Slide#7 solution

Molecular weight of HOCl = 52.46 g/mole

Unit conversion - mg/L to molarity:

 $\frac{15 mg HOCl}{1 L water} \times \frac{1}{52.46 g HOCl/mole HOCl} \times 10^{-3} g/mg = 2.86 \times 10^{-4} M$

$$HOCI = H^+ + OCI^-, pK_a = 7.54$$

weak acid \rightarrow only a fraction dissociates

 $K_{a} = 10^{-7.54} = \frac{[H^{+}][OCl^{-}]}{[HOCl]} = \frac{10^{-7} \cdot [OCl^{-}]}{[HOCl]}$ $[HOCl] = 3.47[OCl^{-}]$ $[HOCl] + [OCl^{-}] = 4.47[OCl^{-}] = 2.86 \times 10^{-4} M$ $[OCl^{-}] = 0.64 \times 10^{-4} M$

 $[HOCI] = 2.22 \times 10^{-4} M$

Basic Biology Concepts

Basic biology concepts

- Chemical composition of life
- Cell, cell contents, and cellular functions
- Energy and metabolism
- How biological principles are applied to environmental engineering

Chemical composition of life

- Major elements: C, H, O, N, S, P
 - Liebig's law of the minimum
- Major classes of [macro]molecules:
 - Carbohydrates
 - Lipids
 - Protein
 - Nucleic acids

Carbohydrates

- Energy source, building materials for cells
- Monomers, dimers, polymers
 - Monosaccharides: building blocks

- Disaccharides: sucrose, lactose, maltose
- Polysaccharides: 100s 1000s of monosaccharides

Lipids

- Not polymeric (no monomers, dimers, polymers)
- Various structures
- Common characteristic: hydrophobic (repulsion of water)
- Fats, phospholipids, and steroids
 - fats: store energy
 - phospholipids: major component of cell membranes
 - steroids: signaling (ex: steroid hormones)

- Fat = fatty acid + glycerol
- Saturated fat vs. Unsaturated fat

- Affect almost all cellular functions (enzymes, immunoglobulins, hemoglobins, etc.)
- Structural support of organisms
- Monomers: amino acids (20) / polymers: polypeptides

A GUIDE TO THE TWENTY COMMON AMINO ACIDS

AMINO ACIDS ARE THE BUILDING BLOCKS OF PROTEINS IN LIVING ORGANISMS. THERE ARE OVER \$00 AMINO ACIDS FOUND IN NATURE - HOWEVER, THE HUMAN GENETIC CODE ONLY DIRECTLY ENCODES 20. "ESSENTIAL" AMINO ACIDS MUST BE OBTAINED FROM THE DIET, WHILST NON-ESSENTIAL AMINO ACIDS CAN BE SYNTHESISED IN THE BODY.

Wold': This chart only shows those amino acids for which the human genetic code directly codes for. Selenocysteine is often referred to as the 21st amino acid, but is encoded in a special manner. In some cases, distinguishing between asparagine/asparatic acid and glutamine/glutamic acid is difficult. In these cases, the codes asx (8) and glx (2) are respectively used.

COMPOUND INTEREST 2014 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem
 Shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

- Protein structure
 - Primary
 - Secondary
 - Tertiary
 - Quaternary

Nucleic acids

- Store and transmit hereditary information
- Monomers: nucleotides / polymers: DNA & RNA

Structure of a DNA

DNA vs. RNA

	DNA (deoxyribonucleic acid)	RNA (ribonucleic acid)
Sugar	deoxyribose	ribose
Strand	double-stranded	single-stranded
Base	adenine (A), thymine (T), guanine (G), cytosine (C)	adenine (A), uracil (U), guanine (G), cytosine (C)
Function	long-term storage of genetic information; transfer genetic information to other cells and new organisms	transfer the genetic code from the DNA to ribosomes to make proteins

The cells

 Prokaryotes vs. Eukaryotes: absence/presence of a nucleus

Composition of a cell

- Cell membrane
 - separates the interior of the cells from outside
 - exhibit selective permeability to control material movement in & out of a cell
- Nucleus: contains chromosomes (eukaryotic cells)
- Ribosomes: synthesize proteins
- Mitochondria: produce ATP
- Cell wall: give rigidity to a cell (prokaryotes/plant cells)

Energy and metabolism

Photosynthesis: convert energy from sunlight into chemical energy

 $6CO_2 + 6H_2O + sunlight \xrightarrow{\text{chlorophyll}} C_6H_{12}O_6 + 6O_2$

Energy and metabolism

- Metabolism: life-sustaining chemical transformations within cells of living organisms
 - catabolism: process to break down molecules into smaller units to generate energy (ATP)
 - anabolism: process to construct macromolecules from smaller molecules (consumes ATP)

Biology and environmental engineering

- Quality of natural water (rivers, lakes, oceans..)
 - self-purification of natural water environments:
 microorganisms in water degrade contaminants
 - oxygen depletion: if organic contaminants are present in excess, microorganisms deplete dissolved oxygen in water → fish kills!
 - pathogen risk: limit recreation (fishing, swimming, ...)
 and impact the ecosystem
 - algae problems (algal bloom excessive algal growth)

Biology & EE: Water treatment

- Drinking water should be treated to prevent spreading of water-related diseases
 - Pathogens involved can be bacteria, protozoa, virus, helminth
- Primary removal processes in drinking water treatment plants: filtration & disinfection

Norovirus

Vibrio cholerae

Toxoplasma gondii

Biology & EE: Wastewater treatment

- Biological wastewater treatment
 - Use abilities of microorganisms to degrade/transform organic substances
 - Main player: bacteria
 - Let them work not in a river but in a reactor!
 - Has been the most successful & economic way to treat wastewater for ~100 yrs

Biology & EE: Hazardous waste treatment

- Bioremediation of sites impacted by hazardous wastes
 - Use microorganisms to degrade hazardous chemicals in soils, sediments, and groundwater into non-toxic chemicals
 - Microorganisms' ability to deal with complex chemical structures & newly developed chemicals
 - Microorganisms in the environment exist as consortium (a group of millions of different species working together)
 - Microorganisms have excellent ability to evolve may develop capability to degrade new chemicals within a short time period (<years)

Suggested readings

```
[ENG] pp. 97 – 121, 139 – 143
```

```
[KOR] pp. 91 – 117, 136 – 142
```

Next class

Mass balance & Reactors I

- Mass balance principles, applications & related concepts
- State of "mixing"
- Reactor analysis using mass balance

Basic Chemistry Concepts II

Basic chemistry concepts II

- Equilibrium chemistry (continued)
 - Acid-base equilibria
 - Gas dissolution
- Reaction kinetics
- Carbonate system
- Alkalinity

Chemical equilibrium: acid-base equilibria

• Ionization of water: $H_2 O + H_2 O = H_3 O^+ + O H^ K = \frac{\{H_3 O^+\}\{O H^-\}}{\{H_2 O\}^2}$

 $\{H_2 O\} = \gamma_{H_2 O} \cdot [H_2 O], \quad \gamma_{H_2 O} \approx 1, \quad [H_2 O] = 55.6 M$

• Dissociation constant of water, K_w

 $K_w = K \cdot \{H_2 O\}^2 = \{H_3 O^+\} \{OH^-\}$

Chemical equilibrium: acid-base equilibria

$$K_w = \{H_3O^+\}\{OH^-\}$$
 or $K_w = \{H^+\}\{OH^-\}$

 $pK_w = 14$ (at 25°C)

$$pH < 7 \longrightarrow \{H^+\} > \{OH^-\}$$
 acidic
 $pH > 7 \longrightarrow \{H^+\} < \{OH^-\}$ basic

Acid dissociation constant

 $HA = H^+ + A^-$

• Acid dissociation constant, K_a

$$K_{a} = \frac{\{H^{+}\}\{A^{-}\}}{\{HA\}} = \frac{\gamma_{H^{+}}[H^{+}]\gamma_{A^{-}}[A^{-}]}{\gamma_{HA}[HA]} \approx \frac{[H^{+}][A^{-}]}{[HA]}$$

in dilute solutions (<5% error if I < 10⁻³ M)

- Strong acid = strong tendency to dissociate = high K_a
 = low pK_a
- Weak acid = only a small fraction dissociates = low K_a = high pK_a

Dissociation constants of some acids

Acid	Reaction	рК _а	
Hydrochloric acid	$HCI = H^+ + CI^-$	≈-3]
Nitric acid	$HNO_3 = H^+ + NO_3^-$	-1	- Strong
Sulfuric acid	$H_2SO_4 = H^+ + HSO_4^-$	≈-3	Strong
Bisulfate	$HSO_4^{-} = H^+ + SO_4^{-2}$	1.9	J
Acetic acid	$CH_3COOH = H^+ + CH_3COO^-$	4.75	1
Carbonic acid	$H_2CO_3^* = H^+ + HCO_3^-$ $HCO_3^- = H^+ + CO_3^{2-}$	6.35 10.33	- Weak
Phosphoric acid	$H_{3}PO_{4} = H^{+} + H_{2}PO_{4}^{-}$ $H_{2}PO_{4}^{-} H^{+} + HPO_{4}^{2-}$ $HPO_{4}^{2-} = H^{+} + PO_{4}^{3-}$	2.12 7.20 12.32	

Acid dissociation constant

Q: A solution of HOCl is prepared in water by adding 15 mg HOCl to a volumetric flask, and adding water to the 1.0 L mark. The final pH is measured to be 7.0. What are the concentrations of HOCl and OCl⁻? $(T = 25^{\circ}C)$

Chemical equilibrium: gas dissolution

 Henry's Law: partial pressure of a chemical in the gas phase is linearly proportional to the concentration of the chemical in the aqueous phase

$$P_{gas} = kC^*$$

where P_{gas} = partial pressure in the gas phase C^* = concentration in the water k = constant

- The equilibrium/solubility product constants do not tell anything about the reaction rate!
- Differentiate <u>equilibrium</u> and <u>kinetics</u>

Reaction kinetics: study of the speed at which reactions proceed

 $aA + bB \rightarrow cC$

$$r_A = \frac{d[A]}{dt} = -k[A]^{\alpha}[B]^{\beta}$$

 r_A = reaction rate with respect to chemical A [conc./time] k = reaction rate constant $\alpha + \beta$ = overall reaction order

Reaction orders and half life

Overall Reaction order	Rate expression	Units on <i>k</i>
Zero	$r_A = -k$	(conc.)(time) ⁻¹
First	$r_A = -k[A]$	(time) ⁻¹
Second	$r_A = -k[A]^2$	(conc.) ⁻¹ (time) ⁻¹
Second	$r_A = -k[A][B]$	(conc.) ⁻¹ (time) ⁻¹

- Half-life (t_{1/2}): time required for the concentration to reach ½ of its initial conc.
 - Defined for 1st order reactions only

Carbonate system – a natural buffer system

 Atmospheric CO₂ dissolves in water to produce a weak acid, which provides the potential to act as a natural pH buffer:

 $CO_2(g) + H_2O = H_2CO_3^* = H^+ + HCO_3^- = 2H^+ + CO_3^{2-}$

 $H_2CO_3^*$ = sum of true $H_2CO_3(aq)$ and $CO_2(aq)$

What's a pH buffer?

- A solution that resists large changes in pH
- A solution containing a weak acid and its conjugate base (or a weak base and its conjugate acid)

```
ex) CH_3COOH (pK<sub>a</sub>=4.75, weak acid)
```

+ CH₃COONa (to provide conjugate base (CH₃COO⁻)]

Carbonic acid dissociation

$$H_2 C O_3^* = H^+ + H C O_3^-$$
, $K_{a1} = 10^{-6.35}$ (at 25°C)
 $H C O_3^- = H^+ + C O_3^{2-}$, $K_{a2} = 10^{-10.33}$ (at 25°C)

* A buffer works at a pH range close to the *pK_a* of the weak acid component (check slide#6)

• Measure of the resistance of water to the addition of strong acid

• Sum of all titratable bases to a pH of approximately 4.5

 $Alkalinity = [HCO_{3}^{-}] + 2[CO_{3}^{2-}] + \dots + [OH^{-}] - [H^{+}]$ Include B(OH)₄⁻, PO₄³⁻, HPO₄²⁻, SiO(OH)₃⁻, etc. if significant HCO₃⁻ & CO₃²⁻ are major alkalinity contributors in natural waters

Carbonate alkalinity = $[HCO_3^{-}] + 2[CO_3^{2-}]$

 For ordinary water with neutral pH, Alkalinity ≈ Carbonate alkalinity ≈ [HCO₃⁻] (why??)

Unit of alkalinity

- Using molarity for each species, we get "eq/L"
- "eq": equivalent, moles of H⁺ ion in an acid-base solution or electrons in a redox reaction
- More common unit is "mg/L as CaCO₃"
- 100 g CaCO₃ contains 1 mole CO₃²⁻ (CaCO₃ molecular weight = 100) → produces 2 eq alkalinity
- Unit conversion: $1 \text{ meq/L} = 10^{-3} \text{ eq/L} = 50 \text{ mg/L}$ as CaCO₃

$$(1 \ meq \ Alk/L) \times \left(\frac{100 \ mg \ CaCO_3}{2 \ meq \ Alk}\right) = 50 \ mg/L \ as \ CaCO_3$$

Suggested readings

[KOR] pp. 51 – 60, 71 – 77

Next class

Basic biology concepts

- Chemical composition of life
- Cell, cell contents, cellular functions
- Energy and metabolism
- How biological principles are applied to environmental engineering