Chapter 2. General Properties of Waves

Waves

- Basic wave properties
- (1) Wave motion in crystalline solids (periodic vibration of the atoms)
- (2) Electromagnetic waves (classical view of light)
- (3) Electron waves (wave-like of matter)
- A wave is any periodic displacement in time and position. $\xi(x, y, z, t)$
- The characterizing parameters are

v: phase velocityλ: wavelengthν: frequency

• ex) sine, cosine waveforms (harmonic)

Harmonic waves moving in +x direction with displacement ξ , velocity v, and wavelength λ . A point corresponding to a specific displacement ξ on the wave travels to +x with the phase velocity v.

Dispersion relationship

• Relation between frequency and k, *i.e.* $\omega(k)$.

Fig. 5.12. Curves illustrating dispersion relations: (a) a straight line representing a non-dispersive medium, $v = v_g$; (b) a normal dispersion relation where the gradient $v = \omega/k > v_g = d\omega/dk$; (c) an anomalous dispersion relation where $v < v_g$

Group velocity: $v_g = \partial \omega / \partial k$ Motion of a pulse, propagation of energy

Relationship between v_{g} and v

$$\partial \omega / \partial k = \mathbf{v}_g = \mathbf{v} + k \frac{\partial \mathbf{v}}{\partial k}$$

(1) In a nondispersive system. $v_g = v$ (2) In a dispersive system, $v_g \neq v$

Wave equation

• Wave equations are general equations of motion relating the time and space dependence of the wave displacement, which can be represented by

$$\sum_{n} a_{n} \frac{\partial^{n} \xi}{\partial q^{n}} = \sum_{m} b_{m} \frac{\partial^{m} \xi}{\partial t^{m}}$$

 ξ : displacement q: generalized coordinate (x, y, z) a_n, b_m ; constant coefficients

- Application of boundary conditions to $\xi(q,t)$ may limit the allowed modes of vibration.
- The choice of the solution: harmonic waves

$$\xi(x,t) = A\cos(\omega t - kx) = A\cos(\omega t - \frac{2\pi}{\lambda}x)$$

$$\xi(x,t) = B\sin(\omega t - kx) = B\sin(\omega t - \frac{2\pi}{\lambda}x)$$
The wave is moving +x direction

A and B are amplitudes of the wave. *kx* : phase of the wave

Wave equation

• Or more conveniently (use of complex form)

	$\xi(x,t) = A \exp\{i(kx - \omega t)\}\$ $\xi(x,t) = A \exp\{-i(kx + \omega t)\}\$	traveling to the $+ x$ direction traveling to the $- x$ direction	
- At $t = 0$,			
	$\xi(x,0) = A \exp(ikx)$		
_	At $t > 0$,		
$\xi(x,t) = A \exp\left[i\left\{k(x+\frac{\omega}{k}t) - \omega t\right\}\right]$			
$= A \exp(ikx) = \xi(x,0)$			
The wave is traveling with the velocity			
of w/k .			

• Or $\xi = Ae^{i(kx-\omega t)} + Be^{-i(kx+\omega t)}$ The wave traveling to +xdirection with $|v| = \omega/k$ The wave traveling to -xdirection with $|v| = \omega/k$

Traveling waves

• These waveforms correspond to traveling waves.

Harmonic waves moving in +x direction with displacement ξ , velocity v, and wavelength λ . A point corresponding to a specific displacement ξ on the wave travels to +x with the phase velocity v.

- Moving in a particular direction
- Unconfined by boundary conditions

Standing waves

• The dependence of the displacement on position is independent of the dependence of the displacement of time.

- Confined boundary conditions at *x*=0 and *x*=L
- Variation with x is *independent* of variation in time

$$A \exp\{i(kx - \omega t)\} - A \exp\{-i(kx + \omega t)\} = C \sin k x \exp(-i\omega t)$$

+x direction -x direction (reflected at x=L)

Transverse and longitudinal waves

• Transverse wave

: Displacement is vertical to the direction of wave

 $\vec{\xi} \perp \vec{k}$

- e.g. string, lattice, light

• Longitudinal wave

: Displacement is parallel to the propagation of wave

 $ec{\xi}//ec{k}$

Velocity

• Phase velocity

 $v_{ph} = \omega/k$

Velocity

- Phase velocity
 - Velocity of individual wave

- Group velocity
 - -v of which energy is transported
 - -v of a pulse
 - Sum of individual waves

Red: phase velocity Green: group velocity