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storage requirements during the solution of the ODE’s. After the application of constraints, the n
coupled equations and can be put together in matrix form.

Mg'—l—ngCg

where M and K are mass and stiffness matrices of size (n xn). @ is the forcing vector of size n, and
q are the degrees of freedom. The degrees of freedom ¢ are generalized displacements (displacement

or angles, with units of m or in, and radians). M has units of kg. K has units of N/m. @ has units
of N. For natural response, set @ = 0 and seek solution of the form ¢ = gpe/**. This leads to the

same algebraic eigenvalue problem as discussed earlier in the case of Galerkin and Rayleigh-Ritz
methods,

Kqo = w’Mqp
2.88
(K—w’M) g =0 (288)
It leads to the solutions w; where i = 1,2,...,n. Corresponding to each w; there exists a solution

qo; which satisfies the equation
Kqoi = wi Mqo;

w; and its corresponding q; are called the eigenvalues and eigenvectors of the system. The mode

shapes of the beam can be extracted from the eigenvectors. Consider the example of the beam
discretized into three elements as before. Consider a simply-supported case at the root end. Let
the i-th eigenvector be qo; = [go2 903 Goa 905 906 o7 qog]T. The mode shape ¢; corresponding to this

eigenvectors can then be constructed using the shape functions as follows.

wi(r) = Hy(s)qo2 + H3(s)qos + Ha(s)qoa 711 <r<ry s=r—r
¢j(r) =< war) = Hi(s)qoz + Ha(s)qoa + H3(s)qos + Ha(s)qos 12 <7 <r3 s=1—r9
ws(r) = Hi(s)qos + Ha(s)qos + H3(s)qor + Ha(s)gos 13 <17 <R s=r—r3

Note that the shape functions obtained here correspond to the rotating beam. Thus an important
property is that they are orthogonal with respect to mass and rotational stiffness.

R
/0 m@-(r)@(r)dr = 5ijMi (289)
and
Pgi(r) d¢;(r) | . dgi(r) d;(r) _ s oaar
/0 [EI e df«? +T— ér dr = & w?M; (2.90)

where 0;; is Kronecker’s delta and M; is generalized mass

M; = / ¢dr
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2.6 Fan plot and frequency plots for rotating beams

The natural modes of a structure represent the unique ways it can vibrate in vacuum and without
damping. The lowest frequency is called the fundamental frequency and the corresponding mode
is called the fundamental mode. The natural frequencies of a rotating blade depend on its mass
and stiffness properties, boundary conditions, and rotational speed. The rotational speed supplies
centrifugal stiffness. At low rotational speeds, the beam stiffness is more important than the
centrifugal stiffness. At higher rotational speeds, the centrifugal stiffness is more important than
the beam stiffness. At still higher rotational speeds, the beam behaves like a string, the fundamental
natural frequency assymptotes to the rotational frequency. The rotating frequencies are always
greater than non-rotating frequencies. However, there is only a slight change in mode shapes
from non-rotating to the rotating ones. In the following sub-sections the natural frequencies of a
uniform, rotating beam are studied. The frequency and mode shape calculations are performed
using a Rayleigh-Ritz type finite element analysis with ten equal length elements.

2.6.1 Rotating versus non-rotating frequencies

For a given rotational speed, the blade rotating frequencies are determined by the mass and stiffness
of the blade, and the boundary conditions. Consider a cantilevered non-rotating beam with uniform
properties FI and m. This is a simple model for a hingeless blade.

First, solve eqn.2.29 to get the non-rotating frequencies wygr,, WNR,, WNRy €tc. The first
frequency, or the lowest, wypr, = wnpr say, is called the fundamental frequency. Note that these
frequencies are of the form f;/ET/mR* as given in eqns.2.37 and 2.41. Now consider a rotational
speed . Corresponding to this {2 solve eqn.2.46 to obtain the rotating frequencies wg,, Wr,, Wr,
etc. Again, wgr, = wg is the fundamental frequency, this time that of the rotating beam. Varying
the stiffness FE1, a set of wyg and wgr can be obtained. Thus one can obtain a plot of wg versus
wng. This plot corresponds to the specific set of beam properties and a given 2.

If the frequencies are non-dimensionalized with respect to rotational speed Q, i.e. wr/Q ver-
sus wyr/SY, then the plot becomes representative of all uniform cantilevered beams at any given
rotational speed. This is due to the following. We have

| EI
w% = fj " COyeTY where m = mg for uniform beams
m

Recall that, eqn.2.50 showed that the only parameter on which the non-dimensional rotational
frequency, wr/Q, of a uniform beam depend is ET /mQQR4. This is the same parameter on the
right hand side of the above expression. Varying wyg/$2 from zero onwards includes all variations of
this parameter. Thus all beams, regardless of their properties EI, m, dimension R, and rotational
speed © would correspond to a point on the plot of wr/Q versus wyr/Q. Such a plot, for the
first mode, is shown in figure 2.19. Note that, different beams with different £1, m, R, and §2 can
correspond to the same point on the plot as long as they have the same EI/moQ?R*. Therefore
WR; /§ versus wy R; /€2 plots are representative of all uniform beams of a specific boundary condition
type. Figure 2.20 shows the variation of two higher modes in addition to the fundamental mode.

2.6.2 Rotating frequencies vs. rotational speed

For a given mass and stiffness, the rotating frequencies vary with the rotational speed (RPM). At
zero RPM the frequency corresponds to a non-rotating beam. As RPM increases, the centrifugal
force gradually stiffens the blade. Figure 2.21(a) shows the variation of rotating frequencies in Hz
with RPM. The value at zero RPM is 3.52/ET/mR* from eqns.2.36 and 2.37, where the following
values have been assumed: EI = 4.225e5 Nm?2, m = 13 kg/m, and R = 8.2 m.
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Figure 2.19: Rotating natural frequencies as function of non-rotating natural frequencies

for a uniform cantilevered beam: Fundamental mode
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ROTATING FLAP FREQUENCY
upnr= NONROTATING FLAP FREQUENCY

(4]

ROTATING FLAP FREQUENCY VERSUS NONROTATING
FLAP FREQUENCY FOR A UNIFORM CANTILEVERED BEAM

T

Figure 2.20: Rotating natural frequencies as function of non-rotating natural frequencies
for a uniform cantilevered beam: First three modes
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Let the operating RPM be 260. Then the x-axis is often conveniently representated in terms
of the operating RPM, see Fig. 2.21(b)). The frequencies, instead of being in Hz can be non-
dimensionalized at each rotor RPM. These frequencies, in per rev, are plotted in Figs. 2.21(c) and
2.21(d). These plots show the relative dominance of the centrifugal stiffness. A very high per rev
value, as is the case for very lower RPM, signifies the dominance of bending stiffness. A lower per
rev value, as is the case of higher RPM, signifies the dominance of centrifugal stiffness.

For design purposes it is often convenient to represent the frequencies in the following two
formats. The first is called a fan plot. The second is called the non-dimensional frequency plot. The
fan plot is same as the frequency plot of figure 2.21(b), except that it shows the 1/rev, 2/rev, 3/rev,
etc lines in addition to the rotor frequencies. The rotor frequency can be read off in Hz. In addition,
at any RPM an approximate per rev value can be estimated. For example, at the operating RPM
the second mode lies between 3 and 4/rev, the third mode lies between 7 and 8/rev. It is desirable to
design the blade structurally in such a way that the modal frequencies lie in between /rev lines. The
aerodynamic forcing in steady flight occurs at 1/rev, 2/rev, 3/rev etc. Structural frequencies near
these forcing harmonics expose the rotor to resonance. The non-dimensional frequency plot is same
as the frequency plot of figure 2.21(b), except that the frequencies are non-dimensionalized with
respect to the operating RPM. Note that this is different from figure 2.21(d) in that the frequencies
are not divided by the rotor RPM, but the rotor RPM at the operating condition. Thus these are
not /rev values. They equal the /rev values only at the operating RPM.

Frequency plots for a simple-supported beam (articulated rotor model) is shown in figures 2.23
and 2.24. The simple-supported beam has exactly the same properties as the cantilevered beam
(hingeless rotor model). The only difference is in the boundary condition. The frequency trends are
very similar for the higher modes. The key difference is in the fundamental mode. Figure 2.23(c)
shows that the fundamental frequency is determined by the centrifugal stiffness regardless of the
RPM. Thus it is always at 1/rev. Resonance is not a problem because of the high aerodynamic
damping present in the flap mode (around 50%). On the contrary it is desirable to place the first
frequency as close to 1/rev as possible to relieve the root bending moments. Under this condition
the balance of the centrifugal and aerodynamic forces on the blade is used up completely by the
blade flapping motion with zero moment transmitted to the root.
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Figure 2.25: Rotating mode shapes for a uniform cantilevered beam: Fundamental mode

2.6.3 Rotating versus non-rotating mode shapes

It is clear that the parameter which makes the non-dimensional frequencies and mode shapes differ
from one uniform beam to another is EI/mQ?R*. The parameter can be re-arranged to read
Q//EI/mR*. The frequencies and mode shapes of two beams operating at different values of 2
can still be same if EI, m, and R are such that the above parameter remains same. The effect of
rotational speed on the mode shape can be seen only if this parameter is varied. Figure 3 and 4
shows such plots for the first and the second modes for cantilevered beams. Note that each line
on a plot can represent the mode shape of different cantilevered beams with different rotational

speeds, but all having the same Q/+/ET/mR*.
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Figure 2.26: Rotating mode shapes for a uniform cantilevered beam: First three modes
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2.7 Response Solution in time

After the natural vibration characteristics of the blade has been determined, the next step is to
calculate dynamic response to a given forcing. Let us examine the equations of motion. For the
rigid blade model, the flap equation was given by

ok UJ2 .
B +v38 = 258, + M (2:91)

The aerodynamic moment term Mﬁ may contain motion dependent terms like 5 and E It may
also contain periodic terms, particularly for forward flight condition. One of the simplest and most
commonly used method is Fourier series. The method will be discussed later. For the flexible blade
model, the flap bending equation was given by

d? d*w d dw
< (Er, %% SR ) L IR 2.92
dr? ( m dr2) o dr < dr) J=(r,1) (2.92)

where f,(r,t) was the aerodynamic force. Again, it may contain motion dependent terms as well
as periodic terms. Recall, that the first step of the solution was to obtain the natural frequencies
and mode shapes by solving the homogenous form of the equation, i.e. with f.(r,¢) = 0. The next
step is to reduce the governing PDE to a set of ODE’s using the mode shapes. The ODE’s are then
called normal mode equations. To this end, assume that the loading is a series of N natural modes

N
w(r,t) = Z (1) &;(t) (2.93)

where ¢;(r) is j* natural mode. ¢;(t) is the j* modal response. Substitute in the governing
eqn.2.92, project the error onto a subspace spanned by the mode shapes themselves and set to zero.

R
/ oi(r)e(r,t)dr=0 i=1,2,..., N (2.94)
0
Use the orthogonality relations 2.89 and 2.90 to obtain
M&+wiMig =S, i=1,2...,N (2.95)

where

R
M,; = / mqﬁ?(r) dr
0 (2.96)

R
&:A¢mmwm

These are N modally reduced equations.

The external forcing on the beam is f,. For a pure structural dynamics problem, f, is purely
a function of r and ¢. In this case S; is only a function of time. For a aeroelastic problem, as is
the case for rotor blades, f, is motion dependant, i.e. it depends on the response itself. In this
case S; contain deflection dependant terms. First, consider the case where S; is only a function of
time. The modally reduced equations simply represent a series of one degree of freedom spring-mass
systems. Generally, N = 2 to 3 are adequate to describe the response of a system. The higher
modes contribute comparatively little to the response. The normal mode coordinates &;(t), &2(t),
..., etc may be solved in time using various methods. The most commonly used methods for rotor
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problems are Fourier series and time integration technique and these will be discussed later. For
non-rotor problems, Duhamel’s integral is often used to calculate.

Now consider the case of motion dependant forcing. In this case f,(r,t) depends on displacement
w as well as time t. In general, we have

fo(r,t) = f(r,t) + aw + b + cw’ + di’ + ... etc (2.97)
In this case the modally reduced equations take the following form.

where

N
Si = Zgl(t) + (Aij + Cz])fz + (Bij + Dij)éj + ...etc (2_98)

Jj=1

and

S =/ Gi fo(r,t)dr A :/ ¢iagjdr  Bi :/ 0ib@;dr
0 0 0

R R
Cij= [ oicojir Dy= [ oiadiar
0 0

The mode shapes ¢ are not orthogonal with respect to a, b, ¢, d. Thus the matrices A, B,C, D
are not diagonal. Therefore the resultant ODE’s are now coupled. A + C' represent aerodynamic
stiffness. B+ D represent aerodynamic damping. Unlike the structural properties, the aerodynamic
stiffness and damping matrices are no longer symmetric. Further, unlike the mechanical system
without aerodynamics, the aerodynamic forcing adds a damping to the system. Thus the system is
no longer a energy conserving system. The aerodynamic damping need not be necessarily positive.
A negative damping can lead to instability, typically called aeroelastic instability. It is more
involved to solve these equations. Three widely used variety of methods are: (1) Fourier series
based methods, (2) Finite Element in Time method, and (3) Time integration methods. The first
two methods provide the steady state forced response solution and are well suited for rotorcraft
applications. The third, is a general time marching procedure with provide both the natural
response as well as the forced response.

2.7.1 Fourier series methods

In the Fourier series method the response is assumed to be periodic and consisting of a sum of
harmonics. For example, for the rigid blade model, the response 3(1)) is assumed to be a linear
combination of sine and cosine terms as

B() = Lo+ Precosth + Bissinty + Bae cos 2t + Bossin 2t + ... 00

= po+ Z(ﬁnc cos ) + B sinnap)

n=1
where the fundamental period is 27w. The fourier constants 8y, G, Os, - - - are constant with time.
They are given by

1 21
d
B /0 B) dip

=
2
o=~ [ B cos v (2.99)
1 21

ﬁns = - 0 5(¢)Sinmﬁd¢

™
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The number of harmonics necessary for satisfactory solution depends on the intended results of the
analysis. For preliminary performance and flight dynamic calculations the first harmonic is often
adequate. For vibratory loads at least the first five harmonics must be retained. The flapping
harmonics can be computed from measured data. If the sample of data points taken over one
revolution is Ny, where Ny is the total number of azimuthal intervals such that 5(Ns + 1) = 5(1),
then

Bre = Z Bi cos ni; (2.100)

where ¢; = 27(i — 1)/Ns. Using the fourier series method, the governing ODE’s can be solved
using two approaches: (1) the Substitutional or Harmonic Balance method and (2) the Operational
method.

The harmonic balance method is well suited for analytical solution. In this method the fourier
series is truncated to a finite number of terms

N
() = Po+ Z(ﬁnc cos Nt + B sin nh)
n=1
and substituted in the ODE. The coefficients of the equation are also written as fourier series by
reducing the products of sines and cosines to sums of sines and cosines. The coefficients of the sine
and cosine components are then collected

(.)+(G.)siny+(...)costp+ (...)sin2¢ + (...)cos2¢ +... =0

These coefficients are then separately set to zero leading to 2INV + 1 algebraic equations for the same
number of unknown fourier coefficients.
In the operational method, the following operators are used directly on the ODEs.

2
= (de)dy =
o | e =0
1 2
—/ (de)cosnipdip =0 n=1,2,...,N (2.101)
™ Jo

1 27
—/ (de)sinnypdyp =0 n=12,...,N
0

™

The coefficients of the equation are again written as fourier series but the degrees of freedom are
not. The operators act on the product of the degrees of freedom and the sin or cosine harmonics
reducing them to appropriate fourier coeffients. Both the harmonic balance and the operational
method yield the same algebraic equations. In the later, the equations can be derived one at a
time. The following standard formulas are helpful in reducing the products of sines and cosines to
sums of sines and cosines.

1 1 1
sin cosy = 3 sin2iy  sin®¢ = 5(1 —cos2y)  cos’tp = 5(1 + cos 21))

3 1 3 1
sin® ) = Zsinw — Zsin?)w cos ) = ZCOS¢+ Zcos?ﬂp
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. 2 1 . : .2 1
sin) cos” Y = Z(smz/) +sin3y)  sin“ycosy = Z<COS 1 — cos 31)

Example 2.5:

A rotor blade is idealized into a rigid blade with spring at the hinge (v3 = 1.10/rev) and is
in hovering flight condition. The blade is excited by an oscillatory aerodynamic lift produced by
oscillating the outermost 25% of the blade segment so that Af = 1° cos ). Calculate the vibratory
response assuming the following fourier series

B() = Po + Biccosp + Bissiny

Use v = 8.0 and assume uniform remains constant.

Figure 2.27: Excitation of outboard blade segment to generate oscillatory lift

We have the flap equation as follows

*k

B +viB =~Mg

where
1 2
— Ur Up Ur
Mag= — _— S
8 2/0 x{(QR) QRQR} de
Upr Up *
ar =" ap - ATTP
— LA 2 5.3 Lt 2 A3 o X B
Mgs= < (x°0 —\z*— B z”)dx+ = {z°(0+A0)—\a*— fo’}der = - — = — = +0.0854A6
3 J, 2 Js4 8 6 8
The flapping equation is then
e, ~¥0 A 1x7
== - — 0.0854
brvb=-g ¢ T7 180 5V

Substituting
B = Po+ Biccosy + Bissiny

in the flapping equation, collect cos ) and sin terms and set to zero.

0
constant term: Sy = JT(Z0_ 7Y
2\ 8 6

1 x7
180

cosine term: (Vg — 1)1 + %/313 =~ 0.0854

sine term: (1/% —1)Bs — %/Blc =0
It follows

0.21  1.00 Bic | [ 0.0119
—1.00 0.21 Bis | | 0.0000

Bre = 0.137°, (15 = 0.65°
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2.7.2 Finite Element in Time (FET) method

Finite element in time is a method to calculate the periodic response of a rotor blade. The method
can be formulated in two ways:(1) Direct Energy approach, and (2) Indirect Governing Equations
approach. We will discuss the Indirect Governing Equations approach. The discretization procedure
is the same in both.

At
-
. 49; 9t
N‘ 1 [ ]
tl ti+1
—
At=2n/N
(a) FET discretization (b) A time element
T R TN

Figure 2.28: Finite Element in Time (FET) discretization of one period of oscillatory
motion

Consider a single period of oscillatory motion as shown in Fig. 2.28(a). Let the period be T be
discretized into N time elements of length 7'/2w. For rotors 1" = 2m. The initial and final times
are the same.

tjztl tFZtN_H where tN+1 Zt[

Similarly the response, say ¢, at the initial and final times are also the same. For purposes of
illustration consider a single degree of freedom system. Now consider a single time element as
shown in Fig. 2.28(b). Within the element the degree of freedom ¢ is assumed to vary as a function
of time. For example, for a linear variation we have

q(t) = a1 + ast

where the constants « are determined in terms of values of ¢ at certain chosen points, called nodes,
within the time element. The procedure is same as that described in FEM in space earlier. For
purposes of illustration consider the first order element. To determine the two constants «, two
nodal degrees of freedom are needed. Let these be the values at the two end points. Then for
element-1, for example, we have

m = q(t1) = a1 + aoty
n2 = q(t2) = a1 + asts
Solve for a2

_M2—m _ Mmia — M2ty

(64 «
2T ! ty — 1,
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It follows

q(t) = Hi(t)m + Ha(t)n2
Hi() = (1 _ t&“)

m = (")

where Hy and Hs are the time shape functions. The nodal values of ¢, denoted by 7, have no time
dependance. The derivatives are

q(t) = Hy(t)my + Ha(t)ne

: 1
H(t) =——
fot) = 4
2T A
The solution procedure begins by putting the governing ODEs in a variational form.
tp
/ 5q" <mq' +cd + ki — f) dt =0 (2.102)
tr - -
For a constant m the acceleration term reduces to
tp tp lr
5¢" midt = 5q"mq [¢F — 8T madt = — 8¢ T mqdt (2.103)
- D - tr -

where the first term is cancelled due to periodicity of the response. Using the above, eqn.2.102
becomes

tp
I= / <—5quq + 8¢ cq + dq" kq — 5qTf> dt =0 (2.104)
tr - - - - - - -7
where
to t2 t2 tn
I—/ ()dt—l— ()dt+/ ()dt...+/ ()dt:I1+IQ—|—Ig+"'+IN (2-105)
t1 t1 t1 tN—1

Each integral is of the following form. Consider for example, ;.

2 T .
om H, s 771}
I =— . H{H dt
! /ﬂ {5772} {Hg}m[ ! 2}{772

2 57]1 T Hl . . m

+/tl { on2 } { Hj }C[H1H2} { 1o }dt
2 s T, "

+/ﬂ { o1 } { H, }C[HlHﬂ{ n }dt (2.106)
2 s T,

_/tl { N2 } { Hy }fdt

—{5771}T[A11 Al?]{ﬁl}_{énl}T{Q1}
5772 A21 AQQ 72 57]2 Q2

mo [ e t—t te t—1t)\"
Ap=—c— | < (1= dt k(11— dt
A /t1 At( At ) * /t1 ( At )
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m t2 oty t—11
A12_At+/t1 At(l_At )dt /tl B (1—At )dt

m t2 ¢ R — t
Agpy = — — t—t1)dt k 1-— dt
A, A=t +/t1 At ( At)
m 2 ¢ t2 t—1t 2
Agg = —— t—t1)dt k dt
2= N, Ay +/t1 (At)
2 t—t
@], f( R )dt
t— t
Q2 = f td
t1
Similar expressions can be found for I, I3, ... etc. The following step is to add the individual

integrals as in eqn.2.105. This is an assembly procedure. For illustration consider a case where the
time period is discretized into 4 time elements, see Fig.2.29. For the four elements we have the

t

3
At
>
9 9
Y b : .
4 D)
— t
4

Figure 2.29: Finite Element in Time (FET) discretization of one period of oscillatory
motion

following
11:{5771}T_A11 A12_{771} {5771}T{Q1}
on2 | Aar A | | 72 on2 Q2 J,
_,2:{5772 }T_Au Arz {772} {5772 }T{Q1 }
on3 | Ao1 Age |, | ms ons Q2 |,
T i . (2.107)
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14:{5?74}T_A11 Ap | {774} {5774}T{Q1}
on | Aa1 Ag T om Q2 J,
Add the individual integrals and set I = 0 to obtain
sm " m om
on2 2 on2
A = 2.108
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Because 7 is arbitrary we have

An=Q (2.109)

where A and @) are as follows

i X [ ] x — from element 1
A X e e — from element 2
- e © 0 0 — from element 3
L O 0 @ 0 — from element 4
[ (A11)1 + (A22)4 (A12)1 0 (A21)4
_ (A1) (A22)1 + (A11)2 (A12)2 0 (2.110)
0 (A21)2 (A22)3 + (A11)3 (A12)3 ’
(A12)4 0 (A21)3 (A12)3 + (A11)4
x — from element 1 (@Q1)1 + (Q2)4
Q= » e — from element 2 | (Q2)1 + (Q1)2
o 0 0 — from element 3 (Q2)2 + (Q1)3
@ (] — from element 4 (Q2)3 + (Q1)4

2.7.3 Time Integration Methods

A commonly used method for response solution of linear and non-linear equations is the time
integration technique. There are many solution procedures used for time integration of equations.
Some of these are the Runge-Kutta method, the Adams predictor corrector method, the Gear
variable order method, the Newmark method, and the Energy-Momentum method.

2.8 Bending Moments and Stresses

Once the blade deformations in response to external loading are known, the bending moments and
shear loads at any section can be determined. The stresses at a point in a section can then be
calculated based on the bending moment and shear load at the section. The bending moment and
shear loads at any section are determined using two methods: (1) Curvature method and (2) Force
Summation method. The curvature method is also called the deflection method, as the curvature
can be expressed as a function of deflection. If the deflection is calculated based on a modally
reduced set of ODEs, the method is also called the modal method. For the purposes of illustration,
assume that the deflection of the beam is of the following form

w(r,t) = Z%‘(T) g;(t) (2.111)

where ¢; due to the external loading have been solved for, and ¢; are known shape functions, either
assumed as in the case of Galerkin or Rayleigh-Ritz, or determined using FEM.

2.8.1 Deflection and Force Summation methods
In the deflection method the resultant relation given in eqn.2.11 is used. The bending moment at
a station r is given by

EI d*w -
M(r) = Elyr = pnn = EIWWW = Bl Z 5 ¢

J=1
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The bending stress, from eqn.2.12 is then simply

M(r) —~
O'TT(Z) = Im? = ZE;%’ q;

where z is the distance from the beam centerline. The bending stress is proportional to the second
derivative of displacement. Usually a large number of terms is needed to accurately calculate the
bending stress. The method is simple but yields poor results for small n. The shear load at a
station is given by

!

oM " "
S(r) = o EL, Z o7 | q; = Ely, Z ¢} qj  for uniform beam
j=1

Jj=1

The shear deformation was neglected in the analysis, thus the shear stress cannot be accurately
calculated. For a rough estimate divide the shear load with the sectional area.

Tz = S(r)/A

Again, a large number of terms is needed to calculate the shear load. The shear load is proportional
to the third derivative of displacement. In general, error increases with the order of derivative. The
error in shear load is greater than that in bending moment. By error, one refers to the difference
in solution between using n terms and as many terms required for a converged solution.

The alternative to the deflection method, which relies on the derivative of the response solution,
is to use the Force Summation method. See Fig.2.30. The bending moment at a station r is obtained

w(x,t)
A

Figure 2.30: Flap bending moment at a blade section using force summation method

by integrating all of the elemental forces outboard of r.

p=R p=R
M) = [ UE = mi)p - nldp— [ w0 fule) — wlr)]dp (2112)
p=r p=r
Because integrations are involved with respect to spatial coordinate r, this method generally pro-
duces less error for smaller n. However, the method is more involved compared to the deflection
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method. The statement of equality between bending moments calculated using the deflection
method and using force summation method reproduces the beam bending equation. To verify,
substitute M (r) = EI,w” on the left hand side of the above equation and differentiate twice with
respect to r. Note that r occurs in the limits of integration on the right hand side, hence use the
Leibnitz theorem. The Leibnitz theorem gives

u2(r)
o) =[P
wlr) (2.113)

u2(r)
99 _ aFd —%F(r,ul)—%F(ﬁuz)

then, - = >

uy(r)

Using the Leibnitz theorem twice it follows

0? 0w . 0 R 9, Ow

which is the flexible flap equation. Note that the equivalent expression for the rigid blade was given
by eqn.2.5. There, the left hand side was the flap moment at the hinge via deflection method. The
right hand side was the flap moment at the hinge via force summation method. Their equality
generated the rigid flap equation.

2.8.2 Force summation vs. modal method

In the curvature method (also called modal method if the deflection is obtained using normal
modes), the loads at a given section are determined by the elastic motion induced curvature and
structural properties at that section. If there is a radial step change in structural properties, e.g.
bending stiffness, or a concentrated loading, e.g. damper force, then there should be a corresponding
step change in curvature, to keep the physical loads continuous. With a small number modes or
shape functions this discontinuity cannot be captured. Moreover, the curvature method gives zero
load on an element without elastic degrees of freedom. A force summation method rectifies the
above deficiencies. It is a force balance method which obtains the section loads from the difference
between the applied forces and the inertial forces acting on the blade on one side of the section. The
forces used for this purpose must be exactly same as those used for solving the structural dynamic
equations, otherwise inconsistent loads are obtained. For example, the bending moments at a pure
hinge would not be identically zero. With lesser number of modes, the force summation method
better captures the effects of concentrated loading and radial discontinuities of structural properties.
However, with increase in number of modes the curvature method and the force summation method
must approach the same solution.

2.9 Fourier Coordinate Transformation

Fourier Coordinate Transformation is also called Multi-blade Coordinate Transformation. Let
Bm) (1) be the flapping motion of the m-th blade of a rotor with N, blades, wherem = 1,2,3,..., N.
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Then the forward Fourier Coordinate Transformation is defined as
1
By — — (m)
0= N > 8
m=1

2 O

Bnc = F Z B(m) COS ni/)m
b

m=l (2.115)

2
an = xr E ﬁ(m) sin mpm
Nb m=1

1 &
B;=— (m)(_1)(m)
b= >0 )
m=1
where 1, is the azimuthal angle for the m* blade

2w 2
¢m=¢1+ﬁb(m*1):¢+ﬁb(m*1)

and 1 is defined as . n and d are defined as follows.
Ny —

Ny —1
n=12,3,..., for Ny even; bT for N, odd

N,
d= ?b for N, even; does not exist for IV, odd

For a 5-bladed rotor, the rotating coordinates are the flapping motion of the five blades, 8', 52, 83, 8%, 5°.
The fixed coordinates are also five in number, they are By, Bi., B1s, Bac, Bas. Note that N, be-
ing odd, By does not exist. Similarly, for a 4-bladed rotor the rotating and fixed coordinates
are B, 5%, 33, 3%, and By, Bi., Bis, By respectively. For a 3-bladed rotor they are 8', 32,53, and
By, Bi., Bi, respectively. For a 2-bladed rotor they are 3!, 32, and By, B; respectively. In the last
case there are no cosine or sine coordinates. Note that the transformation does not require that
the flapping motion 5™ (1)) be periodic.

For a physical feel, consider a rotor with 4 blades. For purposes of illustration assume that the
blades undergo a periodic flapping motion. At any instant of time one of the blades, designated as
say blade-1, occurs in the azimuth ;. Define ¢y = 1. Blade-2 at that instant occupies ¥9 = ¥+ /2.

Blade-3 occupies 13 = 1+ 7. Blade-4 occupies 14 = ¥ +37/2. Let 31 (), B2(¢), B2(x), and B*(x),
describe the flapping motion of the blades. If blade-1 exhibits the following flapping motion

BL(1b) = Bo + Brecos ) + Bissint + Bae cos 20 + Bassin 2h + ... 00

then blades 2, 3 and 4 exhibit
B2(Y) = BH(wh2) = Bo — Biesiny + Bis costh — Baecos 2p — Passin2¢) + ... 00
B3 (W) = B(1h3) = Bo — Brecosth — Bissinth + Bac cos 2 + Fagsin2ep + ... 00
BW) = B (1h1) = Bo + Bresing — Bis costh — Baccos 2 — Bagsin2ep + ... 00

The fixed coordinates are then given by

Bo(w) = 7 [8'0) + A7) + 5w) + B(w)

BuoW) = 3 [6'(6)cos i + B2(w) costhy + B() cosy + () cos ]
Bu@) = 3 [8'()sings + 60 sinty + B()sin s + 51(0) sin ]
BW) = 7[F @D +F@E1 + )+ W)
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The reverse Fourier Coordinate Transformation is given by

Ny—2)/2
B (4h) = Bo (1) + | Z/ [Bre(t) €08 nib, + Bro(¥) sin nipy,] + By(—1)™  for Ny, even
(Nj:ll)/
B () = )+ Z ) €08 Ny, + Brs () sin nay,] for N}, odd
"~ (2.116)
The fourier coordinates By, Bi., Bis, ... etc are functions of 1, and are different from fourier

series coefficients which are constants. The forward and reverse transformations, eqns.2.115 and
2.116, are exact not approximate. As a result governing equations in fourier coordinates retain the
same information as those in rotating coordinates. A complete description of rotor motion can be
obtained by solving for the rotating coordinates 8™ (v¢),m = 1,2,3,..., Np. Alternatively it can
be obtained by solving for the fixed coordinates, equal in number, By(v), Bpe(), Bns(¥), Ba(v).
The governing equations in rotating coordinates can be transformed into fixed coordinates in the
following manner.

2.9.1 FCT of governing equations

To carry out FCT of governing equations the following expressions are required. We have by
definition

2
By = , g BV cos Ny, (2.117)

Differentiate once to obtain
(M) *(m)

B,.= N Z 6 cosniy, — —nZB(m) sin n,, = N Z 6 cosny, —nBps

where the definition of B,s has been used in the second term on the right hand side. Hence we
have

A (m)
2S5 cosntm =Bne +nBns (2.118)
A

Similarly starting from the definition of B,s, differentiating once, and using the definition of B,
we have

(M)

Z 8 sinny, —an —nBe (2.119)
Ny

Now differentiate eqn.2.118 to obtain
Z g(m) coS Ny, — n Z é(m) sin ny, :ézc +n BZS
Use eqn.2.119 on the second term on the left hand side to obtain
92 () . *
A > B cosmihy =Bnc +2n B —n’ B (2.120)
Similarly differentiating eqn.2.119 and using eqn.2.118 we have

Z 6 sinn, —an —2n By —n%Bys (2.121)
A
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The derivatives of By and By are straightforward as they do not involve sin or cosine harmonics.

The final derivative expressions, necessary for FCT, are listed below. The By expressions are

1 X
MZE(’”) = By

1 g: ;;(m)_g (2.122)
Ny — s '

1 Ny wr(M)
EZIB =Bo

m

The B, expressions are

LS o)

Fb %:5 ( 1) = By

1 Nb *(m) m *

Fb Xm: B (=1)™ =By (2.123)
1 Nb **(m) 1 m sk

N, , (—=1)™ =By

Ny
2 x(m)
N, > 8

m
Ny

2 *ok *
154 coS Ny, =Bpe +2n By —n’B,,.

Ny

m

The B, expressions are

5 M

_E (m) —

N, a BV sinnp,y, = Bps
Ny *(m)

2 *
B sinnyy, =Bps —nBpe (2.125)

Ny 4

b sx(m)

N,

2 . TS *

Fb Z 15} sinny,, =Bns —2n By, —nQBnS
m

cos Ny, =Bpe +nBys (2.124)
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The conversion of the governing equations to fixed coordinates is now carried out as follows
1 &
By equation : — Equation of motion
0 €q N, Z (Eq )

m=1

2
B, equation : — Z (Equation of motion) cosniy,

m=1 (2.126)
B,s equation : — Z (Equation of motion) sin niy,

1
By equation : — Z (Equation of motion) (—1)™
Ny
m=1

During this operation, certain expressions can arise which are not straightforward application of
the above formulae and need to be substituted correctly. These are described below. For purposes
of illustration consider N, = 4. The fourier coordinates in this case are By, Bi., B1s and By. First
consider summations over trigonometric functions.

4
1
1 Z sin i, = siny; + sinyy + sin s +sinyy = 0

m=1

4
1
1 Z sin 2¢,, =0
m=l (2.127)

4
1
1 Z sin 3¢, =0
m=1

4
1
1 > sindepy, = sindp; = sin4y)
m=1

In general

1 & 1 &
i Zcosnwm:cosm/} and ﬁb;sinnwm:sinmp

only when n = pN, where p is an integer, and zero otherwise. It follows that a harmonic which is
an integral multiple of blade number can be taken outside the summation side. For example,

4 4
2 2
‘Z (M) cog 4 s = cos4 _§ (m) = Bj.cos4
1 :15 cos 41y, cos Y, = cos 7,/14 :15 COoS Yy, 1¢ €OS 41)

Thus note the following treatment

9 4

4
2
1 mZ:1 B cos 3¢, = 1 mZ:1 Bm cos(4t, — ) = Biecosdp + Bigsindi
Just as harmonics which are integral multiples of blade number can be taken outside the summation,
a special treatment is needed for harmonics which are integral multiples of half the blade number.
For example

4
% Z B cos 20, = [ﬂ(l) sin 291 + 6(1) sin 249 + B gin 29ps + 5(1) sin 2@[}4}
m=1

=N D

[5(1) sin 2¢ — 8D sin 24 + 8D sin 2 — BV sin 214 — 9By sin2¢
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Another set of special cases arise during transformation of the By equation. They involve (—1)™

multiplied with with sine and cosine terms. First consider the sum of harmonics

(—1)™sinp,, = —sin); + sinhg — sinthg + sinhy = 0

]
(-

3
Il

(—=1)™sin 29, = —sin 2¢)

o
(-

o (2.128)
1
1 > (=1)™sin 3¢, =0
m=1
1A
1 (—1)" sin4yp,, =0
m=1
In general
LM | X
A ";(—1)’” cos Ny, = —cosny  and N mz::l(—l)m sin nip,, = — sinny

only when n = pNy + Np/2, where p is an integer and Ny is even, zero otherwise. It follows that a
harmonic of frequency n = pNj, + Np/2 can be taken outside the summation sign in the presence
of the factor (—1)™. Thus note the following treatment

i i ﬂ(m)(—l)m sin v,
1 m4:1
= 122 B (D™ sin(2m — ¥m)
m=1
_ ! 24: B (=1)™ sin 24y, 08 Py — ! 24: B (—1)™ cos 20y, sin 1)
= 4 P m m 4 — m m

1
=+ [-BY sin 2y cos — B sin 20 cos vy — B sin 20 cos g — B sin 2y cos v
1
4 [_5(1) cos 2¢sin gy — B cos 2 singhy — B3 cos 24 sinpz — B cos 2¢ sin ¢4}
1 1
= _§Blc sin 2w + §B15 COs 2¢

Consider the rigid blade flapping equation in forward flight. The blade twist and the cyclic control
angles are assumed to be zero.

B—l—( —&—ugmn?p)E—F(uﬂ—i—u cos Y + 1 gsm2d))ﬁ
12
~v6o (%—i—gsinw—&—zsian)—7)\<é+zsin¢>

Consider the transformation of the above equation for Ny, = 4. The fixed coordinates are By, B,
Bis, and Bs. Use the operators given by eqns.2.126, and the definitions given by eqns.2.122-2.125
Apply the first operator to obtain the By equation.

(2.129)

Bo +2 Bo+#62(B1s Blc)+v530+u Bt n’y Zﬁsmw

8

= b, ( Zsm 10) 'y>\f

62
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The underlined terms are to be replaced by

1
1 Zﬁsinm/} = —Bssin 2¢

%ZsinQd): iz%(l—COSQd}) =

Apply the second operator to obain the Bj. equation.

Elc +2 Els _Blc+ % (élc +Bls> +M__Z B Slnwcos¢+VﬂBlc+ﬂ64 ZBCOS w

2%%26811121/)008@[):700( Zsm@bcosw—i— ZstwCOSQ/J) fy)\——Zsmwcosw

The underlined terms are to be replaced by
gzgsind)cosd) = EZElsmw——é sin 29
4 T4 2 -7
2 2 1
ZZIBCOSZ’(/) = ZZﬁi(lJrcosM)):Bof2Bgcos2z/)
2 . 2 1 . .
ZZﬁst@bCOSd) = Zzﬁi (sin 3¢ + sin )
1
= %ZBE (sin 41 cosp — cos 4 sinyh + sin 1))
1 . 1 1
= 5315 sin 4y — 5315 cos 41 + 5315
2 . 5 21
ZZsm Yeosy = Zzg(cosw—cos%bcosz/})zo
2
1 Z sinycosy = 0
Apply the third operator to obain the Big equation.

Els -2 élc _Bls + % (éls +Blc) +,U__ Z 6 SlIl w + VﬁBlc"_.u Zﬂcoswsulw

272 p2 2 P22 i3 ) — 02
+u 31 Bsin 2y siny = 790(3423111 U+ 1 425111 w> fy)\ Zsm P

The underlined terms are to be replaced by
225811121/) = gzgl(l—cosmb) *é —|—}é cos 21
4 T4 2 Bt Tt
2 . 2 1. .
iz,é’cosz/}smz/) = 12,6’5511121/):—2Bgsm21/1
2 . . 2 1
EZBSIHQ¢SIH¢ = EZﬂi(COSZb—COS?)Z/))

1 2 1

= iBlc 7 E 55 (cos 41 cos P + sin 41) sin 1))
1 1 1

= EBlc — 5316 COS 4'[p — §Bls Sil’l4’(b

2 2 1
ZZSier = 125(1—00821@:—
%Z (isin@b— iSiH3¢> =

NN
=
=]

w
<
I
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Apply the fourth operator to obtain the Bs equation

§2+ Bz+u7726 smz/)—l—uﬁBg+,u Z,B(l cosz/)+u Zﬁ ™ sin 24

_ :ul C1\YM 2
=0l S (1) sind g

The underlined terms are to be replaced by

1 p . x .

4 Z B (—1)"siny = B (—=1)"sin(21) — 1)

B (=1)" (sin 29 cos 1 — cos 2¢) sin 1))

== =

ﬂ(l) sin 21) cos 1 — ﬂ( ) sin 21) cos o — ﬂ( ) sin 21) cos 13— ﬂ( ) sin 21 cos ¢4}

FN

”ﬁTﬁ*—Wﬁtﬁ

,6’(1) cos 21) sin ¢y — ,6’(2) cos 21 sin g — ,6’(3) cos 21 sin 13— ,6’(4) cos 21 sin 7#4}

) 2 * 1 2 x
= —§s1n21p1 Z B cosp + §C052w12 [ sin 1)

1 : 1 ]
= —5sin2y (Blc +Bls) + 5 cos 2y (315 —Blc)

iZB(—l)m cosyp = —%Blccos 2¢ — %Bls sin 2y
EZMAme)z—%mw
%Z(—l)m sin?¢y = 72 1 (1 —cos2y) = }cos 21

Consider the flap equation in the rotatlng coordlnates, eqn.2.129. The terms associated with
forward speed, 1, and p? terms, are all periodic in nature associated with sine and cosine harmonics.
Now consider the equations in the fixed coordinates. Note that all the p terms now occur as
constants, not in association with sine and cosine harmonics. The p? terms are still periodic in
nature and occur as sine or cosine harmonics. The fact that the constant coefficients in the fixed
coordinate equations retain the effect of forward speed can be utilized during the calculation of
aeroelastic stability.

2.10 Aeroelastic Stability

Consider the rigid flap equation in forward flight. Assume that the twist 64, = 0 for simplicity.
Let Bs(1) be the steady state flap solution. Then we have

53 ( +,ugsm1/1> 5s+<u§+M%COS¢+M2%Sin2¢)58:

1 2 1
~0 (8 + gsinz/) + % sin? 1/)) — A (6 + Zsin@b)
where 6 = 0(1)) = 0y + 01, cos ) + 015 sin in forward flight. Suppose a perturbation 63 is applied
to the steady state flap motion at ¢ = 9. We seek the nature of its evolution with time §3(¢).
At any instant 8(¢) = Bs(¥) + §8(v)) must satisfy the governing eqn.2.129. Substituting 3(¢) in

the governing equation and noting that the steady state solution (1)) must satisfy eqn.2.130, we
have the governing equation for the perturbation

(2.130)

56 + <8 +MESIH¢> o8 + (uﬂ —|—,u cos Y + L 3 SiDQT/J) 3 =0 (2.131)
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The ‘¢’s are dropped.

B+ (% +u%sin¢) B+ (3 +ug cos¢+u2%sin2w) B=0 (2.132)

Note that for a linear system, the perturbation equation is identical to the main equation with zero
forcing.
2.10.1 Stability roots in hover

In hover, the perturbation equation becomes

*k ~y * 9 B

B +3 B +rzB =0 (2.133)
Seek a perturbation solution of the form

B = Boe”

The nature of s determines whether the perturbation grows or dies down with time. Substitute in
the governing equation. For non-trivial Sy, i.e., By # 0, s must satisfy the following equation

32—&-%84—1/%:0

which leads to the following eigenvalues

N S e A
sp=—1e /13 (16> (2.134)

where s denotes the stability roots of the rotating coordinates. These are complex conjugate pairs.
There are four pairs of such roots, one for each blade. Note that in the absence of aerodynamics,
and structural damping if any, the stability roots are simply the natural frequencies of the system.
For example, here they would be simply £v3. The evolution of the perturbation with time is then

B = BOQSRIZ} = Boe_%weii Vg’i(llfi)zip

The real part of the eigenvalue represents damping of the perturbation. Ihe imaginary part rep-
resents the frequency of oscillation of the perturbation. The stability roots in eqn.2.134 can be
written in standard notation as

sg = — decay rate 4= i damped frequency = —(v,, & iv,\/1 — (2

where v,\/1 — (? = v, is the damped frequency in /rev and & is the damping ratio as a percentage
of critical. These are the frequency of oscillation of the perturbation and its decay rate. They
are expressed in terms of v,, the natural frequency of the system. The natural frequency is the
frequency of oscillation of the perturbation in the case of zero damping and no aerodyanmics. In
general, these parameters can be extracted from stability roots by making use of the above standard
notation as follows

vg = Im(s)
¢ = _RES('S) (2.135)
Up = 5]

A positive ¢ means stable system, negative ( means unstable system, and ( = 0 means neutral
stability. In the last case, the perturbation once introduced neither grows nor decays with time.
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To get a feel of these numbers, consider a typical Lock number v = 8 and an articulated rotor with
flap frequency vg = 1.

critical damping ratio ¢ = =0.5 = 50% damping

T
16vg

2
damped frequency vy = l/g - (%) = 0.87/rev
Therefore, the flap mode is highly damped and the frequency of oscillation as a perturbation dies
down is less than 1/rev. The damped frequency in Hz and the time period are given by

Q
fa= Ydit i cycles/sec or Hertz

2
1

Ty = in sec/cycle

d
Consider now the stability roots in the fixed coordinates. The flap perturbation eqn.2.133 in fixed
coordinates produce the following equations for a N, bladed rotor. The By and By perturbation
equations (where By exists only in the case of even N,) are

7

Bo +4 Bo + V3B = 0

Ba+3 Ba+13Ba=0

These equations are identical to the rotating frame equation. Therefore, for By and By the fixed
coordinate eigenvalues are the same as the rotating coordinate eigenvalue.

SF = SR

The B, and B,,s perturbation equations (B,. and B, exist only in the case of N, > 2) are

Bnc 2 2n Bnc VQ - TL2 an Bnc 0
+| 3 + |77 28 -
Bps —2n 3 Bps —3n vs—n Bis 0

For a particular n, seek solution of the type

{ Bnc("p) } _ { BncO } esz/)

an (¢) anO

where s is an eigenvalue in the fixed coordinate which determines the azimuthal evolution of per-
turbations in B,,. and B,;. Substitute the solution type into the governing equation.

2 2 2
[s +3s+vi—n 2ns + In 2HBMO}:O (2.136)

—(2ns + 3n) s°+3s+vg—n Biso
For nontrivial [By,o ang]T set the determinant of the left hand side matrix to zero. It follows

2
(s + s+ v3—n?)? == (2ns + In) (2.137)

This leads to two complex conjugate pairs of eigenvalues, i.e. four eigenvalues in total

Y e (Y
SEE g T (16) Ein (2.138)

=spt1in
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Thus the eigenvalues for By, and B, are shifted by + n/rev from the rotating eigenvalue. The ex-
ponential decay rate is the same in both the fixed frame and the rotating frame. The corresponding
eigenvectors, using eqn.2.137 are given by

Bneo 2nsp + gn
Buso %+ g5k +vj —n?

— 4 = ¢T3 (2.139)

The eigenvalues and their corresponding eigenvectors are tabulated below. Out of the two complex
conjugate pairs, one has higher frequency compared to the other. These are noted as high frequency
and low frequency eigenvalues.

B, .

Sp = _116 +1 (\/_ + 1) High Frequency, obtained using: sp =sp+i =— anz =+t

oy 1) High F btained using: sp = sp — i Jub

SF =776 " (v---+1) High Frequency, obtained using: sp=sp—i = Boso
ns0

_ 1) LowF btained using: sp = : o =i

sp=—-—+i(y/-—1) ow krequency, obtamed using: Sp=Sp—1 = 55— = 1
16 anO

Sp = _1_6 —1 (r — ) ow Frequency, obtained using: sp =sp+1 =— Boeo =+t

where the entry within the square root, 1/% — (v/16)? has been replaced with ... for brevity. The
first line means sy as given is a high frequency. It has been obtained by using sr + ¢, which implies
that the corresponding eigenvector By,.o/Bnso = +i. Each frequency with its associated eigenvector
is referred to as a mode. Note that sp + i is not necessarily the high frequency mode. Similarly
Sg — 1 is not necessarily the low frequency mode. Consider each mode one by one. The first high
frequency mode is given by

Bnc(¢) = Bneo €SF¢
= Bpso (+1)e’F
= ano eigest) (2140)
= anO e_%wei(\/i"’_l)weig

~ By € 16 cos [(\/_-1— 1) P+ g}

Thus By,.(¢) has the same magnitude as B;(1), same decay rate —y/16, same frequency /. +1,
except that it is ahead of Bys(v)) by 7/2. Consider the second high frequency mode

Bnc(dj) = BncO 65F¢
= anU (_i)eSFzyb
= B?’LSO eiigest (2141)
= ano eiﬁwei(\/i—i_l)#}eii%

~ Bugo € 15% cos | (/o +1) ¥+ 7

Again, Bp.(¢) has the same magnitude as By,s(1), same decay rate —v/16, same frequency /"~ +1,
except that it is ahead of By,5() by 7/2. In both the high frequency modes B,,.(¢) leads By,5(1) by
/2. This is defined as a ‘Progressive Mode’. Figure 2.31 shows the fixed coordinate perturbation
variations for By.(¢) and B,s(¢) for a Progressive Mode.
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Now consider the low frequency modes. From the first mode, we have

Bnc(w) = B0 €SF¢
= anO (_i)eSF'(/J
= Bys0 e_igeSFw

= Bnso e_%wei(\/”i‘fl)we_i%
~ B0 ¢ 16Y cos [(,/. T—1) - g}
Similarly, from the second mode, we have

Bnc(ﬂ}) = BncO 63F¢
= Bpso (+1)e’F 1)
= Bpso ei%65F¢
= ano eiﬁwei(\/i_l)weig
_ ™
~ Bns € 6% cos [(,/... — 1)¢— 5}

Here B,.(1)) can again lead B,s(¢)) by 7/2, but only if
2 _

¥ 2 . . 9 0% 2
\/ V3 <E) —1<0 ie,if \/V5—<E) <1

In this case the low frequency mode is again a ‘Progressive Mode’. Otherwise, if

2 2
[ o v S [ o v
Vs — (E) —1>0 ie.,if Vg — (E) >1

Bo(v) lags Bys(¢) by m/2. This is defined as a ‘Regressive Mode’.

1.5
---B
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—8B_|
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»
(@]
(0]
©
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Figure 2.31: Progressive mode of flapping: Fixed coordinate B, leads B, by 7/2

Example: 2.9
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A four bladed rotor has a fundamental flap frequency of 1.12 /rev and a Lock number of 8.
Calculate the hover eigenvalues in the rotating and the fixed coordinates. Discuss the nature of the
modes in the fixed coordinates.

In the rotating coordinates, we have

vg = 1.12 v=8

SR 16 :i:u/uﬂ 16 0.5£121.002

Four blades have four identical pairs of rotating stability roots. In the fixed coordinates, we have
n = 1, four complex conjugate pairs of roots. For collective By and differential B, the eigenvalues
are the same as the rotating roots

sp=sp=—0.5+171.002
For Bi. and B,
Sp=Sp*1
Thus the high frequency mode is
sp = —0.54+142.002
The low frequency mode is
sp=—0.54+140.002

The high frequency modes are always progressive. The low frequency mode can be either progressive
or regressive. Here

v} - (%)2 —1.002 ie. >1.0

Therefore the low frequency mode is regressive.

Example: 2.10

For the flutter testing of a helicopter blade, the rotor was excited by wobbling the swash plate
and the response was measured from the pick-ups mounted on all the four blades. The response of
the lowest mode in the fixed system was analyzed using the Moving Block method. The frequency
of oscillations and the damping coefficient were obtained as 1.25 Hz and 0.5 respectively. Calculate
the corresponding blade frequency and damping coefficient (in rotating system) for a rotor rpm of
350.

We have in the fixed coordinates

wqg = 1.25Hz = 7.854 rad/sec

(=25
Q =350 RPM = 36.65 rad/sec
Cwg 7854
V= = 3eor = 0.2143/rev
Wd

Natural w,, =

/-0



2.11. STABILITY ANALYSIS IN FORWARD FLIGHT 151

Wn
— =.2475
Q

Wn,
no_ 12
<o 38

Eigenvalue S = g% n z% — 1238+ .2143

Rotating frame: Sp=95+1

=.1238 +¢1.2143

¢ 1238
= =.101
Ji—c 12143 019
¢ =.1010
Frequency = 1.2143/rev = T7.08Hz

2.11 Stability Analysis in Forward flight

In dynamic analysis of rotating systems, one frequently encounters with the equations of motion
with periodic coefficients. For example, the equation of motion expressing the dynamic response of
a flapping blade in forward flight contains many periodic terms. For some dynamic problems, one
also gets equations with constant coefficients. Here, the example is the flapping motion of a blade
in hovering flight. The analysis techniques for constant coefficient systems are simple and familiar
whereas analysis for periodic systems is more involved and the analysis techniques are less familiar.

2.11.1 Constant Coefficient System

Let us consider N linear differential equations with constant coefficients,

Mi + Cq + Kq = F(t) (2.144)
inertia 3 stiffness |
damping force

where M , C and K are square matrices of order N x N while displacement vector ¢ and force vector

F are of order N x 1.
These equations can be rewritten as
P olra] [ 6 7 )fa] Jo
0 M |[g -K —C||g¢ F
where I = identity matrix  (unity on diagonal)
order N x N

0 = null matrix  (zeros)
order N x N

Let us define

7=|1]
7 Jonx1

The above equations can be rearranged as

J=Aj+G (2.145)
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This results into 2N first order equations.

i 0 I
| MK —MlO
L 2N x2N
G = £1~}
~-M-1F
L 2N x1

The above arrangements are valid provided M is not singular.

Stability

To examine stability of the system, set F=0 ie., G = 0. This results into a set of homogeneous
equations and then seek the solution as

y(t) = e
The equation (78) becomes
Aj = A\ (2.146)

This results into a standard algebraic eigenvalue problem and can be solved using any standard
eigenvalue routine. This gives 2N eigenvalues, complex in nature.

Ak = ap + twg
real imaginary

The real part of the eigenvalue represents the damping of the mode whereas the imaginary part
represents the frequency of the mode. If any one of the eigenvalues has a positive real part, the
system is unstable.

Forced response

Under steady conditions, the external forces F(t) in a rotating system are generally periodic, in
multiples of the rotation frequency Q. Let us say the forcing function if m! harmonic, frequency
W = mid.

q(t) = Re(ge™") (2.147)
= ﬁR cos wyt — 151 Sin wyy,t

where ﬁR and F; are real and imaginary parts of F. Assuming the steady response to be mt"

harmonic
q(t) = Re(ge™")
= (R COS Wyt — qrsinwy,t

Placing this in basic equation (78) and using the harmonic balance method (discussed earlier).
Comparing sinw,,t and cos wy,t terms, one gets,

{ %}; }_{ %z } (2.148)

2N x2N 2N x1 2N x 1

¢ H
-H G
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where

GoR—wil

H=w,C

For the known external forces, these equations can be solved to calculate gz and q;. The total
response can be calculated by summing up the response components from all harmonics.

N N
q(t) = Z qg%m) oS Wyt — Z qgm) sin wy,t (2.149)
m=0 m=0

This method is more physical than the direct numerical integration because individual harmonic
components are calculated and assessed. One can also use the finite difference method to calculate
response but it generally results into more involved analysis for rotor problems.

2.11.2 Periodic coefficient systems

The governing equations are

M(t)j+C(t)j+ Kq=F(t) (2.150)

where matrices M, C and K contain periodic terms. These equations can be rearranged as first
order equations,

J— A7 =Gt (2.151)

where A(t) and G(t) are periodic over an interval T.

2.11.3 Floquet stability solution
To investigate stability, set é(t) Seek solution of the form

gt) = B(t) g 2.152
2N x 1 2N x 2N 2N x 1 (2.152)

The square matrix E(t) is periodic over period T.
B(T) = B(0)
7(0) = B(0){cx}
J(T) = B(T){cxe'}
= B(0){cre™'}

Also, one can express y(T) as,
Jr) =g 5@ .. 1{ w0

where g1) is the solution at t = T of the basic equation with é(t) = 0 for the initial condition
y1(0) = 1 and all remaining y;(0) = 0, etc.

Q=g g ...] (2.153)
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This is a square matrix of order 2N and is called as ”transition matrix”. Thus

{y(M}y = [RKw(O)}

= [QI[B(0)[{ck}
= [QI{BO)}1c1 +{B(0)}2c2+...) (2.154)
Another form is
{y(T)} = [B(O){cre? T}
= {B(O)}l CleplT + {B(O)}g CQBPZT + ... (2.155)

Comparing Eqgs. (86) and (87) one gets
[(QUB(0)} = A{B(0)}x (2.156)
where
e = ePrT
This is a standard eigenvalue problem, where \j are the eigenvalues of the transition matrix [Q].
1 .
Pk = ?ln()\k) =ay +iwg

The real and imaginary parts of stability exponent pj are

ap = %ln|)\k| (2.157)
= O+ 3]
- %tan_l[()\k)j/()\k)}g] (2.158)

The o, measures the growth or decay of the response. The oy, positive (;0) or \; greater than one
indicates instability of the mode. The wy, represents frequency of vibration. However, the tan™!
is multivalued, one will get multivalues for wy. Taking physical consideration one can choose the
right value of wy.

2.11.4 Floquet response solution

The governing equation is
J=Aj+G (2.159)

The solution of this equation can be obtained by direct numerical integration using some standard
time integration techniques. With arbitrary initial conditions one needs many cycles of integration
before a converged solution is obtained. Through a proper choice of initial conditions, one can how-
ever eliminate all transients from the response and the steady dynamic response can be calculated
by integrating through only one period T. The objective of the Floquet method is to calculate the
proper initial conditions.

Let us assume a general solution

y(t) = yu(t) + yp(t) (2.160)

where ypy is the homogeneous solution and 7, is the particular solution. Let us say yg(t) is the
complete solution of the governing equation for a given set of initial conditions. One can add any





