2020 Fall

Introduction to Materials Science and Engineering

9. 8. 2019

Eun Soo Park

Office: 33-313
Telephone: 880-7221
Email: espark@snu.ac.kr
Office hours: by appointment

Materials Science and Engineering

CHAPTER 2:

Atomic structure and Interatomic bonding
; 많은 경우 결합의 종류로 재료의 특성 설명

ISSUES TO ADDRESS...

- What promotes bonding?
- What types of bonds are there?
- What properties are inferred from bonding?

Contents for previous class

Atomic Structure

2.2 Fundamental concepts

- atom - electrons - $9.11 \times 10^{-31} \mathrm{~kg}$ $\left.\begin{array}{l}\text { protons } \\ \text { neutrons }\end{array}\right\} 1.67 \times 10^{-27} \mathrm{~kg}$

$$
\text { ex: Fe-atomic \# }=261 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2}
$$

c. Electron configurations (전 자배위)
2.4 Periodic table

모든 원소는 주기율표 상의 전자 배위에 의해 분류
: 특성의 규칙적인 변화 양상 확인 가능

2.3 Electrons in atoms a. atomic models

Electron position is described by a probability distribution or electron cloud

Bohr vs. wave mechanical model

2.3 Electrons in atoms b. quantum numbers

Meaning of quantum numbers

n determines the size
I determines the shape
m_{l} determines the orientation

a.

c.

b.

Electron spin: $m_{s}= \pm \frac{\hbar}{2}$
Therefore, complete description of an electron requires 4 quantum numbers

2.3 Electrons in atoms c. Electronic configurations

Electronic Configurations

		4s	$3 d$					$4 p$			$\left[1 s^{2} 2 s^{2} 22 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{1}$	$\left[\operatorname{Ar]} 4 s^{1}\right.$
19	K	\uparrow										
20	Ca	$\uparrow 1$									$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{2}$	$\left[\mathrm{Ar]} 4 s^{2}\right.$
21	Sc	1t	\uparrow								$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 14 s^{2} 3 d^{1}\right.$	｜Ar｜ $4 s^{2} 3 d^{1}$
22	Ti	11	\uparrow	\uparrow							$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \mid 4 s^{2} 3 d^{2}\right.$	$[\mathrm{Ar}] 4 s^{2} 3 d^{2}$
23	v	$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow						$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 1\right] 4 s^{2} 3 d^{3}$	［Ar］4 $s^{2} 3 d^{3}$
24	Cr	\uparrow	\uparrow	\uparrow	\uparrow		\uparrow				$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{1} 3 d^{5}$	［Ar］ $4 s^{1} 3 d^{\beta}$
25	Mn	$1 \downarrow$	\uparrow	\uparrow	\uparrow		\uparrow				$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{2} 3 d^{5}$	［Ar］ $4 s^{2} 3 d^{6}$
26	Fe	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow	\uparrow				$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{2} 3 d^{6}$	［Ar］ $4 s^{2} 3 d^{6}$
27	Co	11	$\uparrow \downarrow$		\uparrow	\uparrow	\uparrow				$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{2} 3 d^{7}$	［Ar］ $4 s^{2} 3 d^{7}$
28	Ni	$\uparrow \downarrow$	$\uparrow \downarrow$		\uparrow	\uparrow	\uparrow				$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{2} 3 d^{8}$	［Ar］ $4 s^{2} 3 d^{s}$
29	Cu	\uparrow	$\uparrow \downarrow \mid$		$\uparrow \downarrow$	$\uparrow \downarrow$	†1				$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{1} 3 d^{10}$	$[\mathrm{Ar}] 4 s^{1} 3 d^{10}$
30	Zn	$1 \downarrow$	$\uparrow \downarrow$		$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$				$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{2} 3 d^{10}$	$\left[\operatorname{Arr} 4 s^{2} 3 d^{10}\right.$
31	Ga	$\uparrow \downarrow$	\uparrow			$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{2} 3 d^{16} 4 p^{1}$	［Ar］ $4 s^{2} 3 d^{10} 4 p^{1}$					
32	Ge	1t	$\uparrow \downarrow$		† \downarrow	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow		$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{2} 3 d^{10} 4 p^{2}$	｜ Ar ］ $4 s^{2} 3 d^{10} 4 p^{2}$
33	As	$\uparrow \downarrow$	$\uparrow \downarrow$		$\uparrow \downarrow$	$\uparrow \downarrow$	｜\downarrow	\uparrow	\uparrow	\uparrow	$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 14 s^{2} 3 d^{10} 4 p^{3}\right.$	$\|\operatorname{Ar}\| 4 s^{2} 3 d^{10} 4 p^{3}$
34	Se	$\uparrow \downarrow$	$\uparrow \downarrow$		$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	｜\uparrow	\uparrow	$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \mid 4 s^{2} 3 d^{10} 4 p^{4}\right.$	［ Ar$] 4 s^{2} 3 d^{10} 4 p^{4}$
35	Br	$\uparrow \downarrow$	$\uparrow \downarrow$		$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	｜\downarrow	｜\uparrow	$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{2} 3 d^{10} 4 p^{5}$	［Ar］ $4 s^{2} 3 d^{10} 4 p^{5}$
36	Kr	$\uparrow \downarrow$	$\uparrow \downarrow$		$\uparrow \downarrow$	$\uparrow \downarrow$	｜\downarrow	$\uparrow \downarrow$	个ね	$\uparrow \downarrow$	$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{2} 3 d^{10} 4 p^{6}$	［Ar］ $4 s^{2} 3 d^{10} 4 p^{6}$

[^0]
SURVEY OF ELEMENTS

- Most elements: Electron configuration not stable.

- Why? Valence (outer) shell usually not filled completely.

Chapter 2.4
 모든 원소는 주기율표 상의 전자 배위에 의해 분류

Periodic Table of the Elements

(ㅇ) KCS 대 항 하 항 회
화학이 지구를 더 푸르게

Inner transition elements

CHAPTER 2:

Atomic structure and Interatomic bonding
; 많은 경우 결합의 종류로 재료의 특성 설명

ISSUES TO ADDRESS...

- What promotes bonding?
- What types of bonds are there?
- What properties are inferred from bonding?

Contents for today's class

Atomic Bonding in Solids

- Primary interatomic bonds
a. Ionic / b. covalent / c. metallic
- Secondary bonds
a. Van der Waals / b. Hydrogen
- Properties from bonding

Fundamental Concepts

-Two fundamental types of bonding:

\square primary bonds: strong atom-to-atom attractions produced by changes in electron position of the valence \boldsymbol{e}^{-}. Example : covalent atom between two hydrogen atoms

secondary bonds: much weaker. It is the attraction due to overall "electric fields", often resulting from electron transfer in primary bonds. Example: intramolecular bond between H_{2} molecules

Highest Probability density of two electrons between atoms forms very strong intramolecular covalent bond

Chapter 2.6 Primary interatomic bonds (or Chemical bonds)
각 결합은 최외각 전자에 의함/ 결합 방식은 구성원자의 전자구조에 의함

a.

Atomic bonding

When atoms of far- \& near-closed shell structure are brought together ...

Atoms of far-closed shell structure \& near-closed one tend to lose \& gain electrons, respectively
\rightarrow Electronegativity by L. Pauling
Excess charge induced by the transfer of electrons are compensated by the presence of ions of opposite sign
\rightarrow Ionic bonding

The Periodic Table

- Columns: Similar Valence Structure

Electropositive elements:
Readily give up electrons
to become + ions.

Electronegative elements: Readily acquire electrons to become - ions.

Electronegativity

- Ranges from 0.7 to 4.0,
- Large values: tendency to acquire electrons.

Smaller electronegativity

Larger electronegativity
Adapted from Fig. 2.7, Callister 7e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the Chemical Bond, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

Ionic bond $=$ metal + nonmetal \uparrow
 Donates electrons \uparrow
 Accepts electrons

Dissimilar electronegativities
ex: MgO

$$
\operatorname{Mg} \frac{1 s^{2} 2 s^{2} 2 p^{6}}{[\mathrm{Ne}]} 3 s^{2}
$$

$$
\mathrm{Mg}^{2+} \frac{1 s^{2} 2 s^{2} 2 p^{6}}{[\mathrm{Ne}]} \quad \mathrm{O}^{2-} \frac{1 s^{2} 2 s^{2} 2 p^{6}}{[\mathrm{Ne}]}
$$

Ionic Bonding

- Occurs between + and - ions
- Requires electron transfer
- Large difference in electronegativity required
- Example: NaCl

Examples: Ionic Bonding

- Predominant bonding in Ceramics

Give up electrons
Acquire electrons
Adapted from Fig. 2.7, Callister 7e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the Chemical Bond, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

- When voltage is applied to an ionic material, entire ions must move to cause a current to flow. \rightarrow Ion movement is slow and the electrical conductivity is poor.

Ionic Crystal

Table 7 Properties of alkali halide crystals with the NaCl structure

All values (except those in brackets) at room temperature and atmospheric pressure, with no correction for changes in R_{0} and U from absolute zero. Values in brackets at absolute zero temperature and zero pressure, from private communication by L. Brewer.

	Nearestneighbor separation R_{0}, in \AA	Bulk modulus B, in $10^{11} \mathrm{dyn} / \mathrm{cm}^{2}$ or $10^{10} \mathrm{~N} / \mathrm{m}^{2}$	Repulsive energy parameter $z \lambda$, in $10^{-8} \mathrm{erg}$	Repulsive range parameter ρ, in \AA	Lattice energy compared to free ions, in $\mathrm{kca} / \mathrm{mol}$	
					Experimental	Calculated
LiF	2.014	6.71	0.296	0.291	242.3[246.8]	242.2
LiCl	2.570	2.98	0.490	0.330	198.9[201.8]	192.9
LiBr	2.751	2.38	0.591	0.340	189.8	181.0
LiI	3.000	(1.71)	0.599	0.366	177.7	166.1
NaF	2.317	4.65	0.641	0.290	214.4[217.9]	215.2
NaCl	2.820	2.40	1.05	0.321	182.6[185.3]	178.6
NaBr	2.989	1.99	1.33	0.328	173.6[174.3]	169.2
NaI	3.237	1.51	1.58	0.345	163.2[162.3]	156.6
KF	2.674	3.05	1.31	0.298	189.8[194.5]	189.1
KCl	3.147	1.74	2.05	0.326	165.8[169.5]	161.6
KBr	3.298	1.48	2.30	0.336	158.5[159.3]	154.5
KI	3.533	1.17	2.85	0.348	149.9[151.1]	144.5
RbF	2.815	2.62	1.78	0.301	181.4	180.4
RbCl	3.291	1.56	3.19	0.323	159.3	155.4
RbBr	3.445	1.30	3.03	0.338	152.6	148.3
RbI	3.671	1.06	3.99	0.348	144.9	139.6

Data from various tables by M. P. Tosi, Solid state physics 16, 1 (1964).

b. COVALENT

Covalent Bonding

- similar electronegativity \therefore share electrons
- bonds determined by valence $-s$ \& p orbitals dominate bonding
- Example: CH_{4}

(a) Energy $\left\lvert\, \begin{array}{cc}\uparrow \uparrow \frac{\uparrow}{\dagger} & 2 p \\ 2 s \\ \psi & 1 s\end{array}\right.$
promotion of electron

2개 이상의 원자궤도가 결합시 궤도의 공유를 최대한으로 하기 위해 합쳐지는 현상

* Carbon can form $s p^{3}$ hybrid orbitals Carbon $1 s^{2} 2 s^{2} 2 p^{2} \rightarrow 1 s^{2} 2 s^{1} 2 p^{3}:$ $2 s$ 와 $2 p$ 궤도가 합쳐져 4 개의 $\mathbf{s p}^{3}$ 가 됨
(b) Energy $\begin{array}{cc}\uparrow \uparrow \uparrow & 2 p \\ \uparrow & 2 s \\ \uparrow & 1 s\end{array}$
$s p^{3}$
hybridization

$\mathbf{s p}^{\mathbf{3}}$ 궤도는 동일방향의 스핀을 갖고 다른 원자와 공유결합이 가능한 형태임.
Fig. 2.14, Callister \& Rethwisch 10e.
(Adapted from J.E. Brady and F. Senese, Chemistry: Matter and Its Changes, $4^{4 h}$ edition. Reprinted with

Covalent Bonding (cont.)

Hybrid $s p^{3}$ bonding involving carbon

Example: CH_{4}

C: each has 4 valence electrons, needs 4 more

H: each has 1 valence electron, needs 1 more

Electronegativities of C and H are similar so electrons are
 shared in $s p^{3}$ hybrid covalent 혼성화 퀘도는 방향성을 갖음 $=$ 인접 결합 원자와 퀘도 공유 bonds.

* 탄소나 일부 재료에서 다른 혼성 결합도 나타남
(a)

Energy $|$\begin{tabular}{cc}

$\uparrow \frac{1}{\uparrow} \frac{1}{\uparrow}$ \& | $2 p$ |
| :---: |
| $2 s$ |
| $\frac{\Lambda}{\top \gamma}$ |

$1 s$
\end{tabular}

(c)

Energy | $\frac{1}{\uparrow} \uparrow \frac{1}{\uparrow}$ | $2 p$ | |
| :---: | :---: | :---: |
| $2 s$ | | |
| | $\frac{1}{\uparrow}$ | $1 s$ |
| \downarrow hybridization | | |

(b)

\downarrow| promotion |
| :---: |
| of electron |

Fig. 2.17 동일 평면상에 있고 삼각형의 꼭지점을 향하는 3 개의 $s p^{2}$ 궤도. 인접궤도간의 각도는 120°

Fig. 2.186 개의 $s p^{2}$ 삼각형 간의 결합에 의한 육각형의 형성

Covalent Bonding

- The tetrahedral structure of silica $\left(\mathrm{SiO}_{2}\right)$, which contains covalent bonds between silicon and oxygen atoms

Covalent Bonding

Most common elements on earth are Si \& O
short-ranged arrangement
결합단위 $\mathrm{SiO}_{4}^{4-} \mathrm{Si}$

Figure 8.26: Structure of High Cristobalite, a Form of Quartz

- The tetrahedral structure of silica $\left(\mathrm{SiO}_{2}\right)$, which contains covalent bonds between silicon and oxygen atoms

Silicates

Bonding of adjacent $\mathrm{SiO}_{4}{ }^{4-}$ accomplished by the sharing of common corners, edges, or faces

$$
\begin{aligned}
& \left(\mathrm{SiO}_{3}\right)_{n}^{2 n-} \\
& (e)
\end{aligned}
$$

- Si^{4+}
O O^{2-}

Fig. 12.12 Five silicate ion structures formed from $\mathrm{SiO}_{4}{ }^{4-}$ tetrahedra

- Most crystals are composed of a limited and simple number of components, E.g. $\mathrm{SiO}_{2}, \mathrm{Mg}_{2} \mathrm{SiO}_{4}$. This is because a crystal is composed of a small number of atoms in a minimum energy arrangement that displays translational periodicity. As a consequence, and making use of the concept of coordinated polyhedra, there are a limited number of ways to pack the atoms together to form a solid.
- Presently, about 50 different phases of SiO_{2} (silica) have been discovered, such as quartz, crystobalite, \& tridymite ...

Figs. 4.10 \& 4.11, Callister \& Rethwisch $9 e$

Crystobalite, a polymorph of SiO_{2}
Presence of cations such as $\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}, \& \mathrm{Al}^{3+}$

1. maintain charge neutrality, and
2. ionically bond SiO_{4}^{4-} to one another

Covalent Bonding : Electron sharing, directional Cl = 인접 결합 원자와 궤도 공유

diamond

$\mathrm{SiO}_{4}{ }^{2-}$

Example : Covalent Bonding

left-hand side metals

- molecules with nonmetals
- molecules with metals and nonmetals
- elemental solids (RHS of Periodic Table)
- compound solids (about column IVA)
right-hand side non-metals

Covalent Bonding

- Bond energy curve

- Strong directional nature of bonding
- Wide range of hardness \& melting point
ex. High (Diamond) or low (Bismuth) melting point
- Low electrical conductivities at low temperatures when specimens are pure

Ionic vs. Covalent Bonding

- many compounds-partially ionic and partially covalent
- degree of bond type - "electronegativity"
- a large difference in electronegativity \rightarrow largely ionic
- similar electronegativity \rightarrow largely covalent

$\%$ Ionic character $=\left\{1-\exp \left[-(0.25)\left(X_{A}-X_{B}\right)\right]\right\} \times 100$ where $X_{A} \& X_{B}$ are Pauling electronegativities

c. METALLIC

Metallic Bonding

- delocalized electron
- Arises from a sea of donated valence electrons (1, 2, or 3 from each atom)
- Primary bond for metals and their alloys

Free electrons act as a
"glue" to hold the ion core

Metallic Bonding

- The metallic bond forms when atoms give up their valence electrons, which then form an electron sea.
- The positively charged atom cores are bonded by mutual attraction to the negatively charged electrons.

Metallic Bonding

- When voltage is applied to a metal, the electrons in the electron sea can easily move and carry a current.

Metallic Bonding

- mechanical property - What do you expect from oxides and metals?

Oxides

(a)

(b)
brittle

Metals

ductile

Primary Bonding

- Metallic Bond -- delocalized as electron cloud
- Ionic-Covalent Mixed Bonding
$\%$ ionic character $=\left[1-\exp \left\{\frac{\left(X_{A}-X_{B}\right)^{2}}{4}\right\}\right] \times 100 \%$
where $X_{A} \& X_{B}$ are Pauling electronegativities
Ex: MgO

$$
X_{\mathrm{Mg}}=1.3, \quad X_{\mathrm{O}}=3.5
$$

\%lonic Character $=\left[1-\exp \left\{\frac{(3.5-1.3)^{2}}{4}\right\}\right] \times 100 \%=70.2 \%$ ionic

Chapter 2.7
Physical Force and Energy: 1차결합에 비해 약하나 재료의 물성에 영향

Secondary bonding
a. Van der Waals
b. Hydrogen

SECONDARY BONDING 결합 ㅌ $4 \sim 30 \mathrm{~kJ} / \mathrm{mol}$

Arises from interaction between dipoles (쌍극자)

- Fluctuating dipoles

- Permanent dipoles-molecule induced -general case:
-ex: liquid HCl

Adapted from Fig. 2.14, Callister $7 e$.
-ex: polymer

secondary bonding

a. Van der Waals bonding (dipole bonding)

Although electrons have tendency of being
separated as far as possible due to e-e

He^{2+}

repulsion, electrons are constantly in motion

It follows that electrons could get close enough to induce a "electric dipole moment" at atomistic level

$$
\delta+
$$

This tendency is expected to be more significant as the number of electrons increases

Temporal bonding due to the induced electric dipole

Van der Waals Bonding

(1) induced dipole

Isolated Ar atom

(center of positive charge
same as center of negative charge)

Due to statistical nature of electron motion, occasionally the center of negative charge is spatially different than the center of positive charge (i.e., a temporary dipole)

Temporary dipole at left can induce a dipole in a neighboring Ar atom; result is a van der Waals bond between the two Ar atoms

(2) permanent dipole (polar molecule)

b. Hydrogen bonding

When one of the components of covalent bonding is hydrogen...

Since hydrogen atom has only one electron, there is no electron left for the formation of closed shell
\rightarrow Bare proton is exposed without being shielded by electrons ...
\rightarrow Strong ionic character develops locally about hydrogen atom ...

$$
\delta-\quad+\quad \delta-\quad+
$$

... Strong bonding develops locally ...

Hydrogen Bonding

Hydrogen sulfide

- Strongest secondary bonding
- Positively charged Hydrogen ion forms a bridge between two negatively charged ions

Hydrogen Bonding

Van der Waals and Hydrogen bonding

Polyethylene
Nylon-6.6 \& Kevlar

Hydrogen bonding between nylon-6,6 polymer chains

대부분의 분자는 공유결합에 의해 단단히 묶 인 원자군 $\rightarrow 2$ 차 결합에 의해 결합

폴리머: 극히 큰 분자_반데르발스 혹은 수소 결합에 의해 특성 좌우

Materials-Bonding Classification

Material type	Bonding character	Example
Metal	Metallic	Iron (Fe) and the ferrous alloys
Ceramics and	Ionic/covalent	Silica $\left(\mathrm{SiO}_{2}\right):$ crystalline and glasses
noncrystalline		
Polymers	Covalent and secondary	Polyethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}-\right)_{n}$ Semiconductors Covalicon (Si) or codmium covalent/ionic sulfide (CdS)

< 실제 많은 재료는 2 개 혹은 그 이상의 결합에 혼합 >

Bonding compared

Table 2.3 Bonding Energies and Melting Temperatures for Various Substances

Bonding Type	Substance	Bonding Energy		Melting Temperature $\left({ }^{\circ} \mathrm{C}\right)$
		kJ/mol (kcal/mol)	eV/Atom, Ion, Molecule	
Ionic	NaCl	640 (153)	3.3	801
	MgO	1000 (239)	5.2	2800
Covalent	Si	450 (108)	4.7	1410
	C (diamond)	713 (170)	7.4	>3550
Metallic	Hg	68 (16)	0.7	-39
	Al	324 (77)	3.4	660
	Fe	406 (97)	4.2	1538
	W	849 (203)	8.8	3410
van der Waals	Ar	7.7 (1.8)	0.08	-189
	Cl_{2}	31 (7.4)	0.32	-101
Hydrogen	NH_{3}	35 (8.4)	0.36	-78
	$\mathrm{H}_{2} \mathrm{O}$	51 (12.2)	0.52	0

Chapter 2.5 Bonding force and energies

Bonding Energy : potential well concept

- Energy - minimum energy most stable
- Energy balance of attractive and repulsive terms

Bonding Forces \& Energies

$$
\begin{aligned}
& F_{N}=F_{A}+F_{R}=0 \\
& E_{N}=E_{A}+E_{R} F=d E / d r
\end{aligned}
$$

- Covalent bonding

F_{A} : nucleus to electrons
F_{R} : nucleus to nucleus
: electrons to electrons

- lonic bonding
F_{A} : electrostatic attraction
F_{R} : closed shell overlapping

(a) Properties From Bonding: T_{m}

- Bond length, r

- Bond energy, E_{0}

"bond energy"
두원자를 무한대로 분리시키기 위해 필요한 에너지

(b) Properties From Bonding : α

Thermal Expansion
$>$ Thermal expansion \leqslant asymmetric nature of the energy well
$>$ Broad well (generally more asymmetric) \rightarrow larger expansion

Properties From Bonding : $\boldsymbol{\alpha}$

Temperature supplies thermal energy into solids \rightarrow thermal vibration (phonon)

Slope is related to the thermal expansion coefficient of materials

Properties From Bonding : α

- Coefficient of thermal expansion, α

- $\alpha \sim$ symmetry at $r_{\text {o }}$

Bonding

(c) Properties from Bonding: E

> Elastic (Young's) modulus, E (y)

> E ~ curvature at ro (the bottom of the well)

$$
Y \sim\left(\frac{d^{2} E}{d r^{2}}\right)_{r_{0}}
$$

$\mathrm{E} \sim(\mathrm{dF} / \mathrm{dr})$ at r_{o}
(r_{o}-equilibrium separation)

Potential Well Concept

Material	Elastic Modulus		Linear Thermal Expansion Coefficient, α
	(106 psi)	(10 ${ }^{11}$, dynes/cm ${ }^{2}$)	(length/length $\cdot{ }^{\circ} \mathrm{C}$)
Diamond	114	77.5	1.2×10^{-6}
$\mathrm{W}_{2} \mathrm{C}$	90	61.2	$\approx 7.0 \times 10^{-6}$
W	56.5	38.4	4.4×10^{-6}
$\mathrm{Al}_{2} \mathrm{O}_{3}$	50	34.0	8.7×10^{-6}
MgO	40	27.2	$\approx 10.0 \times 10^{-6}$
Ni	30	20.4	13.0×10^{-6}
Si	29	19.7	7.6×10^{-6}
Ge	23	15.7	-
LiF	19	12.9	-
Cu	17	11.5	16.8×10^{-6}
SiO_{2}	10	6.8	8.0×10^{-6}
Mg	6.3	4.3	26.0×10^{-6}
NaCl	4.7	3.7	40.4×10^{-6}
Polystyrene	0.4	0.27	$\approx 79 \times 10^{-6}$
Nylon	0.4	0.27	$\approx 100 \times 10^{-6}$
Polytetra-			
Polyethylene	0.02	0.014	$\approx 300 \times 10^{-6}$
Natural rubber	$10^{-3}-10^{-2}$	$\approx 7 \times 10^{-4}$	$\approx 650 \times 10^{-6}$
		7×10^{-3}	

MATERIALS AND PACKING

Crystalline materials...

- atoms pack in periodic, 3D arrays
- typical of: -metals
-many ceramics
-some polymers

Noncrystalline materials...

- atoms have no periodic packing
- occurs for: -complex structures -rapid cooling
"Amorphous" = Noncrystalline

crystalline SiO_{2}
Adapted from Fig. 3.18(a), Callister 6e.
- Si • Oxygen

noncrystalline SiO_{2}
Adapted from Fig. 3.18(b),
Callister 6 e.

ENERGY AND PACKING

- Non dense, random packing

- Dense, regular packing

Dense, regular-packed structures tend to have lower energy.

Contents for today's class

SUMMARY: BONDING

Type
Ionic
Bond Energy
Large!
Variable
Covalent large-Diamond small-Bismuth

Variable
Metallic large-Tungsten small-Mercury

Secondary smallest

Comments
Nondirectional (ceramics)
Directional
semiconductors, ceramics polymer chains)

Nondirectional (metals)
Directional
inter-chain (polymer) inter-molecular

Contents for today's class

Summary: Properties from Bonds

Ceramics
(Ionic \& covalent bonding):

Metals
(Metallic bonding):
Large bond energy
large T_{m}
large E
small α
Variable bond energy
moderate T_{m}
moderate E
moderate α

Polymers
(Covalent \& Secondary):

Directional Properties
Secondary bonding dominates
small T_{m}
small E
large α

2020 Fall

Introduction to Materials Science and Engineering

9. 10. 2020

Eun Soo Park

Office: 33-313
Telephone: 880-7221
Email: espark@snu.ac.kr
Office hours: by appointment

2.3 Electrons in atoms c. Electronic configurations

Electronic Configurations

		4s	$3 d$					$4 p$			$\left[1 s^{2} 2 s^{2} 22 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{1}$	$\left[\operatorname{Ar]} 4 s^{1}\right.$
19	K	\uparrow										
20	Ca	$\uparrow 1$									$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{2}$	$\left[\mathrm{Ar]} 4 s^{2}\right.$
21	Sc	1t	\uparrow								$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 14 s^{2} 3 d^{1}\right.$	｜Ar｜ $4 s^{2} 3 d^{1}$
22	Ti	11	\uparrow	\uparrow							$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \mid 4 s^{2} 3 d^{2}\right.$	$[\mathrm{Ar}] 4 s^{2} 3 d^{2}$
23	v	$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow						$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 1\right] 4 s^{2} 3 d^{3}$	［Ar］4 $s^{2} 3 d^{3}$
24	Cr	\uparrow	\uparrow	\uparrow	\uparrow		\uparrow				$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{1} 3 d^{5}$	［Ar］ $4 s^{1} 3 d^{\beta}$
25	Mn	$1 \downarrow$	\uparrow	\uparrow	\uparrow		\uparrow				$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{2} 3 d^{5}$	［Ar］ $4 s^{2} 3 d^{6}$
26	Fe	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow	\uparrow				$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{2} 3 d^{6}$	［Ar］ $4 s^{2} 3 d^{6}$
27	Co	11	$\uparrow \downarrow$		\uparrow	\uparrow	\uparrow				$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{2} 3 d^{7}$	［Ar］ $4 s^{2} 3 d^{7}$
28	Ni	$\uparrow \downarrow$	$\uparrow \downarrow$		\uparrow	\uparrow	\uparrow				$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{2} 3 d^{8}$	［Ar］ $4 s^{2} 3 d^{s}$
29	Cu	\uparrow	$\uparrow \downarrow \mid$		$\uparrow \downarrow$	$\uparrow \downarrow$	†1				$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{1} 3 d^{10}$	$[\mathrm{Ar}] 4 s^{1} 3 d^{10}$
30	Zn	$1 \downarrow$	$\uparrow \downarrow$		$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$				$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{2} 3 d^{10}$	$\left[\operatorname{Arr} 4 s^{2} 3 d^{10}\right.$
31	Ga	$\uparrow \downarrow$	\uparrow			$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{2} 3 d^{16} 4 p^{1}$	［Ar］ $4 s^{2} 3 d^{10} 4 p^{1}$					
32	Ge	1t	$\uparrow \downarrow$		† \downarrow	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow		$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{2} 3 d^{10} 4 p^{2}$	｜ Ar ］ $4 s^{2} 3 d^{10} 4 p^{2}$
33	As	$\uparrow \downarrow$	$\uparrow \downarrow$		$\uparrow \downarrow$	$\uparrow \downarrow$	｜\downarrow	\uparrow	\uparrow	\uparrow	$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 14 s^{2} 3 d^{10} 4 p^{3}\right.$	$\|\operatorname{Ar}\| 4 s^{2} 3 d^{10} 4 p^{3}$
34	Se	$\uparrow \downarrow$	$\uparrow \downarrow$		$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	｜\uparrow	\uparrow	$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \mid 4 s^{2} 3 d^{10} 4 p^{4}\right.$	［ Ar$] 4 s^{2} 3 d^{10} 4 p^{4}$
35	Br	$\uparrow \downarrow$	$\uparrow \downarrow$		$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	｜\downarrow	｜\uparrow	$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{2} 3 d^{10} 4 p^{5}$	［Ar］ $4 s^{2} 3 d^{10} 4 p^{5}$
36	Kr	$\uparrow \downarrow$	$\uparrow \downarrow$		$\uparrow \downarrow$	$\uparrow \downarrow$	｜\downarrow	$\uparrow \downarrow$	个ね	$\uparrow \downarrow$	$\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 4 s^{2} 3 d^{10} 4 p^{6}$	［Ar］ $4 s^{2} 3 d^{10} 4 p^{6}$

[^1]
SURVEY OF ELEMENTS

- Most elements: Electron configuration not stable.

- Why? Valence (outer) shell usually not filled completely.

Contents for previous class

Atomic Bonding in Solids : an attempt to fill electron shells
a. Primary bonding
(1) lonic bonds
(2) Covalent bonds
(3) Metallic bonds
(1) Van der Waals
(2) Hydrogen bonding
c. Properties From Bonding

$$
\text { If } E_{o} \text { is larger, }
$$

Tm (melting temp. \rightarrow Broken Bonds ${ }^{\text {j }}$),
E (elastic modulus), ((possibly))
Yield strength is larger, but α is smaller. (thermal expansion coefficient)

Covalent Bonding

Figure 8.26: Structure of High Cristobalite, a Form of Quartz

- The tetrahedral structure of silica $\left(\mathrm{SiO}_{2}\right)$, which contains covalent bonds between silicon and oxygen atoms

Covalent Bonding: Bond Hybrization

(a) Energy $\left\lvert\, \begin{array}{cc}\uparrow \uparrow \frac{\uparrow}{\uparrow} & 2 p \\ 2 s \\ \uparrow & 1 s\end{array}\right.$

- Carbon can form $s p^{3}$ hybrid orbitals

Fig. 2.14, Callister \& Rethwisch 10e.
(Adapted from J.E. Brady and F. Senese, Chemistry: Matter and Its Changes, $4^{\text {th }}$ edition. Reprinted with permission of John Wiley and Sons, Inc.)
(c) Energy

$$
\uparrow \uparrow \uparrow \uparrow 2 s p^{3}
$$

Fig. 2.13, Callister \& Rethwisch 10e.

Covalent Bonding (cont.)

Hybrid $s p^{3}$ bonding involving carbon

Example: CH_{4}
C: each has 4 valence electrons, needs 4 more

H: each has 1 valence electron, needs 1 more

Electronegativities of C and H are similar so electrons are shared in $s p^{3}$ hybrid covalent bonds.

From J. E. Brady and F. Senese, Chemistry: Matter and lts Changes, 4th edition, 2004. Reprinted with permission of John Wiley \& Sons, Inc

Bonding Forces \& Energies

$$
\begin{aligned}
& F_{N}=F_{A}+F_{R}=0 \\
& E_{N}=E_{A}+E_{R} F=d E / d r
\end{aligned}
$$

- Covalent bonding

F_{A} : nucleus to electrons
F_{R} : nucleus to nucleus
: electrons to electrons

- Ionic bonding
F_{A} : electrostatic attraction
F_{R} : closed shell overlapping

(a) Properties From Bonding: $\boldsymbol{T}_{\boldsymbol{m}}$

- Bond length, r

- Bond energy, E_{0}

"bond energy"
- Melting Temperature, T_{m}

T_{m} is larger if E_{0} is larger.

두원자를 무한대로 분리시키기 위해 필요한 에너지

Properties From Bonding : α

- Coefficient of thermal expansion, α

- $\alpha \sim$ symmetry at $r_{\text {o }}$

(c) Properties from Bonding: E

> Elastic (Young's) modulus, E (y)

> $\mathrm{E} \sim$ curvature at r_{o} (the bottom of the well)

$$
Y \sim\left(\frac{d^{2} E}{d r^{2}}\right)_{r_{0}}
$$

E is larger if E_{o} is larger

$\mathrm{E} \sim(\mathrm{dF} / \mathrm{dr})$ at r_{o}
(r_{o}-equilibrium separation)

Contents for previous class

Materials-Bonding Classification

Material type	Bonding character	Example
Metal	Metallic	Iron (Fe) and the ferrous alloys
Ceramics and	Ionic/covalent	Silica $\left(\mathrm{SiO}_{2}\right)$: crystalline and
glasses	noncrystalline	
Polymers	Covalent and secondary	Polyethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}-{ }_{n}\right.$ Semiconductors Covalent or covalent/ionic Silicon (Si) or cadmium sulfide (CdS)

< 실제 많은 재료는 2 개 혹은 그 이상의 결합에 혼합 >

Contents for previous class

Summary: Properties from Bonds

Ceramics
(Ionic \& covalent bonding):

Metals
(Metallic bonding):
Large bond energy
large T_{m}
large E
small α
Variable bond energy
moderate T_{m}
moderate E
moderate α

Polymers
(Covalent \& Secondary):

Directional Properties
Secondary bonding dominates
small T_{m}
small E
large α

Materials Science and Engineering

Contents for today's class

CHAPTER 3:
 Fundamentals of Crystallography

I. Crystal Structures

- Lattice, Unit Cells, Crystal system
II. Crystallographic Points, Directions, and Planes
- Point coordinates, Crystallographic directions, Crystallographic planes
III. Crystalline and Noncrystalline Materials
- Single crystals, Polycrystalline materials, Anisotropy, Noncrystalline solids

Stacking of atoms in solid

Finding stable position

- Minimize energy configuration
- Related to the bonding nature

Materials and Packing

Crystalline materials...

- atoms pack in periodic, 3D arrays
- typical of: -metals
-many ceramics
-some polymers

Quasicrystalline materials...

Noncrystalline materials...

- atoms have no periodic packing
- occurs for: -complex structures -rapid cooling
"Amorphous" = Noncrystalline

crystalline SiO_{2}
Adapted from Fig. 3.22(a), Callister 7 e.
- Si - Oxygen

noncrystalline SiO_{2}

atomic arrangement in the solid state

> Solid materials are classified according to the regularity with which atoms and ions are arranged with respect to one another.
> So, how are they arranged ?
(a) periodically - having long range order in 3-D
(b) quasi-periodically

Quasicrystal
(c) randomly - having short range order with the characteristics of bonding type but losing the long range order
> Crystal: Perfection \rightarrow Imperfection

Amorphous

Chapter 3.2

I. Crystal structures

- How can we stack metal atoms to minimize empty space?

2-dimensions

VS.

Now stack these 2-D layers to make 3-D structures

Crystalline materials - three-dimensional

 periodic arrangement of atoms, ions, or molecules- translational periodicity
Crystal - related topics

- Periodicity (주기성)
- Symmetry (대칭성)
- Anisotropy (비등방성)
- Directions and Planes (방향과 면)
- Interplanar spacing \& angles (면간거리와 각도)
- Diffraction (회절)

I. Crystal structure

- 3D point array in space, such that each point has identical surroundings. These points may or may not coincide with atom positions.
- Simplest case : each atom \rightarrow its center of gravity \rightarrow point or space lattice \rightarrow pure mathematical concept
example: sodium (Na) ; body centered cubic

Hard-sphere unit cell

Reduced sphere unit cell

Chapter 3.3

(2) Unit cell

: smallest repetitive volume which contains the complete

lattice pattern of a crystal

Chapter 3.4 Crystal systems

Unit cell

(3) Lattice parameter

length: $\mathrm{a}, \mathrm{b}, \mathrm{c}$

 angle: α, β, γ
(4) 7 crystal systems

Unit cell

Crystal System | Axial |
| :---: |
| Relationships |

Cubic Interaxial Angles
Hexagonal

Ca=b=c

(4) 7 crystal systems (continued)
 Unit cell

Rhombohedral

$$
a=b=c \quad \alpha=\beta=\gamma \neq 90^{\circ}
$$

Orthorhombic

$$
a \neq b \neq c
$$

$$
\alpha=\beta=\gamma=90^{\circ}
$$

Monoclinic

$$
a \neq b \neq c
$$

$$
\alpha=\gamma=90^{\circ} \neq \beta
$$

Triclinic

$$
a \neq b \neq c
$$

$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

Unit cell

- P, I, F, C

$\square P:$ Primitive
$\square I$: Body centered
$\square F$: Face centered
$\square C$: Base centered

Unit cell

(5) 14 Bravais Lattice - Only 14 different types of unit cells are required to describe all lattices using symmetry

II. Crystallographic points, directions and planes

Chapter 3.5 Point coordinates

- position: fractional multiples of the unit cell edge lengths
- ex) P: q,r,s

cubic unit cell

Chapter 3.5 Point coordinates

Point coordinates for unit cell center are
$a / 2, b / 2, c / 2 \quad 1 / 21 / 21 / 2$

Point coordinates for unit cell corner are 111

Translation: integer multiple of lattice constants \rightarrow identical position in another unit cell

Chapter 3.6

Crystallographic Directions

Algorithm

1. Vector repositioned (if necessary) to pass through origin.
2. Read off projections in terms of unit cell dimensions a, b, and c
3. Adjust to smallest integer values
4. Enclose in square brackets, no commas

$$
[u v w]
$$

ex: $1,0,1 / 2 \quad=>2,0,1 \quad$ [201]
$-1,1,1$ => [111] where overbar represents a negative index
families of directions <uvw>

Crystallographic Directions

- a line between two points or a vector
- [uvw] square bracket, smallest integer
- families of directions: <uvw> angle bracket

Directional indices

Figure 1.8 Directions in a cubic unit cell.

$$
<i j k>\text { : permutation of }[i j k]
$$

Impose index coordination

Lattice Parameter

Table 3.6 Lattice Parameter Relationships and Figures Showing Unit Cell Geometries for the Seven Crystal Systems

	Axial Relationships	Interaxial Angles	Unit Cell Geometry

Cubic

$$
a=b=c
$$

$$
\alpha=\beta=\gamma=90^{\circ}
$$

Hexagonal

$$
a=b \neq c \quad \alpha=\beta=90^{\circ}, \gamma=120^{\circ}
$$

Tetragonal

$$
a=b \neq c \quad \alpha=\beta=\gamma=90^{\circ}
$$

Rhombohedral

$$
a=b=c \quad \alpha=\beta=\gamma \neq 90^{\circ}
$$

Orthorhombic $a \neq b \neq c \quad \alpha=\beta=\gamma=90^{\circ}$
Monoclinic

$$
a \neq b \neq c
$$

$$
\alpha=\gamma=90^{\circ} \neq \beta
$$

Triclinic

$$
a \neq b \neq c \quad \alpha \neq \beta \neq \gamma \neq 90^{\circ}
$$

14 Bravais Lattice

- Only 14 different types of unit cells are required to describe all lattices using symmetry
- simple (1), body-centered (2), base-centered (2) face-centered (4 atoms/unit cell)

Crystal view -Silicon

Crystallographic planes

Chapter 3.7 Crystallographic Planes

${ }_{z}$ Lattice plane (Miller indices)

$\mathrm{mOO}, 0 \mathrm{nO}, 00 \mathrm{p}$: define lattice plane
m, n, ∞ : no intercepts with axes

Intercepts @ (mnp)	2	1	3
Reciprocals	$1 / 2$	1	$1 / 3$
Miller indicies	3	6	2
(362) plane			

Miller indicies; defined as the smallest integral multiples of the reciprocals of the plane intercepts on the axes

Crvstalloaraphic Planes

Plane		Intercepts	Indices
A	$\infty, \infty, 1$	(001)	
B	$1,1,1$	(111)	
	C	$1,1, \infty$	(110)
Y	D	$\infty, \infty,-1$	(001)
	E	$1, \infty, 1 / 2$	$($
	F	$1 / 3,1 / 3,1$	()

Crystallographic Planes

(a)

(b)

\{110\} Family

\{110\} Family

Directions, Planes, and Family

- line, direction
- [111] square bracket
- <111> angular bracket - family
- Plane
- (111) round bracket (Parentheses)
- \{111\} braces - family

HCP Crystallographic Directions

- Hexagonal Crystals
- 4 parameter Miller-Bravais lattice coordinates are related to the direction indices (i.e., $u^{\prime} v w$) as follows.

$$
\begin{gathered}
{\left[u^{\prime} v^{\prime} w^{\prime}\right] \rightarrow[u v t w]} \\
\begin{aligned}
u & =\frac{1}{3}\left(2 u^{\prime}-v^{\prime}\right) \\
v & =\frac{1}{3}\left(2 v^{\prime}-u^{\prime}\right) \\
t & =-(u+v) \\
w & =w^{\prime}
\end{aligned}
\end{gathered}
$$

Fig. 3.8(a), Callister $7 e$.

Miller index
Miller-Bravais index

Miller index
Miller-Bravais index

Miller index
(ī11)

Miller index

Miller-Bravais index

$$
\begin{aligned}
& u^{\prime}=u-t=2 u+v \\
& v^{\prime}=v-t=2 v+u \\
& w^{\prime}=w
\end{aligned}
$$

(10̄10)
$u=\frac{1}{3}\left(2 u^{\prime}-v^{\prime}\right)$
$v=\frac{1}{3}\left(2 v^{\prime}-u^{\prime}\right)$
$w=w^{\prime}$

Miller-Bravais vs. Miller index system
 Directions

Miller	Miller-Bravais	Miller	Miller-Bravais
$[100]$	$[2 \overline{1} \overline{1} 0]$	$[010]$	$[\overline{1} 2 \overline{1} 0]$
$[110]$	$[1120]$	$[\overline{1} 10]$	
$[001]$	$[0001]$	$[11]$	$[11 \overline{2} 3]$
$[011]$	$[\overline{1} \overline{1} 3]$	$[11]$	$[01 \overline{1} 0]$
$[210]$	$[10 \overline{1} 0]$	$[120]$	$[11 \overline{2} 6]$
211$]$	$[10 \overline{1} 1]$	$[112]$	

Conversion of 4 index system (Miller-Bravais) to 3 index (Miller)

$$
\vec{t}=u^{\prime} \vec{a}_{1}+v^{\prime} \vec{a}_{2}+w^{\prime} \vec{c}=u \vec{a}_{1}+v \vec{a}_{2}+t \vec{a}_{3}+w \vec{c}
$$

Miller-Bravais to Miller 4 to 3 axis

$$
\begin{aligned}
& u^{\prime}=u-t=2 u+v \\
& v^{\prime}=v-t=2 v+u \\
& w^{\prime}=w
\end{aligned}
$$

Miller to Miller-Bravais 3axis to 4 axis system

$$
\begin{aligned}
& u=\frac{1}{3}\left(2 u^{\prime}-v^{\prime}\right) \\
& v=\frac{1}{3}\left(2 v^{\prime}-u^{\prime}\right) \\
& w=w^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex. M }[100] \\
& u=(1 / 3)(2 * 1-0)=2 / 3 \\
& v=(1 / 3)(2 * 0-1)=-1 / 3 \\
& w=0 \\
& =>1 / 3[2-1-10]
\end{aligned}
$$

$$
\text { Ex. M-B }\left[\begin{array}{llll}
1 & 0 & -1 & 0
\end{array}\right]
$$

$$
u^{\prime}=2 * 1+0=2
$$

$$
v^{\prime}=2 * 0+1=1
$$

$$
w^{\prime}=0
$$

$$
=>\left[\begin{array}{lll}
2 & 1 & 0
\end{array}\right]
$$

Hexagonal Crystal

- Miller-Bravais scheme

[uvtw]
$t=-(u+v)$

(hkil)
$i=-(h+k)$

Crystallographic Planes (HCP)

- In hexagonal unit cells the same idea is used

example		a_{1}	a_{2}	a_{3}	c
1.	Intercepts	1	∞	-1	1
2.	Reciprocals	1	$1 / \infty$	-1	1
		1	0	-1	1
3. Reduction		1	0	-1	1
4.	Miller-Bravais				

Adapted from Fig. 3.8(a), Callister 7e.

Crystallographic Planes (HCP)

- In hexagonal unit cells the same idea is used

example		a_{1}	a_{2}	a_{3}	c
1.	Intercepts	1	∞	-1	1
2.	Reciprocals	1	$1 / \infty$	-1	1
		1	0	-1	1
3. Reduction		1	0	-1	1
4.	Miller-Bravais				

Adapted from Fig. 3.8(a), Callister 7e.

Miller-Bravais index

Miller index

Does not
Meet with $\overrightarrow{a_{2}}$

Miller index
Miller-Bravais index

Miller index

Schematic view of planes

Schematic view of (111) plane

Inter-planar distance (면간거리)

Interplanar spacing of the (hkl) plane

The value of d which characterizes the distance between adjacent planes in the set of planes with Miller indices (hkl) is given by the following relations. The cell edges and the angles are a, b, c and α, β, γ.

Cubic :

$$
\frac{1}{d^{2}}=\frac{h^{2}+k^{2}+l^{2}}{a^{2}}
$$

Tetragonal : $\quad \frac{1}{d^{2}}=\frac{h^{2}+k^{2}}{a^{2}}+\frac{l^{2}}{c^{2}}$
Orthorhombic: $\quad \frac{1}{d^{2}}=\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}+\frac{l^{2}}{c^{2}}$
Hexagonal : $\quad \frac{1}{d^{2}}=\frac{4}{3}\left(\frac{h^{2}+h k+k^{2}}{a^{2}}\right)+\frac{l^{2}}{c^{2}}$
Rhombohedral : $\quad \frac{1}{d^{2}}=\frac{1}{\sin ^{2} \beta}\left(\frac{h^{2}}{a^{2}}+\frac{k^{2} \sin ^{2} \beta}{b^{2}}+\frac{l^{2}}{c^{2}}-\frac{2 h l \cos \beta}{a c}\right)$
Monoclinic : $\frac{1}{d^{2}}=\frac{\left(h^{2}+k^{2}+l^{2}\right) \sin ^{2} \alpha+2(h k+k l+h l)\left(\cos ^{2} \alpha-\cos \alpha\right)}{a^{2}\left(1-3 \cos ^{2} \alpha+2 \cos ^{3} \alpha\right)}$
Triclinic :

$$
\frac{1}{d^{2}}=\frac{1}{V^{2}}\left(S_{11} h^{2}+S_{22} k^{2}+S_{33} I^{2}+2 S_{12} h k+2 S_{23} k l+2 S_{31} h l\right)
$$

Where: $\quad V^{2}=a^{2} b^{2} c^{3}\left(1-\cos ^{2} \alpha-\cos ^{2} \beta-\cos ^{2} \gamma+2 \cos \alpha \cos \beta \cos \gamma\right)$

III. Crystalline and Noncrystalline Materials

CRYSTALS AS BUILDING BLOCKS

- Some engineering applications require single crystals:
--diamond single crystals Natural and artificial

(Courtesy Martin Deakins, GE Superabrasives, Worthington, OH. Used with permission.)
- Crystal properties reveal features of atomic structure.
--Ex: Certain crystal planes in quartz fracture more easily than others.

Single vs Polycrystals

- Single Crystals
-Properties vary with direction: anisotropic.
-Example: the modulus of elasticity (E) in BCC iron:
- Polycrystals
-Properties may/may not vary with direction.
-If grains are randomly oriented: isotropic.
$\left(\mathrm{E}_{\text {poly iron }}=210 \mathrm{GPa}\right)$
-If grains are textured, anisotropic.

$\mathrm{E}($ edge $)=125 \mathrm{GPa}$

Data from Table 3.3,
Callister $7 e$.
(Source of data is R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed., John Wiley and Sons, 1989.)

Adapted from Fig. 4.14(b), Callister $7 e$.
(Fig. 4.14(b) is courtesy of L.C. Smith and C. Brady, the National Bureau of Standards, Washington, DC [now the National Institute of Standards and Technology, Gaithersburg, MD].)

Grain Boundaries

Microstructure on top surface.

Grains

Deformed

Atomic view of grain
boundaries

Polycrystals

- Most engineering materials are polycrystals.

- Nb-Hf-W plate with an electron beam weld.
- Each "grain" is a single crystal.
- If grains are randomly oriented,

Adapted from Fig. K, color inset pages of Callister 5e. (Fig. K is courtesy of Paul E. Danielson, Teledyne Wah Chang Albany) overall component properties are not directional.

- Grain sizes typ. range from 1 nm to 2 cm (i.e., from a few to millions of atomic layers).

Polymorphism

- Two or more distinct crystal structures for the same material (allotropy/polymorphism)
titanium

$$
\alpha, \beta-\mathrm{Ti}
$$

carbon
diamond, graphite
iron system

DEMO: HEATING AND COOLING OF AN IRON WIRE

- Demonstrates "polymorphism" - The same atoms can have more than one

Contents for today's class

CHAPTER 3:
 Fundamentals of Crystallography

I. Crystal Structures

- Lattice, Unit Cells, Crystal system
II. Crystallographic Points, Directions, and Planes
- Point coordinates, Crystallographic directions, Crystallographic planes
III. Crystalline and Noncrystalline Materials
- Single crystals, Polycrystalline materials, Anisotropy, Noncrystalline solids

[^0]: ＊쓱으로 표시인 것운 마지막 진자가 더애직 부춘위를 표시힌다．

[^1]: ＊쓱으로 표시인 것운 마지막 진자가 더애직 부춘위를 표시힌다．

