotor inflow,
λ. The equations are the flap equation, inflow equation, and the 6 vehicle equilibrium equations.
A popular approach is to neglect altogether the yawing moment equilibrium equation and thereby
neglect the influence of the tail rotor on the solution. Thus we have 7 unknowns – 3 rotor controls,
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2 fuselage attitudes, plus flapping and inflow, and 7 equations – 3 vehicle forces, 2 vehicle moments,
plus flapping and inflow.

The flapping equation can be solved for any number of harmonics. Let us consider three
harmonics here – β0, β1c, and β1s.

Aircraft Force and Moment Equilibrium Equations

Consider the left side view and front view of a helicopter in flight.

T = rotor thrust
H = rotor drag force

Y = rotor side force

W = weight
D = airframe drag in direction of V

YF = tail rotor thrust
MX = rotor roll moment

My = rotor pitch moment

V = helicopter speed
MXF = airframe roll moment

MY F = airframe pitch moment
αs = longitudinal shaft tilt with respect to vertical axis

φs = lateral shaft tilt with respect to vertical axis

Xcg = forward shift of cg from shaft axis
Ycg = side shift of cg from shaft axis (positive right) towards advancing side

θFP = flight path angle
Note that the disk tilt, i.e. the TPP tilt α = αs + β1c + θFP .
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Vertical force equilibrium:

W − T cosαs cosφs +D sin θFP −H sinαs + Y sinφs + YF sinφs = 0 (1.72)

Longitudinal force equilibrium:

D cos θFB +H cosαs − T sinαs cosφs = 0 (1.73)

Lateral force equilibrium:

Y cosφs + YF cosφs + T cosαs sinφs = 0 (1.74)

Pitch moment equilibrium about hub:

My +MyF −W (Xcg cosαs − h sinαs)−D(xcg sinαs + h cosαs) = 0 (1.75)

Roll moment equilibrium about hub:

Mx +MxF
+ YFh+W (h sinφs − Ycg cosφs) = 0 (1.76)

Torque equilibrium about shaft:

Q− YF lT = 0 (1.77)

In addition to the six vehicle equilibrium equations we have an equation for the inflow and an
equation for blade flapping. From the flapping equation, linear equations for the flap harmonics
can be extracted, as many equations as the number of assumed harmonics. For example, eqns. 1.33
are three equations for three harmonics.

The trim equations can be simplified assuming: (1) small shaft tilt angles, and (2) zero flight
path angle θFP = 0. Additionally, the yaw degree of freedom can be ignored, i.e. remove the torque
equation and the tail rotor collective θt as a trim variable.

W = T (1.78)

D +H = Tαs (1.79)

Y + YF = −Tφs (1.80)

My +MyF +W (hαs −Xcg)− hD = 0 (1.81)

Mx +MxF
+W (hφs − Ycg) + YFh = 0 (1.82)

Non-dimensionalize all forces and moments by ρA (ΩR)2 and ρA (ΩR)2R respectively. Define the
fuselage drag D as

D =
1

2
ρV 2f (1.83)

where f has units of area. It is the equivalent flat plate area of the hub, fuselage, landing gear etc.
The drag coefficient then becomes

CD =
1

2
μ2 (f/A) (1.84)
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where A is the rotor disk area. Typically f/A varies from 1 to 3%. From eqn. 1.78

CT = CW (1.85)

From eqns. 1.79 and 1.81 extract equations for αs and β1c. From eqn. 1.79

αs = D
W + CH

CT
= 1

2μ
2 f
A

1
CT

+ CH
CT

= 1
2μ

2 f
A

1
CT

+ CHTPP
CT

− β1c
(1.86)

From eqn. 1.81

αs =
Xcg

h + D
W − My

hW − MyF
hW

=
Xcg

h + 1
2μ

2 f
A

1
CT

+
(v2β−1)/γ

h
R

2CT
σa

β1c − MyF
hW

(1.87)

Equating the above two eqns. 1.86 and 1.87 obtain

β1c =
−Xcg

h +
MyF
hW + CHTPP

/CT

1 +
(v2β−1)/γ

h
R

2CT
σa

(1.88)

Now use the above eqn. 1.88 in eqn. 1.86 to obtain

αs =

xcg

h − MyF
hW +

(v2β−1)/γ

h
R
2
CT
σa

CHTPP
CT

1 +
(v2β−1)/γ

h
R
2
CT
σa

+
1

2

f

A

μ2

CT
(1.89)

Similarly use eqns. 1.80 and 1.82 to extract equations for φs and β1s. From eqn. 1.80

φs = −YF
W − Cy

CT

= −YF
W − CyTPP

CT
+ β1s

(1.90)

YF/W = 0 if the tail rotor in ignored. YF/W = CQR/(CT lT ) if the tail rotor is considered. lT is
the distance of the tail rotor thrust from the rotor hub. From eqn. 1.82

φs =
ycg
h − YF

W − Mx
hW − MxF

hW

=
ycg
h − YF

W − (v2β−1)/γ

h
2CT
σa

β1s − MxF
hW

(1.91)

Equating the above two eqns. 1.90 and 1.91 obtain

β1s =

ycg
h − MxF

hW +
CyTPP
CT

1 +
(v2β−1)/γ

h
R

2CT
σa

(1.92)

Now use the above eqn. 1.92 in eqn. 1.90 to obtain

φs =

ycg
h

−MxF
hW

− (ν2β−1)/γ

h
R

2
CT
σa

CyTPP
CT

1+
(ν2

β
−1)/γ

h
R

2
CT
σa

− CQ

CT

R
lT

(1.93)



1.6. HELICOPTER TRIM 69

Recall, that the inflow equation was (see eqn. 1.57)

λTPP = μ tan (αs + β1c + θFP ) +
kfCT

2
√

μ2 + λ2
TPP

∼= μ (αs + β1c + θFP ) +
kfCT

2
√

μ2 + λ2
TPP

= μ

(
CD + CH

CT

)
+ μβ1c + λc +

kfCT

2
√

μ2 + λ2
TPP

= μ

(
CD + CH + β1cCT

CT

)
+ λc +

kfCT

2
√

μ2 + λ2
TPP

=
1

2
μ3

(
f

A

)
1

CT
+ μ

CHTPP

CT
+ λc +

kfCT

2
√

μ2 + λ2
TPP

(1.94)

The control angles θ0, θ1c, θ1s, and coning β0 can be calculated in the same manner as was done in
coupled trim for an isolated rotor. The description is repeated here. From eqns. 1.33 we have

β0 = γ
v2β

[
θ0
8 (1 + μ2) + θtw

10

(
1 + 5

6μ
2
)
+ μ

6 (θ1s + β1c)− λTPP
6

]
+

ω2
β0

Ω2v2β
βp (1.95)

θ1c = β1s +
1

(1+ 1
2
μ2)

[
8
γ (v

2
β − 1)β1c +

4
3μβ0

]
(1.96)

θ1s = −β1c +
1

(1 + 3
2μ

2)

[
−8

3
μ

(
θ0 +

3

4
θtw − 3

4
λTPP

)
+

8

γ
(v2β − 1)β1s

]
(1.97)

where λ has been replaced with λTPP − μβ1c. Substituting β1c + θ1s from the above equation into
eqn. 1.60 for CT , and solving for θ0 we have

θ0 =

6CT
σa (1 + 3

2μ
2)− 3

4θtw(1− 3
2μ

2 + 3
2μ

4) + 3
2λTPP (1− 1

2μ
2) + 12

γ μ(v
2
β − 1)β1s

1− μ2 + 9
4μ

4
(1.98)

The rotor drag and side forces are obtained from eqns. 1.62 and 1.64.
The above expressions can be used to calculate rotor trim iteratively using the following se-

quence.
1: Calculate CT

CT
∼= CW =

W

ρπR2(ΩR)2

Initialize λTPP

λTPP = κf
CT

2μ
+

1

2

(
f

A

)
μ3

CT

Initialize CHTPP
and CYTPP

to zero
Now iterate until λTPP converges as follows:
2 : Calculate β1c using eqn. 1.88
3 : Calculate β1s using eqn. 1.92
4 : Calculate αs using eqn. 1.89
5 : Calculate φs using eqn. 1.93
6 : Calculate θ0 using eqn. 1.98
7 : Calculate θ1s using eqn. 1.97
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8 : Calculate β0 using eqn. 1.95
9 : Calculate θ1c using eqn. 1.96
10 : Update λTPP using the last of eqns. 1.94
11 : Calculate CHTPP

using eqn. 1.62
12 : Calculate CYTPP

using eqn. 1.64
Back to beginning of iteration.
In case of hover, λTPP remains fixed to the uniform inflow value. Any one of the other variables

can be iterated over.
The rotor power can be calculated using eqn. 1.66. A simpler alternative expression is given

in the next section. When yaw equilibrium is considered, then for a conventional configuration,
the tail rotor collective is a trim variable. The yaw equilibrium equation is given by eqn. 1.77. In
non-dimensional form

CQ − lT
R
CY F

(ΩTRT )
2

(ΩR)2
AT

A
= 0

where (ΩTRT )
2/(ΩR)2 is the tip speed ratio of the tail rotor to the main rotor, CY F = YF/ρAT (ΩTRT )

2

is the tail rotor thrust coefficient, and AT /A is the ratio of tail rotor disk area to main rotor disk
area. The tail rotor collective is then related to the tail rotor thrust by

θ75T =
6CY F

σTaT
+

3

2
κh

√
CY F

2

with assumption of uniform inflow and linear tail rotor twist. σT and aT are the tail rotor solidity
and blade element lift curve slopes.

1.6.5 Rotor Power and Lift to Drag Ratio

Consider the non-dimensional torque CQ, as in eqn. 1.66. Recall, that the non-dimensional power
is equal to the non-dimensional torque CQ. The expression was of the following form

CQ =
σa

2

[
λTPP

(
θ0
3

+
θtw
4

− λTPP

2
+

μβ1c
2

+
μθ1s
4

)]
+

σa

2

1

4

Cdo

a

(
1 + μ2

)
+ ... other terms

(1.99)

where the ‘... other terms’ are terms that are independant of inflow λTPP and profile drag cdo, and
are functions of only the blade flapping angle and the control angles. From the expression of thrust
in the tip path plane (eqn. 1.60) we have

σa

2

(
θ0
3

+
θtw
4

− λTPP

2
+

μβ1c
2

+
μθ1s
4

)
= CT − σa

2

(
θ0μ

2

2
+

θtwμ
2

4
+

θ1sμ

4

)
(1.100)

Using the above expression we have

CQ = λTPPCT −λTPP
σa

2

(
θ0μ

2

2
+

θtwμ
2

4
+

θ1sμ

4

)
+

σa

2

1

4

Cdo

a

(
1 + μ2

)
+... other terms (1.101)

Now from eqns. 1.94 we have

λTPP = μ

(
CD + CH

CT

)
+ μβ1c + λc + λi (1.102)

Hence

λTPPCT =μCD + μ (CH + β1cCT )λcCT + λiCT

=μCD + μCHTPP
+ λcCT + λiCT

(1.103)
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Substitute the above expression of λTPPCT in the expression for CQ

CQ =μCD + μCHTPP
+ λcCT + λiCT

− λTPP
σa

2

(
θ0μ

2

2
+

θtwμ
2

4
+

θ1sμ

4

)
+

σa

2

1

4

Cdo

a

(
1 + μ2

)
+ ... other terms

(1.104)

Now, μCHTPP
can be calculated from eqn. 1.62 as

μCHTPP
= λTPP

σa

2

(
θ0μ

2

2
+

θtwμ
2

4
+

θ1sμ

4

)
+

σa

2

1

4

Cdo

a
2μ2 + (. . . . . . ) (1.105)

It can be shown that the terms (. . . . . .) cancel with those described earlier as ... other terms. Also,
recall that

μCD =
1

2
μ3

(
f

A

)
Thus the final expression of non-dimensional power (or torque) in forward flight takes the following
form

CP = λiCT +
σCd0

8

(
1 + 3μ2

)
+

1

2
μ3

(
f

A

)
+ λcCT

=
κfCT

2
√

λ2
TPP + μ2

+
σCd0

8

(
1 + 3μ2

)
+

1

2
μ3

(
f

A

)
+ λcCT

(1.106)

λi is the induced inflow perpendicular to the tip path plane. The above is the familiar form used
in a simple momentum theory analysis of a rotor in forward flight using uniform inflow.

CP = CPi + CPo + CPp + CPc

CPi = rotor induced power required to produce thrust

CPo = rotor profile power required to overcome rotor drag (turn in real fluid)

CPp = parasite power required to overcome airframe drag

CPc = rotor climb power required to increase gravitational potential.

The induced power is given by

CPi =
κfCT

2
√

λ2
TPP + μ2

≈ κf
C2
T

2μ
for μ > 0.15 (1.107)

The profile power is often modified empirically to include radial flow and reversed flow effects

CPo =
σCdo

8
(1 + 4.6μ2) (1.108)

The parasite power is

Cpp =
1

2
μ3

(
f

A

)
The climb power is given by

CPc = λcCT

(
λc =

Vc

ΩR

)
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where Vc is the climb velocity. Thus, the climb velocity can be calculated from the available power
and level flight power as

Vc =
Pa − (Pi + Po + Pp)

T
=

ΔP

W

Note that, while using blade element theory, the required rotor power is calculated directly from
eqn. 1.66. This expression includes all components of power and is difficult to extract the individual
components. The analytical extraction is given above to identify the different components and have
a physical feel regarding the growth and decay of each with forward speed. The induced power
decreases with forward speed. The profile power increases as square of forward speed. The parasite
power increases as cube of forward speed. The reduction of induced power with forward speed is
due to the uniform inflow assumption. In real flight the induced power increases, gradually above
μ > 0.25 due to nonuniform inflow. Either of the expressions, eqn. 1.66 or eqn. 1.106, can be used.
Both produce the same result. If eqn. 1.106 is used, often the radial flow corrected expression of
profile power (eqn. 1.108) is used.

The power to generate thrust (induced power) and to overcome rotor drag (profile power)
together can be associated with an effective drag of a rotor CDE.

CPi + CPo = μCDE

That is,

μCDE = CP − (CPp + CPc) = CP − (μCD + λcCT )

In level flight then,

CDE =
CP

μ
− CD

Under trim condition the net rotor propulsive force CX must equal the airframe drag CD, hence
the above expression is also written as

CDE =
CP

μ
− CX

where X = T sinαs cosφs−H cosαs = D. The rotor lift-to-drag ratio is given by the ratio between
lift and effective drag

(L/DE) =
CL

CP /μ− CD
≈ CT

CP /μ −CD

Just as Figure of Merit is the measure of rotor efficiency in hover, L/DE is the measure of rotor
efficiency in forward flight. Note that during autorotation, CP = 0, and the rotor effective drag
equals the airframe drag (or propulsive force).

CDE = −CX in autorotation

Example 1.3:
Numerical results are calculated for a rotor with the following characteristics. Yaw equilibrium

is ignored.
Rotor
Nb = 4 R = 25ft c = 1.5ft ΩR = 700ft/s
vβ = 1.05/rev γ = 8.0 Cla = 5.73 Cd0 = 0.01
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Vehicle

W = 15, 000lbs h = 6.0ft lT = 32ft f = 20ft2

xcg = −2ft ycg = 0ft Engine = 2000HP ρ = 0.002377slugs/ft3

MxF = 0ft− lbs MyF = 0ft− lbs κh = 1.15 κf = 1.00

(a) Hover at sea level

shaft HP required = 1535 HP
θ0 = 10.81◦ θ1c = 1.31◦ θ1s = −5.47◦

αs = −9.22◦ αs = −4.92◦

β0 = 5.24◦ β1c = 5.55◦ β1s = 0.74◦

Maximum climb velocity vc= 34.08 ft/sec

(b) Forward flight of 200 ft/sec at sea level

shaft HP required = 947 HP
μ = 0.2857 CT = 0.006559 λTPP = 0.02284
CP = 0.000325
θ0 = 8.25◦ θ1c = 3.31◦ θ1s = −11.24◦

β0 = 4.84◦ β1c = 6.38◦ β1s = 0.91◦

αs = −4.10◦ φs = −3.84◦

Maximum climb velocity vc = 38.6 ft/sec

The variation of trim parameters with advance ratio are shown in figure 1.16

Example 1.4:

The rotor and vehicle characteristics are given below.

Rotor

4-bladed, radius = 27 ft, chord = 1.75 ft

Tip speed ΩR = 700 ft/sec, Lock number γ = 8

Hingeless blades with flap frequency = 1.08 /rev

Airfoil Cla = 6, Cd0 = 0.01

Vehicle

Weight = 16,000 lbs h/R = 0.2R

Assume MxF
= MyF = YF = 0

f/A = 0.1 (flat plate area/Disk Area)

xcg = 0.01R (forward of shaft axis), ycg = 0

Engine Shaft Power = 2000 HP

Assume uniform inflow in hover and forward flight (κh = κf = 1.15 ).

Calculate for hover

(a) shaft HP needed

(b) control settings

(c) maximum climb velocity

(d) flap response

Calculate for a forward flight of 280 ft/sec

(e) shaft HP needed

(f) control settings

(g) maximum climb velocity

(h) flap response

Ignore yaw equilibrium.

Hover
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Figure 1.16: Variation of aircraft trim angles with forward flight speed (Example 1.3)

CT =
W

ρπR2(ΩR)2
=

1600

(0.002378)π(27)2 (700)2
= 0.006

σ =
Nbc

πR
=

4(1.75)

π(27)
= 0.0825

λ = κ

√
CT

2
= 0.063

CP = λCT +
σCdo

8
= 0.063(0.006) +

0.0825(0.01)

8
= 0.00048

(a) The shaft HP is given by

P =CpπR
2ρ(ΩR)3 = 0.00048π(27)2(0.002378)(700)3 = 8.988 × 105 ft-lb/sec

=
8.988 × 105

550
= 1634 HP

(b) Using the iterative procedure with μ = 0

θ0 = 9.57◦
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θ1c = −0.109◦

θ1s = 0.469◦

αs = 0.166◦

φs = −0.026◦

(c) Maximum climb velocity

Vc =
2ΔP

W
=

2(2000 − 1634)

16000
550 = 25.2 ft/sec

(d) Flap Response

β0 = 4.09◦

β1c = −0.48◦

β1s = −0.03◦

Forward Flight

(e) Using the iterative procedure, the Shaft HP is

μ = 0.3947

CT = 0.0060

λ = 0.05877 α = 9.559, φs = −0.1291◦

CP = 0.0005369 P = 1823HP

CHTPP
= 0.0002034 CYTPP

= 0.0000167

(f) Control angles

θ0 = 10.9◦

θ1c = 1.823◦

θ1s = −9.963◦

(g) Maximum climb velocity

V =
ΔP

W
= 6.08 ft/sec

(h) Flap response

β0 = 3.728◦

β1c − 0.174◦

β1s = −0.0301◦
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1.6.6 The Jacobian Method for Trim

The method described earlier, using analytical expressions for rotor forces and moments, was a
point iteration procedure, also called Picard’s iterations. In this procedure, the general approach
to solving a set of nonlinear equations

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0

. . .

fn(x1, x2, . . . , xn) = 0

or in vector notation

f(x) = 0

is to re-express f(x) as g(x) − x so that the equation takes the following form

x = g(x)

The solution procedure is then simply to iterate

xk+1 = g(xk); k = 0, 1, 2, . . . ,

The procedure is useful for simple models and initial design calculations – even though convergence
is not gauranteed. For non-uniform inflow, higher frequencies of blade dynamics, unsteady aerody-
namics, and for the nonlinear trim equations, there will not be analytical expressions. The rotor
forces and moments are then obtained numerically by integrating the blade element forces. The
non-linear trim equations are then solved using the Newton-Raphson procedure.

The Newton-Raphson procedure is based on the calculation of trim Jacobian. Start from an
initial estimate of the six trim variables x0 = x01, x

0
2, . . . , x

0
6. Calculate the rotor forces and moments

using these initial estimates. Initial estimates are often obtained using the simple model given in
the previous section. Now substitute in the vehicle equilibrium eqns. 1.72 – 1.77. These equations
have the general form f(x) = 0. Upon substitution, the right hand side of the equations will not
be zero but have non-zero residuals, since obviously f(x0) �= 0. The objective is to determine an
increment Δx such that

f(x0 +Δx) = 0

A Taylor expansion of the above leads to

f1 +
∂f1
∂x1

Δx1 +
∂f1
∂x2

Δx2 + ...+
∂f1
∂x6

Δx6 + higher order terms = 0

f2 +
∂f2
∂x1

Δx1 +
∂f2
∂x2

Δx2 + ...+
∂f2
∂x6

Δx6 + higher order terms = 0

...

f6 +
∂f6
∂x1

Δx1 +
∂f6
∂x2

Δx2 + ...+
∂f6
∂x6

Δx6 + higher order terms = 0

(1.109)

where the derivatives and functions are evaluated about the solution x0. Dropping the higher order
terms we have the requirement

f0 + JΔx = 0




