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Remind: Electrostatics – Maxwell’s Equations
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Remind: Postulates: Differential Form

r 1 = in the Vacuum

 =E O

 =D

0 r =D E

 =E O

0




  =E
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Remind: Postulates: Integral Form

r 1 = in the Vacuum

 =E O

0




  =E

0
C

d = E l

0
S

Q
d


 = E S

Gauss & Stokes
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Gauss’s Law
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Gauss’s Law

r 1 =

0




  =E

0
S

Q
d


 = E S

in the Vacuum

Total outward flux over any closed surface 
= Total charge enclosed in the surface (divided by ε0)
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Applying Gauss’s Law

r 1 =

0




  =E

0
S

Q
d


 = E S

in the Vacuum

It is relatively easy to estimate the total Q
Usually simple volume integral…

The key is on estimating the surface integral…
Symmetry is necessary for analytical solutions! 

V
Q dv= 
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Special Topic: What is “symmetry”?
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The Principle of Least Action I

We’d like to express the equations of motion 
with a single real-valued function

( , , )
f

i

t

t
S L t dt=  q q

( , , )L tq qLagrangian Function

‘Action’

Kinetic Energy – Potential Energy
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The Principle of Least Action II

( , , ) ( , , )

     

f f

i i

f

i

t t

t t

t

k k
t

k k k

S L t dt L t dt

L L
q q dt

q q

  

 

= + + −

  
 + 

  

 



q q q q q q

The Principle of Least (or stationary) Action
: The equation of motion of the system is obtained from 

0S =

Small change of ‘Action’ to First Order = 0

First Order

( ) 0it =q

( ) 0ft =q

ti

tf
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The Principle of Least Action III

     

     0

f

i

f

f f

i i

i

f

f

i

i

t

k k
t

k k k

t
t t

k k k
t t

k k kk k kt

t
t

k k
t

k kk k kt

L L
S q q dt

q q

L L d L
q dt q q dt

q q dt q

L L d L
q q dt

q q dt q

  

  

 

  
= + 

  

     
= + −   

     

      
= + − =   

      



   

 

( ) 0it =q

( ) 0ft =q

Integrating by parts

0

= 0
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Lagrangian Mechanics

0
k k

L d L

q dt q

  
− = 

  

Euler–Lagrange equation

21

2
L mx mgx= −

q x=

0
d

mg mx
dt

 
− − = 

 

2

2

d x
m mg

dt
= −

Lagrangian Function

Newtonian Mechanics
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Noether’s Theorem

0
k k

L d L

q dt q

  
− = 

  

0
k

L

q


=


0

k

d L

dt q


=



Symmetry Conserved Quantity=

A certain “symmetry” leads to 
the conservation of the corresponding physical quantity
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Symmetry for Gauss’s Law
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Examples of Gaussian Surfaces from Symmetries

Spherical Symmetry

Cylindrical Symmetry

Cartesian Symmetry
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Example 003

E =E e

Due to the symmetry

0zds =E e

0zds =E e

0 0

1 1
2 l l

S V
d rLE dv L  

 
 = = = E S

02

lE
r






=

02

l

r





=E e

We use r instead of ρ here…
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Example 004

z zE=E e

Due to the symmetry

0 0

( 0) ( 0)

1 1
             

z z
S

s s
V

d AE z AE z

dv A 
 

 =  − 

= =





E S

0 0

   ( 0),       ( 0)
2 2

s s
z zz z
 

 
= +  = − E e E e

( 0) ( 0)z zE z E z = − 

0

1
( 0)

2
z sE z 


 =
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Remind: Example 002

(c)

2 2
0

1
2

z

z

z R





 
= − 

+ 
E e

Consider some interesting cases… (z > 0)

( )
3

2 20 2
2

z

R z

z R




=

+

E e

Ring Disk

R → ~ 0E
0 0

~   ( 0),      ~   ( 0)
2 2

z zz z
 

 
+  − E e E e

Infinite structures

Discontinuity! (Discussed later)

Uniform

If applicable, Gauss’s law 
is significantly useful!
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Example 005

r rE=E e

Due to the symmetry

2

0

1
4 ( )r

S V
d R E R dv 


 = = E S

0 R b 

R b

3

0

4
( )

3V
R dv R  = −

3

0

4
( )

3V
R dv b  = −
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Example 005

r rE=E e

Due to the symmetry

0 R b 

R b

0

03
r

R


= −E e

3

0

2

03
r

b

R




= −E e
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Example 005

r rE=E e

Due to the symmetry

3

0

2

0

3

0 2

0

2

0

3

4 1
  

3 4

  
4

r

r

r

b

R

b

R

Q

R












= −

 
= − 
 

=

E e

e

e ~ Point Charge

:R b
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Geometry Effect on Electric Fields

R b

3

0

2

0

3

0

2

0

3

4

3
  

4

r

r

b

R

b

R










= −

 
− 
 =

E e

e

0

2

2

0

2

2
    =

4

s
z

s
z

z

z









= +

+

E e

e

0z 

0

2

0

2

2
  

4

l

l

r

r

r













=

=

E e

e
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Concept of Effective Media & Metamaterials

Meta-materials: “Meta” ~ “Beyond”

1. Focusing on the property “A” among the entire material properties (A & B)

2. We can find “several” different candidates of materials, 
which provide the identical A property, 
while allowing the distinctions in the B property

3. This degrees of freedom can impose uniqueness on the “B” property, 
even allowing for “unnatural” behaviors: Beyond natural materials
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Example of a Concept of “Meta”

2

0

ˆ

4

q


=

r
E

r

eff

2

0

Directional Vector

4 Distance

q


=E

Interpreting Coulomb’s law in a narrow (pointwise) sense

3

eff 0

4

3

b
q


= −2

eff 0~ 2 sq z
eff 0~ 2 lq r

near z = z0 near r = r0 for R > b

By controlling geometric parameters, we can manipulate qeff & the other properties
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Electric Potential
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Remind: Helmholtz Theorem

( ) 0  =A

Remembering Null Identities

Helmholtz Theorem (or Helmholtz Decomposition)

An arbitrary vector field can always be decomposed into the sum of two vector fields:
one with zero divergence and one with zero curl

D C= +E E E

D 0 =E C 0 =E

( )f  =O

Irrotational (curl-free)Solenoidal (divergence-free)

f=  +E A

We can write E as follow:
The proper boundary 
condition (B.C.) allows 

the unique E
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Helmholtz Theorem for Electrostatics

 =E O
0




  =E

D C= +E E E D 0 =E

C 0 =E

( )D C

C

0

       




  =   +

=   =

E E E

E

( )D C

D        

 =  +

=  =

E E E

E O

D =E O
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Helmholtz Theorem for Electrostatics: Electric Potential

V= −E

Let’s assign EC for the conventional notation

C=E E C 0 =E

C V= −E

Electric Potential (or Scalar Potential) V
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Electric Field to Electric Potential – Path Invariance

V= −E V = − =E O

( ) 0
S C

d d  =  = E s E l

( )1 2 1 2 1 2

0
C C C C C C C

d d d d d
+ − − −

 =  =  =  −  =    E l E l E l E l E l

1 2C C
d d

−
 =  E l E l

1C

2C

2C−

E

Path-invariant integral!
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Electric Field to Electric Potential – Path Invariance

C C
d V d = −   E l l

2

1
2 1

P

P
V V d− = −  E l C

E

P1

P2

le

lV d V dl dV  =   =l e

2 1
C C

d dV V V−  = = − E l
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Electric Potential (cont.)
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Electric Potential – Point Charge

2

0

1

4

rq
r

=
e

E

2

1
2 1

P

P
V V d− = −  E l

∞

r

( ) ( )
r

V r V d


−  = −  E l

( )

( )

2

0

20
0

2

0

0

( ) ( )

1

4

4 '

1
'

4 '

1

4

rP
r

P

r
r

r

r

V r V

q d
r

q
dl

r

q
dr

r

q

r











−



− 

= − 

= −  −

= −

=







e
l

e
e

V= −E

Decrease of V

l = ∞ – r’

dl = –dr’

If we set ( ) 0V  =

0

1
( )

4

q
V r

r
=
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Superposition for Electric Potentials

3

3

0

1 '
( ') '

4 'V
d x



−
=

−


x x
E x

x x

3
10

1

4

N
k

k

k k

q
 =

−
=

−


x x
E

x x

V= −E k k

k k

V= − E

The superposition principle is also valid for the potential V

3 2

0 0

1 1

4 4

rq q
r r 

= =
er

E
0

1

4

q
V

r
=

3

0

1 1
( ') '

4 'V
V d x


=

− x
x x

10

1 1

4

N

k

k k

V q
 =

=
−


x x

3

1 '

' '

−
 = −

− −

x x

x x x x
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Electric Potential: Exercises



Intelligent Wave Systems Laboratory
SEOUL NATIONAL UNIVERSITY
Dept. of Electrical and Computer Engineering 6

Remind: Example 001

Electric Dipole: Estimating an electric field far from the dipole?

–q

+q

d

R

3
10

1

4

N
k

k

k k

q
 =

−
=

−


x x
E

x x

3 3

0

1 2 2

4

2 2

q q


 
 − +
 = −
 

− + 
 

d d
R R

E
d d

R R

R – d/2

R + d/2

We cannot learn a lot from accurate but too complex equations!
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Remind: Example 001

Electric Dipole: Estimating an electric field far from the dipole?
333

3 2 2 222
2 2

2 2

3
2 2

3 3

2 2 2

1
2 2 2 4 4

3
             1 ~ 1

4 2

d d
R R

R R

d
R R

R R R

−−−−

−

− −

       
− = −  − = + −  = − +       

        

   
= − + +   

  

d d d R d
R R R R d

R d R d

3 3

2 2

0

3 2 2

0

3 2

0

3 3
~ 1 1

4 2 2 2 2

3 3
  1 1

4 2 2 2 2

  3
4

q
R R

R R

q

R R R

q

R R







− −          
− + − + −        

        

        
= − + − + −      

      

 
= − 

 

d R d d R d
E R R

d R d d R d
R R

R d
R d
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Remind: Example 001

Electric Dipole: Estimating an electric field far from the dipole?

( )

( )

3 2

0

3 2 3 2

0 0

3 2

0

3

0

~ 3
4

1 1 cos
  3 3

4 4

1 cos
  3 cos sin

4

  2cos sin
4

r z

r r

r

q

R R

Rp
R p

R R R R

Rp
R p

R R

p

R









 


 



 


 
− 

 

   
= − = −   

   

 
= − − 

 

= +

R d
E R d

R p
R p e e

e e e

e e

q=p d

Electric Dipole Moment

–q

+q

d

R
θ
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Remind: Example 001

Electric Dipole: Estimating an electric field far from the dipole?

( )3 2 3

0 0

1
~ 3 2cos sin

4 4
r

p

R R R
 

 

 
− = + 

 

R p
E R p e e

q=p d

Electric Dipole Moment

–q

+q

d

R
θ

0 =

2


 =

 =

3

0

2
~

4
r

p

R
E e

3

0

2
~

4
r

p

R
−E e

3

0

~
4

p

R



E e

WIKI
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Example 006: Revisiting a Dipole

Electric Dipole: Estimating an electric field far from the dipole?

–q

+q

d

R

R – d/2

R + d/2

10

1 1

4

N

k

k k

V q
 =

=
−


x x

10 0

1 1 1 1

4 4 / 2 / 2

N

k

k k

q
V q

 =

 
= = −  − − + 


x x R d R d
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Example 006: Revisiting a Dipole

( ) ( )
1/21

1/2
2 2

1/2
2

2 2 2

/ 2 / 2 / 2

                 / 4

1 1
                 1 ~ 1

4 2

−−

−

−

− = −  −  

 = −  +
 

    
= − +  +  

     

R d R d R d

R R d d

dR d R d

R RR R R

3

0 0

1 1

4 / 2 / 2 4

q q
V

 

  
= − =  − + 

R d

R d R d R
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Example 006: Revisiting a Dipole

3 2

0 0

cos

4 4

q q d
V

R



 


= =

R d

R –q

+q

d

R
θ

q=p d

Electric Dipole Moment
2

0

cos

4

p
V

R




=

( )

2 2

0 0

3 3 3

0 0 0

cos cos

4 4

cos sin
  2 2cos sin

4 4 4

r

r r

p p
V

R R R R

p p p

R R R



 

 

  

 
 

  

    
= − = − −   

    

= + = +

E e e

e e e e

Same result through a simpler process!
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Remind: Example 002

(a) 3

3

0

1 '
( ') '

4 'V
d x



−
=

−


x x
E x

x x

In 1D:
3

0

1 '
( ') '

4 'C
dx



−
=

−


x x
E x

x x

( )

( ) ( )

2 2

2 22

30
2 20

3 3
2 2 2 20 0 2

1

4

2
   

4 2

z

z z

z
z R

z R Rd

z R

R z R z

z R z R



 


  

 

+
+=

+

= =

+ +

E e

e e

R

z-component

( )
3

2 20 2
2

z

R z

z R




=

+

E e
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Remind: Example 002

(b)
Ring:

( )
3

2 20 2
2

z

R z

z R




=

+

E e

Disk: Integration of rings ➔ Superposition Principle

Electric Field induced by q = 2πRλ Electric Field induced by the unit charge

( )
3

2 20 2

1

4
z

z

z R


=

+

E e

( ) ( )

( )

3 30 0
2 2 2 20 02 2

3 2 20
2 20 02

1 2

4 2

  1 ,
2 2

R R

z z

R

z z

r z z r
dr dr

z r z r

z r z
dr

z Rz r

  

 

 

 

= =

+ +

 
= = − 

+ +

 



E e e

e e
2 2

0

1
2

z

z

z R





 
= − 

+ 
E e

annual ring
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Remind: Example 002

(c)

2 2
0

1
2

z

z

z R





 
= − 

+ 
E e

Consider some interesting cases… (z > 0)

( )
3

2 20 2
2

z

R z

z R




=

+

E e

Ring Disk

R z
2 3

0 0

~
2 4

z z

z Q z

R R



 
=E e e

0

~ 1
2

z

z

R





 
− 

 
E e

Near the structures
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Remind: Example 002

(c)

2 2
0

1
2

z

z

z R





 
= − 

+ 
E e

Consider some interesting cases… (z > 0)

( )
3

2 20 2
2

z

R z

z R




=

+

E e

Ring Disk

R → ~ 0E
0 0

~   ( 0),      ~   ( 0)
2 2

z zz z
 

 
+  − E e E e

Infinite structures

Discontinuity! (Discussed later)

Uniform



Intelligent Wave Systems Laboratory
SEOUL NATIONAL UNIVERSITY
Dept. of Electrical and Computer Engineering 17

Remind: Example 002

(c)

2 2
0

1
2

z

z

z R





 
= − 

+ 
E e

Consider some interesting cases… (z > 0)

( )
3

2 20 2
2

z

R z

z R




=

+

E e

Ring Disk

R z
2 2

0 0

1
~

2 4
z z

R Q

z z



 
=E e e

2

0

1
~

4
z

Q

z
E e

Far from the structures
~ Point-like behaviors!

R

z

Taylor 
Expansion

2
1

~ 1
2

R

z

 
−  
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Example 007: Revisiting a Disk

σ: Surface Charge Density 3

0

1 1
( ') '

4 'V
V d x


=

− x
x x

( )

2 2

2

2

2 20 0
0

2 20
0 0

2 2

0

1 1
' '

4 '

' 1
  '

2 2 2'

  
2

a

a a z

z

V r dr d
r z

r
dr dt

tr z

a z z



 


 

 





+

=
+

= =
+

= + −
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Example 007: Revisiting a Disk

( )2 2

02
V a z z




= + −

0 :z  ( )2 2

02
V a z z




= + −

0 :z  ( )2 2

02
V a z z




= + +

( )2 2

2 2
0 0

1
2 2

z z

z
V a z z

z a z

 

 

 
= − = − + − = − 

 + 
E e e

( )2 2

2 2
0 0

1
2 2

z z

z
V a z z

z a z

 

 

 
= − = − + + = − − 

 + 
E e e

Same result through a simpler process!
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Electrostatics – Poisson’s Equation & More
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Remind: Postulates: Differential Form

r 1 = in the Vacuum

 =E O

 =D

0=D E

 =E O

0




  =E
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Poisson’s Equation in a Vacuum

r 1 = in the Vacuum

 =E O
0




  =E

V= −E
Already related...

( )
0

V



  − = 2

0

V



− =

Poisson’s Equation

Governing Eq. for Electrostatics in a vacuum (with B.C.)
Discussed later…But, B.C.? 

Need to be related...
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Poisson’s Equation in a Homogeneous Material

 =E O  =D

V= −E
Already related...

( )
0 r

V


 
  − = 2

0 r

V


 
− =

Poisson’s Equation

Governing Eq. for Electrostatics in a Homogeneous Material (with B.C.)
Discussed later…But, B.C.? 

Need to be related...

0 r =D E
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Governing Equation in an Inhomogeneous Material

 =E O  =D

V= −E
Already related...

( ) ( )2

0

( ) ( )r rV V


 


−  −    =x x

Governing Eq. for Electrostatics in an Inhomogeneous Material (with B.C.)

Need to be related...

0 ( )r =D x E

( ) ( )( ) ( ) ( )r r r    =   +  x E x E x E
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Electrostatics – Boundary Conditions
Mathematical View
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Maxwell’s Equations: Electrostatics

 =E O

 =D

0
C

d = E l

S
d Q = D S

Gauss & Stokes

D will be discussed later…

Boundary Conditions: Connecting “Fields” across the boundary

Tangential & Normal Fields!



Intelligent Wave Systems Laboratory
SEOUL NATIONAL UNIVERSITY
Dept. of Electrical and Computer Engineering 27

Strategy for Boundary Conditions

Δh

0
C

d = E l
S

d Q = D S

I.   Boundary includes “different” materials ➔ Integral forms are proper

II.   Stokes ➔ Closed “Loop” across materials
Gauss ➔ “Closed Surface” across materials

III.   Loop measures tangential fields & Surface measures normal fields

Medium 2

Medium 1
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Analyzing Boundary Conditions

Δh

0 1 2 0h t t
C

d E w E w = =  −  = E l ( )2 1 2n s
S

d S S =  −  =  D S e D D

E2t

E1t

D2n

D1n

Δh → 0 to characterize the “boundary”

Medium 2

Medium 1

en2



Intelligent Wave Systems Laboratory
SEOUL NATIONAL UNIVERSITY
Dept. of Electrical and Computer Engineering 29

Boundary Conditions: Electrostatics

Δh

1 2t tE E= ( )2 1 2n s − =e D D

E2t

E1t

D2n

D1n

Normal Fields

Medium 2

Medium 1

en2

Tangential Fields
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Special Topic: What if E1t  E2t?

1 2t tE E 0 1 2 0h t t
C

d E w E w = =  −   E l

( ) 0 0h
S

d  =   E s

Singular Existence of E
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Special Topic: What if E1t  E2t?

t


 = −



B
E

t


 = +



D
H J  =D 0 =B

Now, look at more general Maxwell’s equations

Singular Existence of E M =B
M

t


 = − −



B
E J&

 Magnetic Charges or Magnetic Currents should exist for the discontinuity in 
the tangential component of an electric field!

I. Until know, a magnetic monopole has not been discovered!
II. Magnetic multipoles (dipoles, quadrupoles, …) require spatial “distances”, 

prohibiting the singular existence at the boundary

 The tangential component of an electric field should be continuous 
(until now!)

 0  O
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