Chapter 4

Expression of Genetic Information

1. 중심 원리(Central Dogma)

Central Dogma

by F. Crick

DNA → RNA → Protein (단백질)

4 종류의 염기로 구성

20 종류의 아미노산으로 구성

Central Dogma

단위암호당 염기의 개수표시 가능 아미노산 개수1 (A, T, G, C)42 (AA, AT, AG,...)4×4=163 (AAA, AAT, AAG,...)4×4×4=64

Genetic Code

Triplet of Bases

YOUCANUSETHEPEN

YOUCANUSETHEPEN

YOUCANUSETHEPEN

YOUCANUSETHEPEN

Decoding

Genetic Code

Second letter

		U	с	A	G	
	U	UUU]Phe UUC] UUA UUG]Leu	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU] Cys UGC Stop UGA Trp	U C A G
letter	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU] His CAC] Gin CAA] Gin	CGU CGC CGA CGG	Thiro ⊃ ∪ < G
First	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC]Asn AAA AAG]Lys	AGU Ser U C AGC AGA AGG AGG G	⊃ c < g
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG GIu	GGU GGC GGA GGG	U C A G

※ 출처 : commons.wikimedia.org

- 20 members for 20 amino acids
- Designed club tie
 Designed tie pins for 20 amino acids

RNA Tie Club

- 1) ALA George Gamow
- 2) ARG Alexander Rich
- 3) ASN Paul Doty
- 4) ASP Robert Ledley
- 5) CYS Martynas Ycas
- 6) GLN Robley Williams
- 7) GLU Alexander Dounce
- 8) GLY Richard Feynman
- 9) HIS Melvin Calvin
- 10) ISO Norman Simmons

- 11) LEU Edward Teller
- 12) LYS Erwin Chargaff
- 13) MET Nicholas Metropolis
- 14) PHE Gunther Stent
- 15) PRO James Watson
- 16) SER Harold Gordon
- 17) THR Leslie Orgel
- 18) TRY Max Delbrück
- **19) TYR Francis Crick**
- 20) VAL Sydney Brenner

George Gamow (Physicist)

"Alpher, Bethe, Gamow"(Paper about the chemical elements in space)

"αβγ" paper (April 1, 1948)

※ 출처 : George Gamow, https://en.wikipedia.org

2. 게놈(Genome)

Gene & Genome

- DNA
- 염색체 (chromosome)
- 유전자 (gene)
 - 어떤 단백질의 아미노산 서열을 결정하는데 필요한
 완전한 정보를 가진 DNA
- 게놈 (genome, 유전체)
 - 한 생물체 내에 존재하는 유전물질의 완전한 세트

- 1988, Watson^O National Center for Human
 Genome Research 초대 소장을 맡으며 출범
- 3.2 x 10⁹ bp

First Draft of HGP

- **2000.** 6. 26.
- B. Clinton
 - (White House)
- T. Blair
 - (10 Downing St.)
- Clinton
 - "Today, we are learning the language in which God created life."

※ 출처 : Bill Clinton, https://en.wikipedia.org, Tony Blair, https://www.wikidata.org

Toward one thousand genome (게놈 해독 비용 1000달러를 향하여)

- 2000년 당시
 30억불(3조원), 10년
- 2007년
 - 100만불, 수개월
- 2009년
 - 4,400불, 십수주
- 2015년

개인 유전정보 분석 서비스(2011년 상반기 기준)

디코드미 (deCODEme) 2,000불 내비지닉스 (Navigenics) 999불

23앤드미 (23andMe) 499불

DNA 유전코드 판독 질병과의 연관성 분석 분석완료 통보

■ 침을 튜브에 담아 서비스 회사로 배송

지속적인 업데이트 정보 제공 받음

웹에 접속하여 결과 확인

개인 유전정보 분석 서비스

3. 전사(Transcription)

Central Dogma

Transcription

mRNA synthesis by RNA polymerase

Regulation of Transcription

Promoter

- Binding site of RNA polymerase and regulatory proteins (transcriptional regulator; activator or repressor)
- Terminator
 - The site where transcription stops

Regulation of Transcription

Processing of eukaryotic RNA

Splicing : joining of exons

- mRNA (messenger RNA)
 - 단백질로 번역되는 정보 제공
- rRNA (ribosomal RNA)
 - 라이보솜 구성성분
- tRNA (transfer RNA)
 - 번역 과정에서 아미노산 운반

4. 번 역(Translation)

Translation

Translation

tRNA

- Cloverleaves shaped folding
- Anticodon: complementary to codon
- 3' end: amino acid attachment

※ 출처 : commons.wikimedia.org

Translation

- Assembly of ribosome and mRNA
- Binding of tRNA
- Peptide bond formation
- Release of tRNA

Translation

- Ribosome binding site in mRNA
 - Shine-Dalgarno Sequence
- Initiation codon
 - AUG for methionine
- Stop codon
 - UGA, UAA, UAG : no corresponding tRNA

Cellular Fate of Proteins

 Protein Targeting to specific compartment (ER, Nucleus, Mitochondria) is guided by signal peptide (tags)

Protein Targeting to ER

- Proteins with signal peptide
 - Secretory proteins
 - Membrane proteins
 - Proteins in ER, Golgi, and lysosome
- Modification during transport from ER to Golgi apparatus
 - Glycosylation

Chapter 5

Protein Structure and Function

1. 아미노산 (Amino acid)

Amino Acids and Primary Structure

- Amino acids
 - Amino group
 - Carboxyl group
 - R group; 20 Side chains

Amino Acids and Primary Structure

- Peptide bond
 - Between NH₂ and COOH
- Polypeptide
 - A chain of amino acids
 - N terminus and C terminus
- Primary structure
 - Linear arrangement (sequence) of amino acids

Amino Acids

2. 수소 결합 (Hydrogen bond)

Polar

Polar

Hydrophilic

Hydrogen bond

High electronegativity

• F, O, N

Hydrogen bond

3. 단백질 구조 (Protein structure)

Primary and Secondary Structure

Primary structure

- Linear arrangement (sequence) of amino acids
- Secondary structure
 - Core elements of protein architecture
 - Neutralization of partial charges of the peptide backbone by hydrogen bonding
 - Local folding of polypeptide chain
 - α helix, β sheet : 60% of the polypeptide chain
 - Random coils and U-shaped turn

α -Helix

- Hydrogen bond between carbonyl O (n) and amid H (n+4)
- Directionality on the helix : The same orientation of H bond donor
- Side chains point outward : Determine hydrophobic or hydrophilic quality

β -Sheet

- Hydrogen bonding between β strands
 → β sheet, pleated sheet
- Usually not flat, but twisted

Tertiary Structure

Overall folding of a polypeptide chain

Tertiary Structure

Stabilization

- weak interaction
 - Hydrophobic interaction between nonpolar side chains
 - Hydrogen bond between polar side chains and peptide bonds
- Disulfide bond formation

Higher Levels of Structure

Domains

- One stable, compact, three-dimensional shape
- Fundamental units of protein structure and function
 - DNA binding domain, transmembrane domain
- e.g. lambda repressor (236 aa)
 - N terminal domain : DNA binding
 - C terminal domain :
 - Interaction with C terminal domain of another molecule (dimerization)

Modular Proteins

- New proteins by combination of functional domains
- Biotechnological application using recombinant DNA technology

Quaternary Structure

- Association of multiple polypeptide chains
 - Lambda repressor : dimer
 - *E. coli* RNA polymerase : Five polypeptide chains

Levels of Protein Structure

Level of structure	Description	Notes	
Primary	Amino acid sequence	Encoded directly by the DNA base se- quence of the gene; every protein has pri- mary structure.	
Secondary	Local areas of alpha helix, beta sheets, or unstructured loops	Much secondary structure is a solution to keeping hydrophobic amino acid side chains together and neutralizing the hy- drophilic peptide backbone.	
Tertiary	Domains	A protein may contain one or more do- mains. Domains are compact structures usually encoded by a continuous stretch of DNA and often associated with a specific function.	
Quaternary	Association of multiple polypeptide chains	Proteins can contain more than one copy of the same polypeptide chain or be made of associations of different polypeptides encoded by different genes. Proteins made of a single polypeptide chain do not have quaternary structure.	

4. 단백질 구조와 기능 (Structure and Function)

Disruption of Protein Structure

Factors disrupting protein structure

Heat, extreme pH, organic solvent, detergent

Denaturation

- Complete unfolding of amino acid chain
- Sometimes irreversible : e.g. boiled egg
- Melting temperature (T_m)
 - Denaturation temperature for a given protein
 - Depending on protein structure
 - Proteins from organisms living at high temperature
 - Disulfide bridge increases protein stability

Examples of Protein Structure and Function

Keratin

- Structural protein for hair, wool, feathers, nails, scales, hooves, horns, skin
- Very strong and water insoluble
 - Hydrophobic alpha helices
 - Long $\alpha\text{-helix}$ with hydrophobic amino acids
 - Forming fibers by hydrophobic interactions
 - Disulfide bonds
 - The more S-S bonds the harder the structure
 - Permanent hair wave
 - » Reducing of disulfide bond → Generation of new disulfide bond

Examples of Protein Structure and Function

4. Neutralization allows disulfide bridges to re-form; new disulfide bonds hold hair in a wavy conformation.

Lambda Repressor

 Binding of Nterminal domain helix 3 to specific bases within the DNA sequence

Trp Repressor

- If plenty of Trp in the cytosol
- Binding of Trp into Trp Repressor and change the conformation
- Trp repressor binds to DNA and represses the expression of genes involved in Trp synthesis

Regulation of Tryptophan Synthesis

- Trp synthesis in *E. coli*
 - Turn off transcription of Trp genes in the presence of Trp
- Hormonal regulation in higher eukaryotes

Predicting Protein Structure

- It is difficult to predict three dimensional structure from the amino acid sequence
- Compare to other proteins with known function or structure
 - Easy access of information through public database
 - NCBI (National center for Biotechnology Information) run by National Institutes of Health (NIH)
 - <u>http://www.ncbi.nlm.nih.gov</u>
 - Testing structure-function prediction
 - Using molecular biological tools
 - Introduction of mutations into protein
 - \rightarrow change of protein function

Protein Engineering

- Manipulation of protein's amino acid sequence to change its function or properties
- Chemical manufacturing
 - Develop enzymes more suitable for industrial applications
 - Increasing enzyme stability
 - e.g. bacteriophage lysozyme: introduce S-S bond to increase heat resistance
 - Proteases in detergent

Detergent

Soap

Protein Stability Engineering

- Bacteriophage T4 Lysozyme
- To increase the stability
 - Three S-S bonds
 - Cys-54 \rightarrow Thr