Two-dimensional materials and applications

3. Properties of 2D Insulators

Search for High-k Dielectric Materials

Perfect Substrate for Graphene Device

Emerging 2D Insulators

Graphene devices on hBN substrate

C. Dean, et al, Nature Nano. (2010)

Coulomb drag in graphene separated by hBN

Tunneling field effect transistors

Properties of hBN

BN

SiO2

Uniform tunneling current within area of the same thickness without pinholes.

Fowler-Nordheim model for tunneling

$$I(V) = A V^2 exp\left(-\frac{B}{V}\right) \implies ln\frac{I}{V^2} = lnA - \frac{B}{V}$$

$$A = rac{A_{eff}q^{3}m}{8\pi h \ \phi_{B}d^{2}m^{*}}$$
 , $B = rac{8\pi \sqrt{2m^{*}}\phi_{B}^{3/2}d}{3hq}$

Barrier height (ϕ_B) = 3.07eV

Dielectric Strength = 7.94 MV/cm (0.794 V/nm)

For SiO₂, 1V/nm & 3.25eVFor HfO₂, 2V/nm & 3.6eV

hBN can be used as an atomically flat and ultrathin ins ulator or tunnel barrier instead of oxides.

Devices using hBN as tunneling barrier

Fermi level depinning : schottky barrier reduction

Light-emitting diodes

J. Wang. et al, Adv. Mater.(2016)

Gate-controlled rectifying behavior using hBN barrier

F. Withers. et al, Nat. Mater.. (2015)

Neuromorphic devcie

Electronic synapse device

Large scale memory array

Yuanyuan Shi, et al, Nature Electronics (2018)

Linfeng Sun, et al, Nature Commun. (2019)

Neuromorphic devcie

Resistive Switching behavior in CVD hBN

EELS cross-sectional analyses

EELS profiles at the GB/CF locations show clear migration of B toward the Ti and, at the same time, penetration of Ti into the *h*-BN can be observed.

optimization process for gold ion and boron vacancies in hBN

final state

voltage/v

Deji Akinwande. et al, Adv. Mater. (2018)

Mario Lanza. et al, Adv. Funct. Mater. (2016)

Passivation / Dielectrics

Comparison hBN vs SiO₂ substrate

a Topography

Regis Decker., et al, Nano Letter (2011)

Superconductivity behavior encapsulated by hBN

Superconductivity is only observed in encapsulated samples

Xiaoxiang Xi,. et al, Nature Physics(2016)

Effect of dielectric screening by Al₂O₃ for WS₂

The combination of high-quality Al2O3 dielectric can effectively reduce the density of interface traps and Coulomb impurities, leading to a significant improvement of the mobility.

Yang Cui ., et al, Adv. Materials (2015)

Graphene nanoribbon FET behavior by STO

A GNR field-effect transistor (FET) shows bipolar FET behavior with a high mobility and low operation voltage at room temperature because of the atomically flat surface and the large dielectric constant of the insulating $SrTiO_3$ layer.

Yun-Sok Shin,. et al, JACS (2011)

Passivation / Dielectrics

- A. Kis et al. Nat. Nanotechnol. (2011)
- Yoon et al. Nano letters (2011)

- 1. Instability of 2D materials: Need for passivation
- 2. Top-gate device structure: Individual operation of 2D devices (Back-gated FET is not compatible with integrated circuit as it cannot individually tune each device.)
- 3. Low operation voltage (further device scaling): Ultrathin dielectric with high k.

G. H. Lee et al. ACS Nano (2015)

Passivation / Dielectrics

Difficulties in deposition of dielectrics on 2D materials

- 1. Not sufficient dangling bonds or nucleation sites on 2D materials
- 2. Island type growth of dielectrics due to lack of covalent bonding at dielectric/channel interface
- Damage of 2D materials by surface functionalization of MoS₂ channel (oxygen plasma or UV ozone treatment for promotion of reactivity)

ALD

ACS Nano (2013); Chem. Phys. (2017)

Wen Yang, et al. Sci. Rep(2015)

Seed-layer

Nat. Elec. (2019) Chem, Commun. (2015)

Surface functionalization

2D Dielectric Materials

2D metal oxides by surface oxidation of liquid metal

Science 358, 332-335 (2017)

- Liquid metal alloy in inert condition
- □ Surface oxidation in ambient condition
- Ultrathin 2D oxides transfer by touching liquid metal droplet

Quasi 2D CaF₂ dielectric

- **Quasi 2D CaF**₂: Terminated by inert F atoms
- **\Box** High dielectric constant: $\varepsilon \sim 8.43$
- \Box Wide work function: $E_g \sim 12.1 \text{ eV}$
- Improved device performance

Advanced Dielectrics for 2D Materials

HfS₂ to HfO₂ monolithic conversion

New quasi van der Waals dielectrics: CaF₂

Single atom thick HfO₂ gate dielectric

1.2 nm thick Ti layer on graphene works as seed layer for HfO_2 deposition (ALD), high quality ultrathin HfO_2 dielectric (8 nm) reduces short channel effects.

Nano Lett. 2018, 18, 3807-3813

Properties of Other 2D Insulators

S. Balendhran et al. Adv. Mater. (2013)

Need for Wide Bandgap 2D Materials

Large bandgap ~ 6 eV Dielectric constant ~ 3.5 Low leakage current

Issues

- □ High synthesis temperature (> 2000°C) and high pressure
- No controllability of thickness
- Leakage current due to small grain size and grain boundary
- Difficulties in epitaxial growth of other 2D materials on hBN

Hexagonal boron nitride (hBN)

Bandgap of 2D oxides

Epitaxial Growth of MoO₃ on 2D Templates

Growth of MoO₃ using 2D templates

MoO₃ nanoplatelets on various 2D templates

Epitaxial Growth of MoO₃ on 2D Templates

Band Structure of Epitaxially Grown MoO₃

Thickness dependence of Band gap 3.3 3.13

Ultraviolet photoelectron spectroscopy

Band structure

Φ=4.6eV

As-grown

2.8eVE_g=2.9eV

E_{vac}

CB

VB

J.H. Kim, J. Dash, G.H. Lee 2D Materials (2018)

AFM Measurement of MoO₃

J.H. Kim, H.G Kim, <u>G.H. Lee</u> Nano Lett. (2019)

Electrical Properties of MoO₃

Molecular Crystal Dielectric

