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1.4.1 Root shear load
The vertical, in-plane, and radial root shear are as follows

RTdF, .
s, = /6 dr —m(r—e)ﬁ]dr

Rr
dF,
Sy = /E _dr}dr

B
s, = / mQ?r — ﬁdFr] dr
. dr

1.4.2 Root bending load

Like in the case of root shears, the root bending loads are obtained by integrating the moments
generated by the sectional forces about the root. The flap bending moment n; is as follows. Recall,
that the same expression was derived in equation (1.19).

R R R ..
np= [ = er. - [ mdnein -5 - [ mir - e ar
= k,@(ﬁ - 513)

Now use the non-dimensional form of the flap frequency as given in equation (1.23) to replace kg
in terms of the flap frequency vg.

ng = kg(8— Bp)
(1t oo

= (yg — 1) Is0*(B — B,)  for hinge offset ¢/R =0
= (Vg — 1) Ingﬁ for e/R = 0, and precone 5, =0

(1.36)

(1.37)

Thus, the flap bending moment at the root is related to the flap frequency, and flap dynamics.
Similarly, later we shall see that the lag and torsion moments depend on lag and torsion frequencies,
and lag and torsion dynamics. Here, we have considered only the flap motion. The lag and torsion
moments then simply become

ny = /eR {(r—e)ddi”} dr (1.38)

R
ng = / de} dr

dr
where dM, is the nose-up aerodynamic pitching moment acting on the airfoils over each section of
length dr. dM, is about the elastic axis, which is generally close to quarter-chord.

(1.39)

1.4.3 Rotating frame hub loads

The rotating frame hub loads are obtained by simply transfering the root loads to the hub. By hub
we mean the center of rotation, i.e. the rotor shaft axis. Note that in the case of zero hinge offset,
e/R = 0, then the root loads are directly the rotating frame hub loads.

Jz = 8¢ My =Nyf
fy = Sr My =Nt (140)

fz=5. my; = —n



54 CHAPTER 1. INTRODUCTION TO ROTOR DYNAMICS

For a non-zero hinge offset

fr =8 Mg = Nyf + €s;
fy = sr my = Ny (1.41)
f:=s My = —Nj — €Sy

In the case of non-zero hinge offset, m, and m, can be obtained directly by integrating the moments
generated by the blade forces about the hub, instead of about the hinge.

It is important to note that the rotating frame hub loads are associated with each blade. At
any instant of time, each blade produces six rotating frame hub loads. For each blade, they act
in three directions along an axis system stuck to its root. This local axis system rotates with the
blade. Thus, before the contribution from all blades at the hub can be added up, the rotating frame
loads from each blade must be resolved into three fixed directions which do not rotate with any of
the blades. This is called a fixed frame.

1.4.4 Fixed frame hub loads

The fixed frame hub loads are often simply called the hub loads. They are obtained from the
rotating frame loads by the following two steps.

1. Resolve the rotating frame loads of each blade in a fixed frame.
2. Sum the fixed frame loads from all N, blades.

Let m = 1,2,...Ny be the blade number. 1, be the azimuthal location of each blade m. Then we
have

Ny
Fz - Z(fyCOSﬁJm +fa: Sinwm)

m=1
Ny

Fy =Y (fysinthy, — focosthy)

m]V:bl
Fz = Z fz
m=1

(1.42)
Ny
M, = Z (Mg sin @y, + my, cos Yy,)
m=1

Ny
M, = Z (—my cos Py, + my siniyy,)
m=1
Ny
M, = Z m,
m=1

In general f., fy, f- and m,, m,, m, contain all harmonics 1,2, 3...00/rev.

Step 1 redistributes the magnitudes of individual harmonics, but retains all harmonics. For
example in the calculation of F, the f,sin term would re-distribute a steady f, component into
a 1/rev harmonic, a 1/rev f, component into 0/rev (steady) and 1/rev components. In general,
a p/rev component in the rotating frame loads can, when resolved in a fixed frame, give rise to
p + 1/rev components. F,, and M, are exceptions. Here f,, and m, are not multiplied with sine
or cosine components. Thus p/rev loads remain p/rev loads when resolved in a fixed frame.
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Step2, i.e. the summation over all blades, filters out all non-p/N;/rev harmonics. For example
in the case of a four bladed rotor, N, = 4, the fixed frame hub loads contain only 0,4, 8,12, .../rev
harmonics. The Ny /rev harmonic is called the blade passage frequency. Thus the fixed frame hub
loads contain only integral multiples of the blade passage frequency. Consider for example

f(¥) = ag+ aysinty + agsin 2y + a3 sin 31 + a4 sin )
Fz(w) = fz(wl)'i_fz(z/@)+fz('(/)3)+fz(w4)

= f2(¥) + f2(¥ +90°) + fo (¢ +180°) + f. (s + 270°)
= 4dagy + 4aysin 4y

Note that the assumption here is that all blades have identical root loads, only shifted in phase.
In case the blades are dissimilar this assumption does not hold. The hub loads in that case transmit
all harmonics. Such is the case for damaged or dissimilar rotors. The goal is to make all the blades
identical.

The pNp/rev harmonics of the hub loads, e.g. the 4a4sin4y) component, create enormous
vibration in the fuselage. The steady component, e.g. the 4ag component is used to trim the
helicopter. The steady component is the average force generated by the rotor. In this case 4ag was
the rotor thrust. The steady components of F, Iy, F, are often denoted as H,Y, T, the rotor drag,
side force, and thrust. The steady components of M, and M, are denoted as Mx and My, the
roll-left, and pitch-up moments. The steady component of — M, is denoted by @, the rotor torque.

The steady components can be more easily obtained by averaging the rotating frame loads over
the rotor disk, and then multiplying by N, to account for all blades. Using the same example as
above, the thrust can be calculated as

2
ro= 27 fwde
T Jo
2

= 5 ag + a1 siny 4 ag sin 2¢) + ag sin 3y + a4 sin 4
™ Jo

= %277(10
= 4a0

Thus in general we have the steady rotor forces H,Y,T, and moments Mx, My, (Q as follows.
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Rotor Thrust T:

N 2
=2 fdy
27T 0
N 2
L .
271'

(1.43)

)| drdy

VAL
——;/O%/e dF.dy

This is because [ cannot have a steady component, and all harmonics integrate to zero over the
azimuth.

Rotor Drag H:

N, 2w
sz—;/o (fycost + frsine))dy
Ny

2
=5 /0 (sycos ) + s;sine))dy (1.44)

Nb 2 R
= — / / (dF, cosp + dF, sint)dy
27 0 e
where the centrifugal component of s, integrates to zero.

Rotor Side Force Y:

2m
Vg [ Gysing — freosvyi
2w
= %/0 (sysine) — s, cos)dy (1.45)

Nb 2w R
=5 /0 / (dF, sinty — dF, cos)dy
e

Rotor Torque Q:

Nb 2w

Q= _% mdy

271'

= % (ng + esg)dy
0 (1.46)

Nb 21 R
=5 / [(r —e)dFy + edF,]| dy
e

2w R
b / rdFydy
0 e

Rotor Roll Moment Mx: Assume that the torsion moment is zero, i.e. m, = n; = 0.

N
Mx = b my sin Ydi)
27

27r

L (ny + es.)sinpd) (1.47)
2 0

N, 2 o
:27:/0 (Vg_l 3;) IBQQ(B 5p)81n1/)d1/)—|—/ / edF, sindy
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For e = 0 and 3, = 0 an useful expression is obtained

M~y =
X 2

27
/ (v3 — 1) 15Q°Bsindip
0

I :
=N (1/% — 1) IﬁQz/ B sin ¥diy (148)
Ni Jo
=N, (v — 1) 159%B1s
In non-dimensional form we have
Mx oa , o
Cux JAQRPR 2 (v5—1) Bus (1.49)
Rotor Pitch Moment My: Assume that the torsion moment is zero, i.e. my, = n; = 0.
N, 2
My = —b/ —my cos Ydy
27 0
N, 2
= b/ —(ny + es.) cos da) (1.50)
2 0
Nb 27 3 e Nb 2t rR
— _%/0 (yg —1- 23) I59%(8 — Bp) cos hdip — 27T/0 / e dF, cos tdi)
For e = 0 and 3, = 0 an useful expression is obtained
M Nb/%(2 1) 15025 cos i
=—— vg — cos
Y 271' 0 B A
1 2 1 1
=—-N (1/[23—1) IBQQ— B cos pdy) (1.51)
Ny Jo
= _Nb (V% - 1) IﬁQ2ﬁlc
In non-dimensional form we have
M oa
Cury Y __oa (VE; — 1) Bre (1.52)

T pAQRZR T 2y

1.5 Rotor planes of reference

There are various physical planes which can be used to describe the rotor motion. Researchers and
engineers use different planes for different purposes. For example, the expressions for inflow derived
earlier were perpendicular to the plane of the disk tilt. This plane is also called the tip path plane
(TPP). The tip of the blades lie in this plane, hence the name. For the purposes of rotor dynamic
analysis, the hub plane (HP) is the most convenient plane. The hub plane is perpendicular to
the rotor shaft. The rotor RPM, (), is along the shaft. Recall fig. 6.2. The vertical axis z was
perpendicular to the hub plane. The inflow A used in the expression for Up was along z, i.e., it was
perpendicular to the hub plane. This inflow must be calculated from the inflow expression derived
using momentum theory earlier by transformation between TPP and HP. In general, it is often
necessary to transform variables from one type of axes system to another.

For hover and vertical flight, the control is the thrust level which is obtained by the collective
pitch setting. There is no variation of pitch or flap angle along the azimuth.

0(¢) = 6y collective
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K\(\r‘ (a) Simple coning in hover

(b) Longitudinal disk tilt in forward flight; (c) Lateral disk tilt in forward flight;
view from the left y = 270° view from the rear y = 0°

Figure 1.13: Definition of tip path plane (TPP) and hub plane (HP)

B(v) = Py coning
TPP is parallel to HP, see Fig. 1.13(a). Both are perpendicular to the shaft axis. The thrust vector
acts along the shaft and is normal to both planes. In forward flight, the TPP is tilted longitudinally
and laterally. Consider the following flapping motion.

B)= Bo + Piecostp + Pissing
coning longitudinal lateral
TPP tilt TPP tilt

Figures 1.13(b) and (c) show the longitudinal and lateral tilts for positive . and f15. The tilt of
the tip path plane tilts the thrust vector. The longitudinal tilt is forward. The vertical component
of the thrust balances the weight and the horizontal component of the thrust provides a propulsive
force. The lateral tilt is to the left or right depending on the roll moment requirement to trim the
rotor. The transformation between the TPP and HP is obtained by subsequent rotations of the
hub plane by S and B1s. If ig, ji, kg and ip, jr, k7 are the unit vectors in HP and TPP, we have

i cBie 0 5f1¢ iy 1 0 Pie LH
Jr ¢ = | —sPiesBis  cBis  sPiscBie Jju ¢ = 0 1 Bis JjH (1.53)
kr —5B1ccP1s  —5P1s  cBiscBis kr —Bie —Pis 1 ku

It follows for example,
AH = Arpp — WBie
Hy = Hrpp — BiTr (1.54)
Yu =Yrpp — BiIr
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The flapping motion is controlled by introducing collective and cyclic pitch angles through the
swashplate.

0(y) = 0o + BOrccosYp + 01 sin 1)
collective lateral longitudinal
cyclic cyclic

The cyclic pitch angles lie in a plane. This is a plane from which one observes no variation of
cyclic pitch. The longitudinal and lateral tilts of this plane are shown in Figs. 1.14(a) and (b). The

A9

e 1s 1c
Bio —»
Ve ? ~ X4
NP
(b) Longitudinal tilt of no feathering plane (b) Lateral tilt of no feathering plane
view from the left y = 270" view from the left y = 0°

Figure 1.14: Definition of no feathering plane (NFP), tip path plane (TPP) and hub
plane (HP)

transformation between the NFP and HP is obtained by subsequent rotations of the hub plane by
01s and O1.. If i, jg, kg and iy, jy, ky are the unit vectors in HP and TPP, we have

iN 0915 0 —8915 iH 1 0 ﬁlc iH
jN - 50153910 celc 59150915 ]H = 0 1 915 ]H (155)
kn clicsths —sbie  cbicchis kn Ohs —be 1 kn

It follows for example,

AH = ANFp + pbic
Hyg = Hynrp + 0117 (1.56)

Yu =Ynrp — 01T

It is important to keep in mind the reference frame from which the flap and cyclic pitch angles are
measured. From the hub plane, the flap and pitch angles are 5., 515 and 04, #15. From the tip
path plane, the flap angles are zero. Similarly, from the no feathering plane, the cyclic pitch angles
are zero. Note that the angle between any two planes remain the same, irrespective of the plane
from which they are measured. For example, the longitudinal tilt angle between NFP and TPP
when measured from the hub plane is (51, + 015), see fig. 1.14(a). The same angle is only /31, when
measured from NFP. However this . is different from the ;. measured from the HP, but is equal
to (S1c + 61s) as measured from the HP. Thus,

(Bre + 015) 5 = (Bic)v = (bis)7



60 CHAPTER 1. INTRODUCTION TO ROTOR DYNAMICS

Similarly for the lateral tilt, we have from fig. 1.14(b),

(Brs — O1c)a = (Brs)N = —(O1e)r

In addition to TPP, HP, and NFP, another plane can be defined. This is the plane of the swashplate,
called the control plane (CP). See Fig. 1.15. As shown in the figure, if the pitch links are connected

longitudinal swashplate tilt
produces
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a
(b) Top view of rotor, swashplate, and
(a) side view from y =0’ pitch link connections. Pitch links are

connected to the swashplate 90° ahead of
the blade azimuth

Figure 1.15: Definition of control plane (CP)

90° ahead of the blade azimuth, the CP is parallel to the NFP. In addition, the pitch flap coupling
must be zero for this condition to hold. The different rotor reference planes, and their use are
briefly summarized below.

(a) Tip Path Plane (TPP): This is a plane described by blade tips, so that there is no cyclic
variation of flap angles when measured from this plane. This plane is frequently used for wake
studies and acoustic studies. The expressions for inflow derived earlier using moment theory were
with respect to this plane. The TPP is same as the disk tilt plane.

(b) No Feather Plane (NFP): This is a plane from which there is no cyclic variation of
control pitch. This is often used for performance and stability analysis, especially for autogyros.
In Gessow and Myers’ book, this plane is used for performance studies.

(c) Control Plate (CP): It represents the swashplate plane. This plane is important for
servo-actuators.

(d) Hub Plane (HP): This plane is normal to the rotor shaft. Both cyclic flap and cyclic
pitch control angles are non-zero when measured from this plane. This plane is routinely adopted
for the blade dynamic analysis.

Finally, note that the concept of TPP and NFP is applicable only with the assumption of
1/rev variations of flap and cyclic pitch. In reality the flapping motion contains all harmonics, the
2/rev and higher harmonics create ripples over the tip path plane. Similarly in the case of higher
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harmonic control, when the swashplate is used to input higher harmonics of pitch angle, the NFP is
no longer defined. Also note that, in Gessow and Myers book, the pitch and flap angles (including
higher harmonics) are defined as

O(y) = Ag — Ay cosy) — Bysiny — Agcos2¢p) — Basin2y) . ..

B(Y) = ag — ay coshp — by siny) — agcos2¢p — by sin24) ...

where
0o = Ao
an = _An
ans = _Bn
60 = ap
6nc = —an
6715 = _bn

1.6 Helicopter Trim

Trimming an helicopter means maintaining equilibrium in space. The steady forces and moments
generated by the rotor should be equal and opposite to those generated by the other parts of the
helicopter, e.g. the tail rotor, the fuselage, the horizontal stabilizer etc. The steady forces and
moments generated by the rotor should remain the same from one rotor revolution to another. In
order to satisfy this condition it is necessary that the blades exhibit periodic motion. Therefore,
helicopter trim involves two steps:

1. Achieving periodic blade response. Also called uncoupled trim.
2. Achieving periodic blade response such that specific targets are met. Also called coupled trim.

A trimmed flight can be achieved under any steady condition — axial flight, ascent and descent
along a coordinated banked turn, and straight and level flight. In this section we consider a straight
and level flight. Coupled trim is broadly classified into two types:

1. Isolated rotor trim.
2. Full aircraft trim.

For an isolated rotor trim, the three rotor control angles are determined based on three specified
targets, e.g. the thrust, and rotor pitch and roll moments. When the targetted moments are zero, it
is called moment trim. Alternatively, the thrust, and the first harmonic flapping motions, 1. and
B1s, are specified. One popular approach is to specify zero first harmonic flapping. This procedure
is widely used in wind tunnel trim. Isolated rotor trim is used in wind-tunnels to achieve specific
flight conditions in a controlled environment.

Full aircraft trim is also called propulsive trim. The only assumption is that sufficient rotor
power is available from the powerplants. The target rotor forces and moments are equal and
opposite to those produced by the rest of the aircraft. The three rotor controls, the tail rotor
collective, and the two aircraft attitude angles, longitudinal and lateral, are determined using the
six vehicle equilibrium equations.

The trim procedures require the calculation of rotor forces and moments.
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1.6.1 Rotor Forces and Moments

The steady rotor forces and moments in the hub plane can be derived using equations 9.83-8.88,
and equations 1.29-1.31. Assume uniform inflow, linear lift curve slope ¢, = a«, and a constant
drag coefficient c; = c49. Recall, that in forward flight we have

U = x4+ psiny
u, = A+xp +Bpucosy
B = Bo+ Biccosy + Prssingy

0 = 0O+ x4y + 01ccos) + 015 sin
where
A= )\H = /\TPP - ;uﬁlc

and
k‘fCT

24/ 12+ Mopp (1.57)

a =g+ Bic+0pp

Arpp = ptana +

where oy is the longitudinal shaft tilt angle with respect to the horizontal plane, Opp is the flight
path angle positive for climb. The rotor thrust coefficient C7, same in all planes for small angles,
is given by
T
pA(QR)?

1 27
= 02(1271_/ / ulf — upty) dx di (1.58)

= 1+ 2 e Ly B
2[3<+2 >+4(+u)+291 5

If the twist is expressed as 675 + (x — 3/4)04 + 01 cos ) + 015 sin 1), then we have

Cr=———73

975 3 etw 2 1% A
Cr 2[3<+2M>+8'M 291 2|
The inflow can be expressed in NFP and TPP as follows.
B 0o 3 Otw ANFP |
CT—2[3<1+‘ >+T(+ D (1.59)
B o 3 Orw ATpp |
op =2 5 [3 <1+2 >+ 1 2 (1+p?) — 5+ 5 (Be +bis) (1.60)
The rotor drag force is given by
H
Cn " pA(QR)?
:U_ai 277/ Ku uté—uz—i—ﬂqﬂ) siny — 6cosz/)(u —u ut)] dx dyp
2 o1 o 0 P D t t P
oa 1 1
=5 [90 <—§51c + §,U)\) + 1w <—1516 + Z’u)\> (1.61)

1 1 1 1
+010 <_6/60 - 8”613) + 018 <_4/'L610 + )\>

3 1 1 C o
M + 650/613 na (83 +BL) + ¢ (2)]
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Now use

Chppp = Cu + B1cCr; A= Arpp — pPic

to obtain
1 1 1 1
CHrpp = {90 ( W\TPP) + Ot (Zﬂ/\TPP> + 01c (—650 - g#ﬁu) + 015 <Z/\TPP>
1.62
I rppBic + 2popu + Supd| + T "
4TPP1c601s 4Mo 4
The rotor side force is given by
Y
Cy =—— =75
Y T DAQR)?
1 2
02a 5 / uputG — u12, + ﬁu?) cos ) — Bsin (ut29 — uput)} dx dip
s
(1.63)
oa 1 1 1
_? |:_90 (Z,UBO + gﬁls) - etw (Zﬁls + 5”50) - ‘910 (ZA + Zuﬁlc)
1 1 3 3 1 1
—01s (650 + 5#515> + Z)\ﬂls + 5#/\50 - 650/31(: + Zﬂﬁlcﬁls]
Now use
Cvrpp = Cy + B1sCr; A= Arpp — pf1c
to obtain
oa 3 1 1 1
Cyrpp = | =00 | ~1Bo ) — Orw | 5180 | — O1c | ArPP ) — 015 | Z50
2 4 2 4 6
) 3 ) (1.64)
+=Arppbis + SuArrpBo — —Bobic
4 2 6
The rotor torque is
Q
Co=——+—
© T L,AQR)ZR
oa 1 2l Cdo
:7% / x uputﬁ—u +— 2)dx
_oa g O 1 A 1 1
=3 [A ( sttt 4M915 2N/61¢: 2) + <691cﬁo 350515> (1.65)
1 3 1
2 1 L R R By
+/~L <16615910 + 16510015 4B0 1651,3 16615)
1 1 1 ocdy
+301681s = gO1sbre — ¢ (Bl + 6%5)] + =5 (14
Replace A with Arpp — pf1c, in the first term of the above expression to produce
_oa b O Arpp 1 1
Cg= 5 |:)\TPP ( 3 t4 - —  t E,Uﬁlc + ZM915>
1 1 1
—p gﬁlceo + 1/3101%10 - 691cﬁo + 50515
) 1 1 1 (1.66)
+u? (16/815910 + Rﬂlcels - 163 - TGB%C - 165%‘9>
1 1 1 ocd,
+§0101315 - éalsﬂlc - g (B%C + B%s)] + 8 L (1 + MQ)
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The expressions given above for torque are exact. It is important that all terms are retained for
accurate predictions beyond advance ratio g = 0.3. The roll and pitch moment coefficients are
derived from equations 1.47 and 1.50 as

oa eoca 1 [ 1
CMX = % < ﬁ_ 1-— §R> 615 R?E/O /0 (utG—uput) COS?I)d.Td?/J

oa e eoa l 2m ol 9 .
Cuy = 27 < _1__E> ﬁlc'f'E?%/O /0 (utﬁ—uput)smwdxch[}
Assume e/R = 0 for the following simple expressions.

oa

Cux = o (V3 —1) Bus
Y
(1.67)
C - aga 2 1
My = oo (v5—1) frc

1.6.2 Uncoupled trim

Uncoupled trim is a periodic blade response obtained for a given set of rotor control angles. The
forward speed, shaft tilt angle, and flight path angle are prescribed. The following procedure can
be used.
1. Start with A\ppp = ptan(as + 0pp), fic = P1s =0, p = V/(QR).
Calculate By, Bic, and fis from eqns. 1.33.
Update p =V cos(as + Sic + 0rp)/(QR).
Calculate Cr from eqn. 1.60.
. Update Ayrpp from eqn. 1.57.
Iterate steps 2 to 5 till convergence.

o w1

Example 1.2: An articulated rotor model with 4% flap hinge offset is exposed to a wind speed
of 200 ft/sec in the wind tunnel. If the blade tip speed is 600 ft/sec and the blades are set at
collective pitch of 5°, calculate the tip path plane orientation with shaft angle, ag, of 0°, 10° and
—10°. Assume Lock number, v = 8, solidity ratio, ¢ = 0.05 and lift curve slope, a = 6.

Use the above procedure to obtain the following results.

as =0 a;=10° «a,=-10°
0.3323  0.3303 0.3197
Bo 0.083 0.017 0.1418
Bie —4.52° —2.32° —6.44°
Bis —0.0303 —0.00489 —0.0536
Cr 0.00457  0.00066  0.00845
\rpp —0.0194 0.0456 —0.0816
(s + Pre) —4.52°  7.68° —16.44°

For a backward tilt of the shaft of 10°, the TPP is tilted back further by 16.44°. For a zero tilt of
the shaft, TPP is tilted back by 4.52°. The change in TPP tilt is 11.92°. For a forward tilt of shaft
of 10°, the TPP is tilted forward by 7.68°. The change in TPP tilt is 12.2°. This means that for a
forward tilt of shaft, the TPP tilts forward at a faster rate. This results in an instability of rotor
disk with respect to the angle of attack and is called the angle of attack of instability.

1.6.3 Coupled trim for an isolated rotor

In a coupled trim for an isolated rotor, the three control pitch angles are determined based on
specific targets. The following two targets are useful.
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1. Target rotor thrust and the hub roll and pitch moments.
2. Target rotor thrust and the first harmonic flapping 51, and [i,.

The first type produces similar airloads and structural loads on the rotor as in real flight. The
second type produces similar wake geometries and acoustic characteristics.

The second type is used during wind tunnel tests. For a given longitudinal shaft tilt ayg, a
popular set of targets are the thrust and zero first harmonic flapping angles. Such a condition can
occur in free flight only if the aircraft center of gravity is located at the rotor hub.

The following procedure can be used for wind tunnel trim. Here, Cp, and (., (15 are the
targets. 6g, 015, 01, are the unknowns. Initialize the unknowns to zero.

1 : Calculate A\ppp from eqn. 1.57.

2 . Calculate 0y, By, 015, O1c.

From eqns. 1.33 we have

B = 3 [0+ G (L4 30%) + B0+ Buo) — 2582 + s, (1.68)

910 = ﬁls m |: ( )610 3:“/801| (169)
1 8 3 3 8

—B1e + m [—g,u (90 + Zetw - ZATPP) + ;(U% - 1)515] (1.70)

where A has been replaced with A\ppp — pf1c.
Substituting (1. + 615 from eqn. 1.70 into eqn. 1.60 we have

. 8 (14 342) — 30n0(1 — 02 + 3u") + $rpp(1 — 3p2) + Zp(vd — 1)1 (1.71)
0 1= 2+ gt |

Iterate step 2 till convergence.

A similar procedure can be used for moment trim. Here Cp, and Cj;x, Cpry are the targets.
0p, 015, 01, are the unknowns. Initialize the unknowns to zero.

1 : Calculate Appp from eqn. 1.57.

2 : Calculate B, B1s using the pitch and roll moment expressions, e.g., eqns. 1.67.

3 : Calculate 0y from eqn. 1.71, and Sy, 615, 01, from eqns. 1.68, 1.70 and 1.69.

Iterate steps 2 and 3 till convergence.

1.6.4 Coupled trim for a full aircraft

The target is to achieve 3 force and 3 moment equilibriums. It is necessary to have 6 control
variables.

The rotor control angles, which can be set by the pilot, are 6y, 01, and 015. The yaw control is
via the tail rotor collective ;. The two aircraft attitude angles, the longitudinal tilt oy, and lateral
tilt ¢s can be used as the two additional control variables. Note that the pilot does not have a
direct control over these variables. The helicopter must be flown into these vehicle orientations to
achieve trim.

Mathematically, the problem is formulated as follows. For a specified aircraft gross weight
and forward speed, the trim solution evaluates rotor controls, 6,, #1. and 64, rotor dynamics e.g.
flapping B(1), the vehicle orientation, o, and ¢s, tail rotor collective setting, and the rotor inflow,
A. The equations are the flap equation, inflow equation, and the 6 vehicle equilibrium equations.
A popular approach is to neglect altogether the yawing moment equilibrium equation and thereby
neglect the influence of the tail rotor on the solution. Thus we have 7 unknowns — 3 rotor controls,
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2 fuselage attitudes, plus flapping and inflow, and 7 equations — 3 vehicle forces, 2 vehicle moments,
plus flapping and inflow.

The flapping equation can be solved for any number of harmonics. Let us consider three
harmonics here — 3y, S1c, and Sis.

Aircraft Force and Moment Equilibrium Equations

Consider the left side view and front view of a helicopter in flight.
T = rotor thrust
H = rotor drag force
Y = rotor side force
W = weight
D = airframe drag in direction of V
Yr = tail rotor thrust
Mx = rotor roll moment
M, = rotor pitch moment
V = helicopter speed
M x p = airframe roll moment
My r = airframe pitch moment
as = longitudinal shaft tilt with respect to vertical axis
¢s = lateral shaft tilt with respect to vertical axis
Xy = forward shift of cg from shaft axis
Y., = side shift of cg from shaft axis (positive right) towards advancing side
0rp = flight path angle
Note that the disk tilt, i.e. the TPP tilt a = a5 + S + Opp.

Bp \ D (parallel to V)

HUB
PLANE

advancing
side

YF
Tail Rotor
Thrust
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Vertical force equilibrium:

W — T cos ag cos ¢s + Dsinfpp — Hsinag + Y sin g, + Yrsin g, =0 (1.72)
Longitudinal force equilibrium:

Dcosfpp + H cosag — T sin ag cos ¢ = 0 (1.73)
Lateral force equilibrium:

Y cos ¢s + Yr cos ¢s + T cos agsin s = 0 (1.74)
Pitch moment equilibrium about hub:

My + My, — W(X¢4cosas — hsinog) — D(xqgsinag + hcosag) =0 (1.75)
Roll moment equilibrium about hub:

My + My, +Yph + W (hsin ¢s — Yegcos ¢s) =0 (1.76)
Torque equilibrium about shaft:

Q—-Yrlr=0 (1.77)

In addition to the six vehicle equilibrium equations we have an equation for the inflow and an
equation for blade flapping. From the flapping equation, linear equations for the flap harmonics
can be extracted, as many equations as the number of assumed harmonics. For example, eqns. 1.33
are three equations for three harmonics.

The trim equations can be simplified assuming: (1) small shaft tilt angles, and (2) zero flight
path angle 0pp = 0. Additionally, the yaw degree of freedom can be ignored, i.e. remove the torque
equation and the tail rotor collective #; as a trim variable.

W o= T (1.78)
D+H = Ta, (1.79)
Y4+ Ye = —Té, (1.80)
My + M, +W (hay — Xeg) —hD = 0 (1.81)
My + M, + W (hs — Yog) + Yph = 0 (1.82)

Non-dimensionalize all forces and moments by pA (QR)? and pA (QR)? R respectively. Define the
fuselage drag D as

1
D= 5pv’Zf (1.83)

where f has units of area. It is the equivalent flat plate area of the hub, fuselage, landing gear etc.
The drag coefficient then becomes

Cp = 5 (£/4) (L.84)
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where A is the rotor disk area. Typically f/A varies from 1 to 3%. From eqn. 1.78
Cr =Cw (1.85)

From eqns. 1.79 and 1.81 extract equations for o and S1.. From eqn. 1.79

D, Cg _1,2f
o W+7T_%“ ads+ (1.86)
biehd o Cugee L g,

_ Xeg . D _ My, My
as = W o aw Y
Xcg 1 2f 1 (vﬁfl)/ﬂ/ MyF (187)

Tt el Aoy T Bre — ¥

Equating the above two eqns. 1.86 and 1.87 obtain

MyF

Xcg
+ e T Cy /CT
fre = <v2 ZE (1.88)
1 + h 2Cr
R oa
Now use the above eqn. 1.88 in eqn. 1.86 to obtain
Teg _ Myp + (vﬂ—l)/'y Chrpp
h T RW hy0r  Cr 1f Lo
¥ = 2D/ eV Yon (1.89)
1+ EQC_T
R” oa
Similarly use eqns. 1.80 and 1.82 to extract equations for ¢4 and (15. From eqn. 1.80
s = Y _ G
w Cr (190)

Y] Cy
= 3 - geE 4,

Yp/W = 0 if the tail rotor in ignored. Yp/W = CoR/(Crlr) if the tail rotor is considered. I is
the distance of the tail rotor thrust from the rotor hub. From eqn. 1.82

gbs — Yo _Yp _ My _ Mz
- h w hW hW
_ v _Yp _ (5D My (1.91)
- h W 2C Bls X1

Equating the above two eqns. 1.90 and 1.91 obtain

Yeg Mz + CyTPP

e hIEI:2 I)MCT (1.92)
1+ —5er

R oa

Now use the above eqn. 1.92 in eqn. 1.90 to obtain

h hW C C
b = ' ks T CoR (1.93)
s v3-1/~ Crlr )
hoCT
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Recall, that the inflow equation was (see eqn. 1.57)
k‘fCT

24/ 12+ Npp

ke Crr

24/ 12+ Nppp

Arpp = ptan (as + Bic + 0pp) +

gu(as‘i‘ﬁlc‘i‘eFP)'i_

CD+CH> kaT
:,U< +N610+)\c+— 1.94
CT 2 /MQ_’_)\%PP ( . )
CDJFCHJFBMCT) k¢Cr
i W o
cr 2\/1” + Mipp

I (f) 1 Currp kyCr
=-pu’ 5| =+u + A+ —F/——

2 A) Cr Cr 9 /M2+)‘%PP

The control angles 6y, 01, 015, and coning 3y can be calculated in the same manner as was done in
coupled trim for an isolated rotor. The description is repeated here. From eqns. 1.33 we have

w2
fo = 0[O+ (1 5®) + B0+ Bu) = M|+ 3B, (1.95)
(910 = Bls + (714‘1%#2) {%(U% — ].)Blc + %,uﬁ()} (196)
1 8 3 3 8
015 = — = | B0+ Oy — A “(v3 -1 1.
1s Pre + (1 + %MQ) [ 3/‘( o+ 4 tw 4 TPP) + ,y(vﬁ )Bls:| ( 97)

where A has been replaced with A\ppp — uf1.. Substituting 1. + 615 from the above equation into
eqn. 1.60 for Cp, and solving for 6y we have

- S (1+ 342) — 30u(1 — 3% + 3u%) + SArpp(1 = $p2) + 2pv? — 1)1 (198)
0= — 2+ %,u‘* .

The rotor drag and side forces are obtained from eqns. 1.62 and 1.64.

The above expressions can be used to calculate rotor trim iteratively using the following se-
quence.

1: Calculate Cp

w

Cr = Cw pmR2(QR)?

Initialize Arpp

C 1 3
=y (1)

Initialize CH, ., and Cy,,, to zero

Now iterate until Arpp converges as follows:
: Calculate ;¢ using eqn. 1.88

: Calculate f1s using eqn. 1.92

: Calculate o using eqn. 1.89

: Calculate ¢, using eqn. 1.93

: Calculate 6y using eqn. 1.98

: Calculate 615 using eqn. 1.97

~N O O W N
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8 : Calculate By using eqn. 1.95

9 : Calculate 6. using eqn. 1.96

10 : Update Arpp using the last of eqns. 1.94

11 : Calculate Cp.pp using eqn. 1.62

12 : Calculate Cy;.,, using eqn. 1.64

Back to beginning of iteration.

In case of hover, A\ppp remains fixed to the uniform inflow value. Any one of the other variables
can be iterated over.

The rotor power can be calculated using eqn. 1.66. A simpler alternative expression is given
in the next section. When yaw equilibrium is considered, then for a conventional configuration,
the tail rotor collective is a trim variable. The yaw equilibrium equation is given by eqn. 1.77. In
non-dimensional form

Ir (QrRr)? Arp
Co-gOrqpe 2 ="
where (QrR7)?/(QR)? is the tip speed ratio of the tail rotor to the main rotor, Cy p = Yr/pAr(QrRr)?
is the tail rotor thrust coefficient, and A7 /A is the ratio of tail rotor disk area to main rotor disk
area. The tail rotor collective is then related to the tail rotor thrust by

6Cy
arar

3 Cyr
oy T

OrsT =

with assumption of uniform inflow and linear tail rotor twist. op and ar are the tail rotor solidity
and blade element lift curve slopes.

1.6.5 Rotor Power and Lift to Drag Ratio

Consider the non-dimensional torque Cg, as in eqn. 1.66. Recall, that the non-dimensional power
is equal to the non-dimensional torque Cg. The expression was of the following form

oa b b Arpp  pBie . pbis oalCy, 2
Co=— 1|\ — 4+ — — —= 1 ... other t
Q 2|:TPP<3+4 5 + 5 + 1 +24a(+u)+ other terms
(1.99)

where the ‘... other terms’ are terms that are independant of inflow Aypp and profile drag cg4,, and
are functions of only the blade flapping angle and the control angles. From the expression of thrust
in the tip path plane (eqn. 1.60) we have

2

2 2
aa <9_0 et_w _ Arpp + pB1c Mels) —Cp — ga <90M + Ot + 915”) (1.100)

3 4 2 2+4 2\ 2 4 4

Using the above expression we have

o oa 90;“2 etw,u2 Orsp galCy,
Cq = ArppCr )\TPP2 ( st T ) T T,

(1+ MZ) +... other terms (1.101)

Now from eqns. 1.94 we have

Cp+C
A\rpp = i <%TH) + 1B + Ae + N (1.102)

Hence

ArppCr =pCp + p (Cu + B1c.Cr) AcCr + XiCr

(1.103)
=uCp + pChypp + ACr + N Cr
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Substitute the above expression of ArppCr in the expression for Cg

Cqo =puCp + pCrppp + ACr + XiCr

oa (Gop®  Opep®  Orsp calCy, 5 (1.104)
- — —- 1 ... oth
)\TPP2 < Tt ) T, (1+ p*) + ... other terms
Now, pCrppp can be calculated from eqn. 1.62 as
oa (Oop?  Opop®  Orsp calCy, o
= Arpp—— e ——2u + (... 1.1
It can be shown that the terms (...... ) cancel with those described earlier as ... other terms. Also,

recall that

pCp = %MB (1{1)

Thus the final expression of non-dimensional power (or torque) in forward flight takes the following
form

C 1
Cp=X\Cpr+ 7 8d0 (1 + 3,&2) + §,LL3 (%) + ACr
C C 1 (1.106)
S B T (i) +A\Cr
2\/ )‘QTPP + p? 8 2 A

A; is the induced inflow perpendicular to the tip path plane. The above is the familiar form used
in a simple momentum theory analysis of a rotor in forward flight using uniform inflow.

Cp=Cp;i+Cpo+Cpp+ Cpe

Cp; = rotor induced power required to produce thrust

Cp, = rotor profile power required to overcome rotor drag (turn in real fluid)
Cpp = parasite power required to overcome airframe drag

Cp. = rotor climb power required to increase gravitational potential.

The induced power is given by

C C?
Cp; = — 2T T

Tpp TH

The profile power is often modified empirically to include radial flow and reversed flow effects

for > 0.15 (1.107)

_0Cy,

Cpo (1 +4.6u2) (1.108)

The parasite power is
Ls(f
%=y (3)

The climb power is given by

Ve
C1Pc = )‘CCT <)\c = m)



72 CHAPTER 1. INTRODUCTION TO ROTOR DYNAMICS

where V, is the climb velocity. Thus, the climb velocity can be calculated from the available power
and level flight power as
Po—(Pi+P,+F) AP

Ve = T W

Note that, while using blade element theory, the required rotor power is calculated directly from
eqn. 1.66. This expression includes all components of power and is difficult to extract the individual
components. The analytical extraction is given above to identify the different components and have
a physical feel regarding the growth and decay of each with forward speed. The induced power
decreases with forward speed. The profile power increases as square of forward speed. The parasite
power increases as cube of forward speed. The reduction of induced power with forward speed is
due to the uniform inflow assumption. In real flight the induced power increases, gradually above
@ > 0.25 due to nonuniform inflow. Either of the expressions, eqn. 1.66 or eqn. 1.106, can be used.
Both produce the same result. If eqn. 1.106 is used, often the radial flow corrected expression of
profile power (eqn. 1.108) is used.

The power to generate thrust (induced power) and to overcome rotor drag (profile power)
together can be associated with an effective drag of a rotor Cpg.

Cpi +Cpo = nCpg
That is,

pCpre =Cp — (Cpp+ Cpc) = Cp — (uCp + ACr)
In level flight then,

CDE:%_CD
L

Under trim condition the net rotor propulsive force C'x must equal the airframe drag Cp, hence
the above expression is also written as

CDE:%_CX
1

where X = T'sin ai cos s — H cos ag = D. The rotor lift-to-drag ratio is given by the ratio between
lift and effective drag

Cr Cr

L/Dg) = =
(L/ D) Cp/u—Cp Cp/u—Cp

Just as Figure of Merit is the measure of rotor efficiency in hover, L/DFE is the measure of rotor
efficiency in forward flight. Note that during autorotation, Cp = 0, and the rotor effective drag
equals the airframe drag (or propulsive force).

Cprg = —Cx in autorotation
Example 1.3:
Numerical results are calculated for a rotor with the following characteristics. Yaw equilibrium
is ignored.
Rotor
Ny =4 R=25ft c¢=15ft QR="T00ft/s

vg =1.05/rev v =8.0 Cjo =5.73 Cygo = 0.01
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Vehicle
W =15,000lbs h =6.0ft It = 32ft
Teg = —2ft Yeg = 0f1 Engine = 2000H P

M, = 0ft — lbs MyF =0ft —lbs Kp = 1.15

(a) Hover at sea level

shaft HP required = 1535 HP
0o = 10.81° #.=1.31° 01, =—547°
s = —9.22° g = —4.92°
Bo=524°  Br.=555° Bis = 0.74°
Maximum climb velocity v.= 34.08 ft/sec

(b) Forward flight of 200 ft/sec at sea level
shaft HP required = 947 HP

1 = 0.2857 Cr = 0.006559 A\ppp = 0.02284
Cp = 0.000325

0o = 8.25° 0:. = 3.31° 015 = —11.24°
By = 4.84° Bi. = 6.38° Bis = 0.91°

as = —4.10° Ps = —3.84°
Maximum climb velocity v, = 38.6 ft/sec

f=20ft?
p = 0.002377slugs/ ft3
k= 1.00

The variation of trim parameters with advance ratio are shown in figure 1.16

Example 1.4:

The rotor and vehicle characteristics are given below.
Rotor

4-bladed, radius = 27 ft, chord = 1.75 ft

Tip speed QR = 700 ft/sec, Lock number v = 8
Hingeless blades with flap frequency = 1.08 /rev
Airfoil Cy, =6, Cyy = 0.01

Vehicle

Weight = 16,000 Ibs  h/R = 0.2R

Assume M, = M, =Yr =0

f/A = 0.1 (flat plate area/Disk Area)

zeq = 0.01R (forward of shaft axis), y.y =0
Engine Shaft Power = 2000 HP

Assume uniform inflow in hover and forward flight (k, = kf = 1.15 ).

Calculate for hover

(a) shaft HP needed

(b) control settings

(¢) maximum climb velocity
(d) flap response

Calculate for a forward flight of 280 ft/sec
(e) shaft HP needed

(f) control settings

(g) maximum climb velocity
(h) flap response

Ignore yaw equilibrium.

Hover

73
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30r 10t
0
20r 0 B1c
10t 5l -
§ | e o By
> 0 1c >
L @ -
[s] _— o | -
-10 T . o+ B1s
-20} 0,
-30 . . . . ) , 5 ‘ ‘ ‘ ‘ ‘ ‘
o 01 02 03 04 05 06 0 01 02 03 04 05 06
Advance Ratio, u Advance Ratio, u
(a) Collective and Cyclic Pitch (b) Coning and Cyclic Flap
15; 3X 107
n ‘_S" 0of
g 2
e 5
5 .
2 -3 Pitch up : CIVIY lo
1% 0.1 02 03 04 05 \0‘6 -6 : ‘ \ ‘ R
' Advance Ratio, 11 ' ' 0 01 02 03 04 05 06

Advance Ratio, u

(c) Shaft angles w.r.t. vertical axis (d) Hub roll and pitch moments

Figure 1.16: Variation of aircraft trim angles with forward flight speed (Example 1.3)

W 1600
Cr = = = 0.006

7 prR2(QR)2 ~ (0.002378)m(27)2(700)2

Nye  4(1.75)

= — = = U. 2
e
M= i/ €T = 0.063

2
. 0825(0.01

Cp = 20+ 2% (.063(0.006) + 20825001 SO0 _ ) 00048

(a) The shaft HP is given by
P =C,mR*p(QR)? = 0.000487(27)?(0.002378)(700)* = 8.988 x 10° ft-lb/sec

8988 x 10°
N 550

(b) Using the iterative procedure with p = 0

= 1634 HP

0o = 9.57°
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010 = —0.109°
015 = 0.469°
as = 0.166°
b5 = —0.026°

(¢) Maximum climb velocity

~2AP 2(2000 — 1634)

ve w 16000

550 = 25.2 ft/sec

(d) Flap Response

B = 4.09°
/816 = —0.48°
Brs = —0.03°

Forward Flight

(e) Using the iterative procedure, the Shaft HP is

1= 0.3947

Cr = 0.0060
A=0.06877 = 9.559, ¢s = —0.1291°
Cp =0.0005369 P = 1823HP

Chypp = 0.0002034  Cy,,, = 0.0000167

(f) Control angles

6o = 10.9°
01, = 1.823°
015 = —9.963°

(g) Maximum climb velocity

AP
V= W 6.08 ft/sec

(h) Flap response
Bo = 3.728°

B1ec — 0.174°

f1s = —0.0301°

75
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1.6.6 The Jacobian Method for Trim

The method described earlier, using analytical expressions for rotor forces and moments, was a
point iteration procedure, also called Picard’s iterations. In this procedure, the general approach
to solving a set of nonlinear equations

fl(a:hxg,. .. ,$n) = 0
fQ(.’)f17x2,. .. 7mn) = 0
fn<$17m27 s axn) =0

or in vector notation
f(x)=0
is to re-express f(x) as g(x) — x so that the equation takes the following form

= g(x)
The solution procedure is then simply to iterate

xFl = g(xF): k=0,1,2,...,
The procedure is useful for simple models and initial design calculations — even though convergence
is not gauranteed. For non-uniform inflow, higher frequencies of blade dynamics, unsteady aerody-
namics, and for the nonlinear trim equations, there will not be analytical expressions. The rotor
forces and moments are then obtained numerically by integrating the blade element forces. The
non-linear trim equations are then solved using the Newton-Raphson procedure.

The Newton-Raphson procedure is based on the calculation of trim Jacobian. Start from an
initial estimate of the six trim variables x* = 29,29, ..., 29. Calculate the rotor forces and moments
using these initial estimates. Initial estimates are often obtained using the simple model given in
the previous section. Now substitute in the vehicle equilibrium eqns. 1.72 — 1.77. These equations
have the general form f(x) = 0. Upon substitution, the right hand side of the equations will not
be zero but have non-zero residuals, since obviously f(x”) # 0. The objective is to determine an
increment Ax such that

F(x? + Ax) = 0

A Taylor expansion of the above leads to

ht 5 o Ao AT+ 5 on oAz .+ oh ——= Axg + higher order terms = 0

a Ox Z2 ox Te

8f 2 9fa dfa )

5 -Ar + o= A 222 Az + high _
ot Oy T s 2 Tt g g %6 + higher order terms = 0 L109)
Jo + ng ng Ay + .. + 0f A$6 + higher order terms = 0

where the derivatives and functions are evaluated about the solution x". Dropping the higher order
terms we have the requirement

"+ JAx=0





