

Introduction to Materials Science and Engineering

09. 08. 2019 Eun Soo Park

Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by appointment

Materials Science and Engineering

CHAPTER 2: Atomic structure and Interatomic bonding

; 많은 경우 결합의 종류로 재료의 특성 설명

ISSUES TO ADDRESS...

- What promotes bonding?
- What types of bonds are there?
- What properties are inferred from bonding?

Contents for previous class Atomic Structure

2.2 Fundamental concepts

 atom – electrons – 9.11 x 10⁻³¹ kg protons neutrons } 1.67 x 10⁻²⁷ kg

2.3 Electrons in atoms

a. atomic models

Bohr's model + Wave-mechanical model 전자는 파동성과 입자성을 동시에 갖는다 가정= 전자구름

b. Quantum #s (양자수)

c. Electron configurations (전자배위)

2.4 Periodic table

모든 원소는 주기율표 상의 전자 배위에 의해 분류 : <u>특성의 규칙적인 변화 양상</u>확인 가능

2.3 Electrons in atoms a. atomic models

Bohr vs. wave mechanical model

Electron position is described by a probability distribution or electron cloud Bohr energy levels to be separated into electron subshells described by quantum numbers 2.3 Electrons in atoms b. quantum numbers

Meaning of quantum numbers

- *n* determines the size
- *l* determines the shape

 m_l determines the orientation

Electron spin: $m_s = \pm \frac{\hbar}{2}$

Therefore, complete description of an electron requires <u>4 quantum numbers</u>

2.3 Electrons in atoms c. Electronic configurations

Electronic Configurations

원자번호	원소	부분 궤도 그림(3s, 3p, 3d 부춘	6위만)	총 전자 배치	요약된 전자 배치	
19	к	4s 3d	4p	$[1s^22s^22p^63s^23p^6] 4s^1$	[Ar] 4s ¹	
20	Ca	11		$[1s^22s^22p^63s^23p^6] 4s^2$	$[Ar] 4s^2$	
21	Sc	1		$[1s^22s^22p^63s^23p^6] 4s^23d^1$	$[Ar] 4s^2 3d^1$	
22	Ti	11 1 1		$[1s^22s^22p^63s^23p^6] 4s^23d^2$	$[Ar] 4s^2 3d^2$	
23	v			$[1s^22s^22p^63s^23p^6] 4s^23d^3$	$[Ar] 4s^2 3d^3$	
24	Cr	1 1 1 1 1 1		$[1s^22s^22p^63s^23p^6] 4s^13d^5$	$[Ar] 4s^1 3d^5$	
25	Mn			$[1s^22s^22p^63s^23p^6] 4s^23d^5$	$[Ar] 4s^2 3d^5$	
26	Fe			$[1s^22s^22p^63s^23p^6] 4s^23d^6$	$[Ar] 4s^2 3d^6$	
27	Co			$[1s^22s^22p^63s^23p^6] 4s^23d^7$	$[Ar] 4s^2 3d^7$	
28	Ni			$[1s^22s^22p^63s^23p^6] 4s^23d^8$	$[Ar] 4s^2 3d^8$	
29	Cu	1 11 11 11 11 11		$[1s^22s^22p^63s^23p^6] 4s^13d^{10}$	$[Ar] 4s^1 3d^{10}$	
30	Zn			$[1s^22s^22p^63s^23p^6] 4s^23d^{10}$	$[Ar] 4s^2 3d^{10}$	
31	Ga	11 11 11 11 11 11	1	$[1s^22s^22p^63s^23p^6] 4s^23d^{10}4p^1$	[Ar] $4s^2 3d^{10} 4p$	
32	Ge	11 11 11 11 11 11	1 1	$[1s^22s^22p^63s^23p^6]4s^23d^{10}4p^2$	[Ar] 4s ² 3d ¹⁰ 4p ²	
33	As	11 11 11 11 11 11	↑ ↑ ↑	$[1s^22s^22p^63s^23p^6]$ $4s^23d^{10}4p^3$	[Ar] $4s^2 3d^{10} 4p^2$	
34	Se		11 1 1	$[1s^22s^22p^63s^23p^6]4s^23d^{10}4p^4$	[Ar] $4s^2 3d^{10} 4p^4$	
35	Br	11 11 11 11 11 11	11 11 1	$[1s^22s^22p^63s^23p^6]$ $4s^23d^{10}4p^5$	[Ar] $4s^2 3d^{10} 4p^4$	
36	Kr		11 15 11	$[1s^22s^22p^63s^23p^6] 4s^23d^{10}4p^6$	[Ar] 4s23d104p	

* 색으로 표시된 것은 마지막 전자가 더해진 부춘위를 표시한다.

SURVEY OF ELEMENTS

• Most elements: Electron configuration not stable.

<u>Element</u>	<u>Atomic #</u>	Electron configuration	
Hydrogen	1	1s ¹	
Helium	2	1s ² (stable)	
Lithium	3	1s ² 2s ¹	
Beryllium	4	1s ² 2s ²	
Boron	5	1s ² 2s ² 2p ¹	Adapted from Table 2.2,
Carbon	6	1s ² 2s ² 2p ²	Callister 7e.
Neon	10	$1s^22s^22p^6$ (stable)	
Sodium	11	1s ² 2s ² 2p ⁶ 3s ¹	
Magnesium	12	1s ² 2s ² 2p ⁶ 3s ²	
Aluminum	13	1s ² 2s ² 2p ⁶ 3s ² 3p ¹	
Argon	18	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	(stable)
Krypton	36	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ²	4p ⁶ (stable)

• Why? Valence (outer) shell usually not filled completely.

Chapter 2.4 모든 원소는 주기율표 상의 전자 배위에 의해 분류

Periodic Table of the Elements

	Ce 58	Pr 59	Nd 60	Pm 61	Sm 62	Eu 63	Gd 64	Tb 65	Dy 66	Ho 67	Er 68	Tm 69	Yb 70	Lu 71
Lanthanide series 6	Cerium 140,116	Praseodymium 140,90765	Neodymium 144,24	Promethium (145) ²	Samarium 150,4	Europium 151,964	Gadolinium 157,25	Terbium 158,92534	Dysprosium 162,50	Holmium 164,93032	Erbium 167,26	Thulium 168,9342	Ytterbium 173,04	Lutetium 174,97
	4115d16s	4136s2	4f46s2	41 ⁵ 6s ²	41 ⁶ 6s ²	4f ⁷ 6s ²	4f ⁷ 5d ¹ 6s ²	4196s ²	4f ¹⁰ 6s ²	4f ¹¹ 6s ²	4f126s2	4f136s2	4f ¹⁴ 6s ²	4f145d16s2
	Th 90	Pa 91	U 92	Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	NO 102	Lr 103
Actinide series ** 7	Thorium 232,0381 ^b	Protactinium 231,03588	Uranium 238,02891	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247) ^a	Berkelium (247)	Californium (251) ^a	Einsteinium (251)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (262)
	6d27s2	5f26d17s2	5f36d17s2	5f46d17s2	5f ⁶ 7s ²	5t77s2	5t76d17s2	51 ⁹ 7s ²	5f107s2	5f ¹¹ 7s ²	5f127s2	5f137s2	5f147s2	5f146d17s2

Inner transition elements

CHAPTER 2: Atomic structure and Interatomic bonding

; 많은 경우 결합의 종류로 재료의 특성 설명

ISSUES TO ADDRESS...

- What promotes bonding?
- What types of bonds are there?
- What properties are inferred from bonding?

Contents for today's class

Atomic Bonding in Solids

- Primary interatomic bonds

a. Ionic / b. covalent / c. metallic

- Secondary bonds

a. Van der Waals / b. Hydrogen

- Properties from bonding

Fundamental Concepts Two fundamental types of bonding:

□ primary bonds: strong atom-to-atom attractions produced by <u>changes in</u> <u>electron position of the valence e⁻</u>. *Example : covalent atom between two hydrogen atoms* □ secondary bonds: much weaker. It is the attraction due to overall "electric fields", often resulting from electron transfer in primary bonds. *Example: intramolecular bond between* H_2 *molecules*

Highest Probability density of two electrons between atoms forms very strong intramolecular covalent bond

Chapter 2.6 Primary interatomic bonds (or Chemical bonds)

각 결합은 최외각 전자에 의함/ 결합 방식은 구성원자의 전자구조에 의함

a. IONIC

Atomic bonding

When atoms of far- & near-closed shell structure are brought together ...

Atoms of far-closed shell structure & near-closed one tend to <u>lose & gain</u> <u>electrons</u>, respectively

 \rightarrow Electronegativity by L. Pauling

Excess charge induced by the transfer of electrons are compensated by the presence of ions of opposite sign

The Periodic Table

• Columns: Similar Valence Structure

Adapted from Fig. 2.6, *Callister 7e.*

Electropositive elements: Readily give up electrons to become + ions. Electronegative elements: Readily acquire electrons to become - ions.

Electronegativity

- Ranges from 0.7 to 4.0,
- Large values: tendency to acquire electrons.

Smaller electronegativity

Larger electronegativity

Adapted from Fig. 2.7, *Callister 7e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

Ionic Bonding

- Occurs between + and ions
- Requires electron transfer
- Large difference in electronegativity required
- Example: NaCl

Examples: Ionic Bonding

• Predominant bonding in Ceramics

Give up electrons

Acquire electrons

Adapted from Fig. 2.7, *Callister 7e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

 When voltage is applied to an ionic material, entire ions must move to cause a current to flow. → <u>lon movement</u> is slow and the electrical conductivity is poor.

Ionic Crystal

Table 7 Properties of alkali halide crystals with the NaCl structure

All values (except those in brackets) at room temperature and atmospheric pressure, with no correction for changes in R_0 and U from absolute zero. Values in brackets at absolute zero temperature and zero pressure, from private communication by L. Brewer.

	Nearest- neighbor separation	Bulk modulus B , in 10^{11} dyn/cm ²	Repulsive energy parameter	Repulsive range parameter	Lattice energy compared to free ions, in kcal/mol		
	R_0 , in Å	or 10 ¹⁰ N/m ²	$z\lambda$, in 10^{-8} erg	ρ , in Å	Experimental	Calculated	
LiF	2.014	6.71	0.296	0.291	242.3[246.8]	242.2	
LiCl	2.570	2.98	0.490	0.330	198.9[201.8]	192.9	
LiBr	2.751	2.38	0.591	0.340	189.8	181.0	
LiI	3.000	(1.71)	0.599	0.366	177.7	166.1	
NaF	2.317	4.65	0.641	0.290	214.4[217.9]	215.2	
NaCl	2.820	2.40	1.05	0.321	182.6[185.3]	178.6	
NaBr	2.989	1.99	1.33	0.328	173.6[174.3]	169.2	
NaI	3.237	1.51	1.58	0.345	163.2[162.3]	156.6	
KF	2.674	3.05	1.31	0.298	189.8[194.5]	189.1	
KCl	3.147	1.74	2.05	0.326	165.8[169.5]	161.6	
KBr	3.298	1.48	2.30	0.336	158.5[159.3]	154.5	
KI	3.533	1.17	2.85	0.348	149.9[151.1]	144.5	
RbF	2.815	2.62	1.78	0.301	181.4	180.4	
RbCl	3.291	1.56	3.19	0.323	159.3	155.4	
RbBr	3.445	1.30	3.03	0.338	152.6	148.3	
RbI	3.671	1.06	3.99	0.348	144.9	139.6	

Data from various tables by M. P. Tosi, Solid state physics 16, 1 (1964).

b. COVALENT

Covalent Bonding

- similar electronegativity : share electrons
- bonds determined by valence s & p orbitals dominate bonding

Covalent Bonding: Bond Hybrization Edm

2개 이상의 원자궤도가 결합시 궤도의 공유를 최대한으로 하기 위해 합쳐지는 현상

* Carbon can form *sp*³ hybrid orbitals Carbon 1s²2s²2p² → 1s²2s¹2p³ : 2s와 2p 궤도가 합쳐져 4개의 sp³ 가 됨

sp³궤도는 동일방향의 스핀을 갖고 다른 원자와 공유결합이 가능한 형태임.

Fig. 2.14, *Callister & Rethwisch 10e.* (Adapted from J.E. Brady and F. Senese, *Chemistry: Matter and Its Changes*, 4th edition. Reprinted with permission of John Wiley and Sons, Inc.)

25

Covalent Bonding (cont.)

Hybrid *sp*³ bonding involving carbon Example: CH₄

- C: each has 4 valence electrons, needs 4 more
- H: each has 1 valence electron, needs 1 more

Electronegativities of C and H are similar so electrons are shared in *sp*³ hybrid covalent 혼성화 궤도는 방향성을 갖음 = 인접 결합 원자와 궤도 공유 bonds.

Fig. 2.15, *Callister & Rethwisch 10e.* (Adapted from J.E. Brady and F. Senese, *Chemistry: Matter and Its Changes*, 4th edition. Reprinted with permission of John Wiley and Sons, Inc.)

* 탄소나 일부 재료에서 다른 혼성 결합도 나타남

Fig. 2.16 탄소에서 *sp*² 혼성 궤도의 형성. (a) 2s 전자가 *sp* 준위로 전이, (b) 2*p* 준위의 전자 배치, (c) 1개의 2s 궤도와 2개의 2*p* 궤도가 혼성되어 3개의 2*sp*²를 형성

Fig. 2.17 동일 평면상에 있고 삼각형의 꼭지점을 향하는 3개의 *sp*² 궤도. 인접궤도간의 각도는 120°

Fig. 2.18 6개의 sp² 삼각형 간의 결합에 의한 육각형의 형성

Fig. 12.16 다이아몬드 입방 결정구조

Fig. 12.17 흑연의 구조

Covalent Bonding Si Si Si 0 Si Si ()109.5° 0 VS

 The tetrahedral structure of <u>silica (SiO₂)</u>, which contains covalent bonds between silicon and oxygen atoms

Covalent Bonding

Most common elements on earth are Si & O

 The tetrahedral structure of <u>silica (SiO₂)</u>, which contains covalent bonds between silicon and oxygen atoms

Silicates

Bonding of adjacent SiO₄⁴⁻ accomplished by the **sharing of common corners, edges, or faces**

Fig. 12.12 Five silicate ion structures formed from SiO_4^{4-} tetrahedra

- Most crystals are composed of a limited and simple number of components, E.g. SiO₂, Mg₂SiO₄. This is because a crystal is composed of a small number of atoms in a minimum energy arrangement that displays translational periodicity. As a consequence, and making use of the concept of coordinated polyhedra, there are a limited number of ways to pack the atoms together to form a solid.
- Presently, about 50 different phases of SiO₂ (silica) have been discovered, such as quartz, crystobalite, & tridymite ...

Figs. 4.10 & 4.11, *Callister & Rethwisch 9e*

 Mg_2SiO_4 $Ca_2MgSi_2O_7$

Crystobalite, a polymorph of SiO₂

Presence of cations such as Ca²⁺, Mg²⁺, & Al³⁺

- 1. maintain charge neutrality, and
- 2. ionically bond SiO_4^{4-} to one another

Covalent Bonding : Electron sharing, directional

diamond

SiO₄²⁻ Si⁴⁺

= 인접 결합 원자와 궤도 공유

Example : Covalent Bonding

- left-hand side metals
- molecules with nonmetals
- molecules with metals and nonmetals
- elemental solids (RHS of Periodic Table)
- compound solids (about column IVA)

right-hand side non-metals

Covalent Bonding

• Bond energy curve

- <u>Strong directional nature of bonding</u>
- Wide range of hardness & melting point

ex. High (Diamond) or low (Bismuth) melting point

• Low electrical conductivities at low temperatures when specimens are pure
Ionic vs. Covalent Bonding

- many compounds-partially ionic and partially covalent
- degree of bond type "electronegativity"
 - a large difference in electronegativity \rightarrow largely ionic
 - similar electronegativity \rightarrow largely covalent

% Ionic character = $\{1 - \exp[-(0.25)(X_A - X_B)]\} \times 100$ where $X_A \& X_B$ are Pauling electronegativities

c. METALLIC

- Arises from a sea of donated valence electrons (1, 2, or 3 from each atom)
- Primary bond for metals and their alloys

• delocalized electron

- The metallic bond forms when atoms <u>give up</u> <u>their valence electrons</u>, which then form an <u>electron sea</u>.
- The <u>positively charged</u> <u>atom cores</u> are bonded by mutual attraction to the <u>negatively charged</u> <u>electrons.</u>

• When voltage is applied to a metal, the electrons in the electron sea <u>can easily move and carry a current.</u>

• mechanical property – What do you expect from oxides and metals?

brittle

Metals

ductile

Primary Bonding

- Metallic Bond -- delocalized as electron cloud
- Ionic-Covalent Mixed Bonding

% ionic character =
$$\left[1 - exp\left\{\frac{(X_A - X_B)^2}{4}\right\}\right] \times 100\%$$

where $X_A \& X_B$ are Pauling electronegativities

Ex: MgO
$$X_{Mg} = 1.3, X_O = 3.5$$

%lonic Character =
$$\left[1 - exp\left\{\frac{(3.5 - 1.3)^2}{4}\right\}\right] \times 100\% = 70.2\%$$
 ionic

Chapter 2.7 Physical Force and Energy: 1차결합에 비해 약하나 재료의 물성에 영향

Secondary bonding a. Van der Waals b. Hydrogen

SECONDARY BONDING 결합 E 4~30 kJ/mol

Arises from interaction between dipoles (쌍극자)

a. Van der Waals bonding (dipole bonding)

Although electrons have tendency of being separated as far as possible due to e-e repulsion, electrons are constantly in <u>motion</u>

It follows that electrons could get close enough to <u>induce a "electric dipole</u> <u>moment"</u> at atomistic level

<u>This tendency is expected to be more</u> <u>significant as the number of electrons increases</u>

Temporal bonding due to the induced electric dipole

→ van der Waals bonding

Van der Waals Bonding

(1) induced dipole

Isolated Ar atom (center of positive charge same as center of negative charge) Due to statistical nature of electron motion, occasionally the center of negative charge is spatially different than the center of positive charge (i.e., a temporary dipole) Secondary bond

(2) permanent dipole (polar molecule)

Temporary dipole at left can induce a dipole in a neighboring Ar atom; result is a van der Waals bond between the two Ar atoms

b. Hydrogen bonding

When one of the components of covalent bonding is hydrogen ...

Since hydrogen atom has only one electron, there is no electron left for the formation of closed shell

- \rightarrow Bare proton is exposed without being shielded by electrons ...
- → Strong ionic character develops locally about hydrogen atom ...

$$\delta - + \delta - +$$

Strong bonding develops locally

- Strongest secondary bonding
- Positively charged Hydrogen ion forms a bridge between two negatively charged ions

Hydrogen Bonding

Ice

open structure lower density

Van der Waals and Hydrogen bonding

Polyethylene

Nylon-6.6 & Kevlar

Hydrogen bonding between nylon-6,6 polymer chains

대부분의 분자는 공유결합에 의해 단단히 묶인 원자군→2*차 결합에 의해 결합*

폴리머: 극히 큰 분자_반데르발스 혹은 수소결합에 의해 특성 좌우51

Materials-Bonding Classification

Material type	Bonding character	Example
Metal	Metallic	Iron (Fe) and the ferrous alloys
Ceramics and glasses	Ionic/covalent	Silica (SiO ₂): crystalline and noncrystalline
Polymers	Covalent and secondary	Polyethylene $(-C_2H_4)_n$
Semiconductors	Covalent or covalent/ionic	Silicon (Si) or cadmium sulfide (CdS)

< 실제 많은 재료는 2개 혹은 그 이상의 결합에 혼합 >

Bonding compared

Table 2.3Bonding Energies and Melting Temperatures forVarious Substances

		Bondi	Melting		
Bonding Type	Substance	kJ/mol (kcal/mol)	eV/Atom, Ion, Molecule	Temperature (°C)	
Ionic	NaCl	640 (153)	3.3	801	
	MgO	1000 (239)	5.2	2800	
Covalent	Si	450 (108)	4.7	1410	
	C (diamond)	713 (170)	7.4	>3550	
Metallic	Hg	68 (16)	0.7	-39	
	Al	324 (77)	3.4	660	
	Fe	406 (97)	4.2	1538	
	W	849 (203)	8.8	3410	
van der Waals	Ar	7.7 (1.8)	0.08	-189	
	Cl ₂	31 (7.4)	0.32	-101	
Hydrogen	NH3	35 (8.4)	0.36	-78	
	H2O	51 (12.2)	0.52	0	

Chapter 2.5 Bonding force and energies

Bonding Energy : potential well concept

- Energy minimum energy most stable
 - Energy balance of attractive and repulsive terms

Bonding Forces & Energies

(a) Properties From Bonding: T_m

• Bond length, r

• Bond energy, *E*_o

• Melting Temperature, T_m

 T_m is larger if E_o is larger.

56

(b) Properties From Bonding : α Thermal Expansion

➤ Thermal expansion ← asymmetric nature of the energy well
 ➤ Broad well (generally more asymmetric) → larger expansion

Properties From Bonding : α

Temperature supplies thermal energy into solids \rightarrow thermal vibration (phonon)

Slope is related to the thermal expansion coefficient of materials

Properties From Bonding : α

• Coefficient of thermal expansion, α

coeff. thermal expansion
$$\frac{\Delta L}{L_0} = \alpha (T_2 - T_1)$$

• α ~ symmetry at r_{o}

Bonding

		Bond	_ Melting	
Type of		Energy*	Temperature	
Bond	Substance	kcal/mole	(°C)	Characteristics
Ionic	CaCl	155	646	Low electrical conductivity; trans-
	NaCl	183	801	parent; brittle; high melting tem-
	LiF	240	870	perature
	CuF ₂	617	1360	
	Al ₂ O ₃	3618	3500	
Covalent	Ge	75	958	Low electrical conductivity; very
	GaAs	≈75	1238	hard; very high melting temperature
	Si	84	1420	
	SiC	283	2600	
	Diamond	170	3550	
Metallic	Na	26	97.5	High electrical and thermal con-
	Al	74	660	ductivity; easily deformable; opaque
	Cu	81	1083	
	Fe	97	1535	
	W	201	3370	
Van der	Ne	0.59		Weak binding; low melting and
Waals	Ar	1.8	-189.4	boiling points; very compressible
	CH₄	2.4	-184	
	Kr	2.8	-157	
	Cl ₂	7.4	-103	
Hydrogen	HF	7	-92	Higher melting points than Van der
	H ₂ O	12	0	Waals bonding; tendency to form groups of many molecules

(c) Properties from Bonding: E

 \geq E ~ curvature at r_o (the bottom of the well)

Potential Well Concept

	Elastic	: Modulus	Linear Thermal Expansion Coefficient, a	
Material	(10 ⁶ psi)	(10 ¹¹ , dynes/cm ²)	(length/length.°C)	
Diamond	114	77.5	$1.2 imes10^{-6}$	
W ₂ C	90	61.2	≈7.0 × 10 ⁻⁶	
w	56.5	38.4	$4.4 imes10^{-6}$	
Al_2O_3	50	34.0	8.7×10^{-6}	
MgO	40	27.2	pprox10.0 $ imes$ 10 ⁻⁶	
Ni	30	20.4	$13.0 imes 10^{-6}$	
Si	29	19.7	$7.6 imes 10^{-6}$	
Ge	23	15.7	·	
LiF	19	12.9	_	
Cu	17	11.5	16.8×10^{-6}	
SiO ₂	10	6.8	$8.0 imes 10^{-6}$	
Mg	6.3	4.3	26.0×10^{-6}	
NaCl	4.7	3.7	40.4 $ imes$ 10 ⁻⁶	
Polystyrene	0.4	0.27	≈79 × 10 ⁻⁶	
Nylon	0.4	0.27	pprox100 $ imes$ 10 ⁻⁶	
Polytetra-				
fluorethylene	0.06	0.041	$\approx 100 \times 10^{-6}$	
Polyethylene	0.02	0.014	pprox 300 $ imes$ 10 ⁻⁶	
Natural rubber	10-3-10-2	$pprox 7 imes 10^{-4}$	$pprox 650 imes 10^{-6}$	
		7×10^{-3}		

MATERIALS AND PACKING

Crystalline materials...

- atoms pack in periodic, 3D arrays
- typical of: -metals

-many ceramics-some polymers

Noncrystalline materials...

- atoms have no periodic packing
- occurs for: -complex structures -rapid cooling

"Amorphous" = Noncrystalline

crystalline SiO₂ Adapted from Fig. 3.18(a), *Callister 6e.*

•Si • Oxygen

noncrystalline SiO₂ Adapted from Fig. 3.18(b), *Callister 6e.*

ENERGY AND PACKING

Dense, regular-packed structures tend to have lower energy.

SUMMARY: BONDING

- Type Bond Energy
- Ionic Large!

Nondirectional (ceramics)

Comments

Variable Covalent large-Diamond small-Bismuth Directional semiconductors, ceramics polymer chains)

Variable Metallic large-Tungsten small-Mercury

Secondary smallest

Nondirectional (metals)

Directional inter-chain (polymer) inter-molecular

Summary: Properties from Bonds

Ceramics (lonic & covalent bonding): Large bond energy large T_m large Esmall α

Metals (Metallic bonding): Variable bond energy moderate T_m moderate Emoderate α

Polymers (Covalent & Secondary):

Directional Properties Secondary bonding dominates small T_m small Elarge α

Introduction to Materials Science and Engineering

09. 10. 2020 Eun Soo Park

Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by appointment 2.3 Electrons in atoms c. Electronic configurations

Electronic Configurations

뭔자번호 원소	부분 궤도 그림(3s, 3p, 3d 부종	E위만)	총 전자 배치	요약된 전자 배치	
19	к	4s 3d	4p	$[1s^22s^22p^63s^23p^6] 4s^1$	[Ar] 4s ¹
20	Ca	11		$[1s^22s^22p^63s^23p^6] 4s^2$	$[Ar] 4s^2$
21	Sc	1		$[1s^22s^22p^63s^23p^6] 4s^23d^1$	$[Ar] 4s^2 3d^1$
22	Ti	11 1 1		$[1s^22s^22p^63s^23p^6] 4s^23d^2$	$[Ar] 4s^2 3d^2$
23	v			$[1s^22s^22p^63s^23p^6] 4s^23d^3$	$[Ar] 4s^2 3d^3$
24	Cr	1 1 1 1 1 1		$[1s^22s^22p^63s^23p^6] 4s^13d^5$	$[Ar] 4s^1 3d^5$
25	Mn			$[1s^22s^22p^63s^23p^6] 4s^23d^5$	$[Ar] 4s^2 3d^5$
26	Fe			$[1s^22s^22p^63s^23p^6] 4s^23d^6$	$[Ar] 4s^2 3d^6$
27	Co			$[1s^22s^22p^63s^23p^6] 4s^23d^7$	$[Ar] 4s^2 3d^7$
28	Ni	11 11 11 11 1 1		$[1s^22s^22p^63s^23p^6] 4s^23d^8$	$[Ar] 4s^2 3d^8$
29	Cu	1 11 11 11 11 11		$[1s^22s^22p^63s^23p^6] 4s^13d^{10}$	$[Ar] 4s^1 3d^{10}$
30	Zn			$[1s^22s^22p^63s^23p^6] 4s^23d^{10}$	$[Ar] 4s^2 3d^{10}$
31	Ga		1	$[1s^22s^22p^63s^23p^6]$ $4s^23d^{10}4p^1$	[Ar] $4s^2 3d^{10} 4p$
32	Ge	11 11 11 11 11 11	1 1	$[1s^22s^22p^63s^23p^6]4s^23d^{10}4p^2$	[Ar] 4s ² 3d ¹⁰ 4p ²
33	As	11 11 11 11 11 11	↑ ↑ ↑	$[1s^22s^22p^63s^23p^6]$ $4s^23d^{10}4p^3$	[Ar] $4s^2 3d^{10} 4p^3$
34	Se			$[1s^22s^22p^63s^23p^6]4s^23d^{10}4p^4$	[Ar] $4s^2 3d^{10} 4p^4$
35	Br	11 11 11 11 11 11	11 11 1	$[1s^22s^22p^63s^23p^6]$ $4s^23d^{10}4p^5$	[Ar] $4s^2 3d^{10} 4p^5$
36	Kr		11 11 11	$[1s^22s^22p^63s^23p^6] 4s^23d^{10}4p^6$	[Ar] 4s23d104p

* 색으로 표시된 것은 마지막 전자가 더해진 부춘위를 표시한다.

SURVEY OF ELEMENTS

• Most elements: Electron configuration not stable.

<u>Element</u>	<u>Atomic #</u>	Electron configuration	
Hydrogen	1	1s ¹	
Helium	2	1s ² (stable)	
Lithium	3	1s ² 2s ¹	
Beryllium	4	1s ² 2s ²	
Boron	5	1s ² 2s ² 2p ¹	Adapted from Table 2.2,
Carbon	6	1s ² 2s ² 2p ²	Callister 7e.
Neon	10	$1s^22s^22p^6$ (stable)	
Sodium	11	1s ² 2s ² 2p ⁶ 3s ¹	
Magnesium	12	1s ² 2s ² 2p ⁶ 3s ²	
Aluminum	13	1s ² 2s ² 2p ⁶ 3s ² 3p ¹	
Argon	18	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	(stable)
Krypton	36	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ²	4p ⁶ (stable)

• Why? Valence (outer) shell usually not filled completely.

Contents for previous class

Atomic Bonding in Solids : an attempt to fill electron shells

a. Primary bonding

(1) Ionic bonds

(2) Covalent bonds

(3) Metallic bonds

b. Secondary bonding

(1) Van der Waals

(2) Hydrogen bonding

c. Properties From Bonding

If E₀ is larger,

Tm (melting temp.→<u>Broken Bonds</u>;),

E (elastic modulus), ((possibly))

Yield strength is larger, but α is smaller. (thermal expansion coefficient)

Covalent Bonding

 The tetrahedral structure of <u>silica (SiO₂)</u>, which contains covalent bonds between silicon and oxygen atoms
Covalent Bonding: Bond Hybrization

Carbon can form sp³ hybrid orbitals

Fig. 2.14, *Callister & Rethwisch 10e.* (Adapted from J.E. Brady and F. Senese, *Chemistry: Matter and Its Changes*, 4th edition. Reprinted with permission of John Wiley and Sons, Inc.)

Covalent Bonding (cont.)

Hybrid *sp*³ bonding involving carbon

Example: CH₄

- C: each has 4 valence electrons, needs 4 more
- H: each has 1 valence electron, needs 1 more

Electronegativities of C and H are similar so electrons are shared in *sp*³ hybrid covalent bonds.

Fig. 2.15, *Callister & Rethwisch 10e.* (Adapted from J.E. Brady and F. Senese, *Chemistry: Matter and Its Changes*, 4th edition. Reprinted with permission of John Wiley and Sons, Inc.)

From J. E. Brady and F. Senese, *Chemistry: Matter and Its Changes,* 4th edition, 2004. Reprinted with permission of John Wiley & Sons, Inc.

Bonding Forces & Energies

(a) Properties From Bonding: T_m

• Bond length, r

• Bond energy, *E*_o

• Melting Temperature, T_m

 T_m is larger if E_o is larger.

11

Properties From Bonding : α

• Coefficient of thermal expansion, α

coeff. thermal expansion
$$\frac{\Delta L}{L_0} = \alpha (T_2 - T_1)$$

• α ~ symmetry at r_{o}

(c) Properties from Bonding: E

 \geq E ~ curvature at r_o (the bottom of the well)

Contents for previous class

Materials-Bonding Classification

Material type	Bonding character	Example		
Metal	Metallic	Iron (Fe) and the ferrous alloys		
Ceramics and glasses	Ionic/covalent	Silica (SiO ₂): crystalline and noncrystalline		
Polymers	Covalent and secondary	Polyethylene $(-C_2H_4)_n$		
Semiconductors	Covalent or covalent/ionic	Silicon (Si) or cadmium sulfide (CdS)		

Summary: Properties from Bonds

Ceramics (lonic & covalent bonding): Large bond energy large T_m large Esmall α

Metals (Metallic bonding): Variable bond energy moderate T_m moderate Emoderate α

Polymers (Covalent & Secondary):

Directional Properties Secondary bonding dominates small T_m small Elarge α

Contents for today's class

CHAPTER 3: Fundamentals of Crystallography

- **I.** Crystal Structures
 - Lattice, Unit Cells, Crystal system

II. Crystallographic Points, Directions, and Planes

- Point coordinates, Crystallographic directions, Crystallographic planes

III. Crystalline and Noncrystalline Materials

- Single crystals, Polycrystalline materials, Anisotropy, Noncrystalline solids

Stacking of atoms in solid

Finding stable position

Minimize energy configuration
 – Related to the bonding nature

Materials and Packing

Crystalline materials...

- atoms pack in periodic, 3D arrays
- typical of: -metals

-many ceramics-some polymers

Quasicrystalline materials...

Noncrystalline materials...

- atoms have no periodic packing
- occurs for: -complex structures -rapid cooling

"Amorphous" = Noncrystalline

crystalline SiO₂ Adapted from Fig. 3.22(a), *Callister 7e*.

• Si • Oxygen

noncrystalline SiO₂

atomic arrangement in the solid state

- Solid materials are classified according to the regularity with which atoms and ions are arranged with respect to one another.
- So, how are they arranged ?
 - (a) **periodically** having long range order in 3-D
 - (b) quasi-periodically
 - (c) **randomly** having short range order with the characteristics of bonding type but losing the long range order

Quasicrystal

Amorphous

Chapter 3.2

I. Crystal structures

• How can we stack metal atoms to minimize empty space?

2-dimensions

Now stack these 2-D layers to make 3-D structures

Crystalline materials - three-dimensional periodic arrangement of atoms, ions, or molecules- translational periodicity

Crystal – related topics

- Periodicity (주기성)
- Symmetry (대칭성)
- Anisotropy (비등방성)
- Directions and Planes (방향과 면)
- Interplanar spacing & angles (면간거리와 각도)
- Diffraction (회절)

I. Crystal structure

(1) Lattice : 결정 공간상에서 점들의 규칙적인 기하학적 배열

- 3D point array in space, such that each point has identical surroundings. These points may or may not coincide with atom positions.
- Simplest case : each atom \rightarrow its center of gravity \rightarrow point or space lattice \rightarrow pure mathematical concept

example: sodium (Na) ; body centered cubic

Hard-sphere unit cell

Reduced sphere unit cell

Aggregate of many atoms

Chapter 3.3

(2) Unit cell

: <u>smallest repetitive volume</u> which contains the <u>complete</u>

lattice pattern of a crystal

Unit cell

(3) Lattice parameter

(4) 7 crystal systems

Axial Crystal System Relationships Unit Cell Geometry Interaxial Angles a = b = c $\alpha = \beta = \gamma = 90^{\circ}$ Cubic а а С $a = b \neq c$ $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$ Hexagonal Tetragonal $a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$

С

a a

Unit cell

(4) 7 crystal systems (continued) Unit cell

Unit cell

- P, I, F, C
- **P** : Primitive
- □ *I* : Body centered
- **F** : Face centered
- **C** : Base centered

Unit cell

(5) 14 Bravais Lattice - Only 14 different types of unit

cells are required to describe all lattices using symmetry

	cubic	hexagonal	rhombohedral (trigonal)	tetragonal	orthorhombic	monoclinic	triclinic
Р	a		\bigotimes	c a a	c a b	γ α β	γ α β
I	a			c	c a b		
F	a a a				c a b		
С					c a b	γ	29

II. Crystallographic points, directions and planes

Chapter 3.5 Point coordinates

- position: fractional multiples of the unit cell edge lengths
 - ex) P: q,r,s

Chapter 3.5 Point coordinates

Point coordinates for unit cell center are

al2, bl2, cl2 $\frac{1}{2}\frac{1}{2}\frac{1}{2}$

Point coordinates for unit cell corner are 111

Translation: integer multiple of lattice constants → identical position in another unit cell

Chapter 3.6

Crystallographic Directions

Algorithm

- 1. Vector repositioned (if necessary) to pass through origin.
- 2. Read off projections in terms of unit cell dimensions *a*, *b*, and *c*
- 3. Adjust to smallest integer values
- 4. Enclose in square brackets, no commas

[uvw]

ex: 1, 0, $\frac{1}{2} \implies 2, 0, 1 \implies [201]$ -1, 1, 1 $\implies [\overline{111}]$ where overbar represents a negative index

families of directions <uvw>

Crystallographic Directions

- a line between two points or a vector
- [uvw] square bracket, <u>smallest integer</u>
- families of directions: <uvw> angle bracket

Directional indices

Figure 1.8 Directions in a cubic unit cell.

< *i j k* > : permutation of [*i j k*]

Impose index coordination

Lattice Parameter

Axial Crystal System Relationships Interaxial Angles Unit Cell Geometry a = b = c $\alpha = \beta = \gamma = 90^{\circ}$ Cubic а а С $a = b \neq c$ $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$ Hexagonal $a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$ Tetragonal

Table 3.6Lattice Parameter Relationships and Figures ShowingUnit Cell Geometries for the Seven Crystal Systems

С

Triclinic

 $a \neq b \neq c$ $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

14 Bravais Lattice

- Only 14 different types of unit cells are required to describe all lattices using symmetry
- simple (1), body-centered (2), base-centered (2) face-centered (4 atoms/unit cell)

Crystal view -Silicon

Crystallographic planes

Chapter 3.7 Crystallographic Planes

Lattice plane (Miller indices)

Plane (hkl) Family of planes {hkl}

Miller indicies ; defined as the smallest integral multiples of the reciprocals of the plane intercepts on the axes

m00, 0n0, 00p: define lattice plane

m, n, ∞ : no intercepts with axes

Crvstallographic Planes

lane	Intercepts	Indices
Α	∞,∞,1	(001)
В	1, 1, 1	(111)
С	1, 1, ∞	(110)
D	∞,∞,-1	(001)
Е	1, ∞, 1/2	()
F	1/3, 1/3, 1	()

Υ

Crystallographic Planes

{110} Family

{110} Family

Directions, Planes, and Family

- line, direction
 - [111] square bracket
 - <111> angular bracket family

- Plane
 - (111) round bracket (Parentheses)
 - {111} braces family

HCP Crystallographic Directions

- <u>Hexagonal Crystals</u>
 - 4 parameter Miller-Bravais lattice coordinates are related to the direction indices (i.e., *uv*) as follows.

Miller index

Miller-Bravais index

Miller index

Miller-Bravais index

u' = u - t = 2u + vv' = v - t = 2v + uw' = wMiller index $(\overline{1}11)$

Miller index

Miller-Bravais index

Miller-Bravais vs. Miller index system in Hexagonal system

Miller–Bravais	Miller	Miller–Bravais
[2110]	[010]	[1210]
[1120]	[110]	
[0001]		
[1213]	[111]	[1123]
[10]0]	[120]	$[01\bar{1}0]$
[1011]	[112]	[1126]
	Miller–Bravais [2ĪĪ0] [1120] [0001] [Ī2Ī3] [10Ī0] [10Ī1]	Miller–BravaisMiller[2ĪĪ0][010][1120][Ī10][0001][10][12Ī3][111][10Ī0][120][10Ī1][112]

Conversion of 4 index system (Miller-Bravais) to 3 index (Miller)

$$\vec{t} = u'\vec{a}_1 + v'\vec{a}_2 + w'\vec{c} = u\vec{a}_1 + v\vec{a}_2 + t\vec{a}_3 + w\vec{c}$$

Miller-Bravais to Miller 4 to 3 axis

w' = w

$$u' = u - t = 2u + v$$
$$v' = v - t = 2v + u$$

Miller to Miller-Bravais 3axis to 4 axis system $u = \frac{1}{3}(2u'-v')$ $v = \frac{1}{3}(2v'-u')$

w = w'

Ex. M [100] u=(1/3)(2*1-0)=2/3 v=(1/3)(2*0-1)=-1/3 w=0=> 1/3[2-1-10]

Ex. M-B
$$[1 \ 0 \ -1 \ 0]$$

 $u'=2*1+0=2$
 $v'=2*0+1=1$
 $w'=0$
 $=> [2 \ 1 \ 0]$ 55

Hexagonal Crystal

• Miller-Bravais scheme

Crystallographic Planes (HCP)

In hexagonal unit cells the same idea is used

Adapted from Fig. 3.8(a), Callister 7e.

Crystallographic Planes (HCP)

In hexagonal unit cells the same idea is used

Adapted from Fig. 3.8(a), Callister 7e.

Schematic view of planes

Schematic view of (111) plane

Inter-planar distance (면간거리)

Interplanar spacing of the (hkl) plane

The value of *d* which characterizes the distance between adjacent planes in the set of planes with Miller indices (hkl) is given by the following relations. The cell edges and the angles are *a*, *b*, *c* and α , β , γ .

 $\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{c^2}$ Cubic : Tetragonal: $\frac{1}{d^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{a^2}$ Orthorhombic : $\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{a^2}$ Hexagonal: $\frac{1}{d^2} = \frac{4}{3} \left(\frac{h^2 + hk + k^2}{a^2} \right) + \frac{l^2}{c^2}$ **Rhombohedral**: $\frac{1}{d^2} = \frac{1}{\sin^2 \beta} \left(\frac{h^2}{a^2} + \frac{k^2 \sin^2 \beta}{b^2} + \frac{l^2}{c^2} - \frac{2hl \cos \beta}{ac} \right)$ **Monoclinic**: $\frac{1}{d^2} = \frac{(h^2 + k^2 + l^2)\sin^2 \alpha + 2(hk + kl + hl)(\cos^2 \alpha - \cos \alpha)}{a^2(1 - 3\cos^2 \alpha + 2\cos^3 \alpha)}$ **Triclinic**: $\frac{1}{d^2} = \frac{1}{V^2} (S_{11}h^2 + S_{22}k^2 + S_{33}l^2 + 2S_{12}hk + 2S_{23}kl + 2S_{31}hl)$ $S_{11} = b^2 c^2 \sin^2 \alpha$ $S_{22} = a^2 c^2 \sin^2 \beta$ Where : $V^{2} = a^{2}b^{2}c^{3}(1 - \cos^{2}\alpha - \cos^{2}\beta - \cos^{2}\gamma + 2\cos\alpha\cos\beta\cos\gamma)$ $S_{22} = a^2 b^2 \sin^2 \gamma$ $S_{12} = abc^2(\cos\alpha\cos\beta - \cos\gamma)$ $S_{23} = a^2 bc(\cos\beta\cos\gamma - \cos\alpha)$ $S_{31} = ab^2 c(\cos \gamma \cos \alpha - \cos \beta)$

III. Crystalline and Noncrystalline Materials

CRYSTALS AS BUILDING BLOCKS

- *Some* engineering applications require single crystals:
 - --diamond single crystals Natural and artificial

(Courtesy Martin Deakins, GE Superabrasives, Worthington, OH. Used with permission.)

Crystal properties reveal features of atomic structure.

--Ex: Certain crystal planes in quartz fracture more easily than others.

--turbine blades

Fig. 8.30(c), *Callister 6e.* (Fig. 8.30(c) courtesy of Pratt and Whitney).

Single vs Polycrystals

- Single Crystals
 - -Properties vary with direction: anisotropic.
 - -Example: the modulus of elasticity (E) in BCC iron:
- Polycrystals
 - Properties may/may not vary with direction.
 -If grains are randomly oriented: isotropic.
 (E_{poly iron} = 210 GPa)
 -If grains are textured, anisotropic.

E (diagonal) = 273 GPa

E (edge) = 125 GPa

Data from Table 3.3, *Callister 7e*. (Source of data is R.W. Hertzberg, *Deformation and Fracture Mechanics of Engineering Materials*, 3rd ed., John Wiley and Sons, 1989.)

Adapted from Fig. 4.14(b), *Callister 7e*. (Fig. 4.14(b) is courtesy of L.C. Smith and C. Brady, the National Bureau of Standards, Washington, DC [now the National Institute of Standards and Technology, Gaithersburg, MD].)

Grains

Deformed

Annealed

Polycrystals

• *Most* engineering materials are polycrystals.

Adapted from Fig. K, color inset pages of *Callister 5e*. (Fig. K is courtesy of Paul E. Danielson, Teledyne Wah Chang Albany)

Anisotropic

- Nb-Hf-W plate with an electron beam weld.
- Each "grain" is a single crystal.
- If grains are randomly oriented, overall component properties are not directional.
- Grain sizes typ. range from 1 nm to 2 cm (i.e., from a few to millions of atomic layers).

Isotropic

Polymorphism

• Two or more distinct crystal structures for the same material (allotropy/polymorphism)

iron system titanium liquid **α**, β-**Τ**ί 1538°C **δ-**Fe BCC carbon 1394°C diamond, graphite FCC γ-Fe 912°C BCC **α-**Fe

DEMO: HEATING AND COOLING OF AN IRON WIRE

Demonstrates "polymorphism"

The same atoms can have more than one crystal structure.

Contents for today's class

CHAPTER 3: Fundamentals of Crystallography

- **I.** Crystal Structures
 - Lattice, Unit Cells, Crystal system

II. Crystallographic Points, Directions, and Planes

- Point coordinates, Crystallographic directions, Crystallographic planes

III. Crystalline and Noncrystalline Materials

- Single crystals, Polycrystalline materials, Anisotropy, Noncrystalline solids