Precision Design -Airy support

Support positions and deformation:

Deformation varies with the supporting positions, thus it can be optimized for specific application

Beam of distributed load with double support
Weight per unit length $=w$, Length $=L$

Let $\langle x\rangle=x$ if $x \geq 0,\langle x\rangle=0$ if $x<0$
$Q(x)=-w+w L / 2\left\langle x-L_{1}\right\rangle_{-1}+w L / 2\left\langle x-L_{2}\right\rangle_{-1}$
$V(x)=-\int Q(x) d x$
$=w x-w L / 2<x-L_{1}>^{0}-w L / 2<x-L_{2}>^{0}+C_{1}$, and $C_{1}=0(\because V(0)=0)$
$M(x)=E \operatorname{ld}{ }^{2} y / d x^{2}=-\int V(x) d x$
$=-w x^{2} / 2+w L / 2\left\langle x-L_{1}\right\rangle+w L / 2\left\langle x-L_{2}\right\rangle+C_{2}$, and $C_{2}=0(\because M(0)=0)$
Eldy/dx= $\int M(x) d x$
$\left.=-w x^{3} / 6+w L / 4<x-L_{1}\right\rangle^{2}+w L / 4<x-L_{2}>^{2}+C_{3}$
$\operatorname{Ely}(x)=-w x^{4} / 24+w L / 12<x-L_{1}>^{3}+w L / 12<x-L_{2}>^{3}+C_{3} x+C_{4}$,
Applying $\mathrm{y}(\mathrm{x})=0$ at L_{1} and L_{2}
$\operatorname{Ely}\left(L_{1}\right)=-w L_{1}{ }^{4} / 24+C_{3} L_{1}+C_{4}=0$
$\operatorname{Ely}\left(L_{2}\right)=-w L_{2}{ }^{4} / 24+C_{3} L_{2}+C_{4}=0$
Thus
$C_{3}=(w L / 24)\left(L_{1}{ }^{2}+L_{2}{ }^{2}\right)-(w L / 12)\left(L_{2}-L_{1}\right)^{2}$
$\mathrm{C}_{4}=\mathrm{wL} \mathrm{L}^{4} / 24-\mathrm{C}_{3} \mathrm{~L}_{1}=(\mathrm{w} / 24)\left[\mathrm{L}_{1}^{4}-\mathrm{LL}_{1}\left(\mathrm{~L}_{2}{ }^{2}+\mathrm{L}_{1}{ }^{2}\right)+2 \mathrm{LL}_{1}\left(\mathrm{~L}_{2}-\mathrm{L}_{1}\right)^{2}\right]$
Therefore,
$\delta(x)=(w / 24 E I)\left[-x^{4}+2 L<x-L_{1}>^{3}+2 L<x-L_{2}>^{3}+\left[L\left(L_{2}^{2}+L_{1}{ }^{2}\right)-2 L\left(L_{2}-L_{1}\right)^{2}\right] x+L_{1}^{4}\right.$
$\left.-L_{1} L\left(L_{2}{ }^{2}+L_{1}{ }^{2}\right)+2 L_{1}\left(L_{2}-L_{1}\right)^{2}\right]$

Thus,
$\underline{\delta(0)}=(\mathrm{w} / 24 \mathrm{EI})\left[\mathrm{L}_{1}{ }^{4}-\mathrm{L}_{1} \underline{L}\left(\mathrm{~L}_{2} \underline{2}^{2}+\mathrm{L}_{1}^{2}\right)+2 \mathrm{LL}_{1}\left(\mathrm{~L}_{2}-\underline{L}_{1}\right)^{2}\right] \quad$ eq(1)
$\delta(L / 2)=(w / 24 E I) \quad\left[-L^{4} / 16+2 L\left(L / 2-L_{1}\right)^{3}+\left[L\left(L_{2}{ }^{2}+L_{1}^{2}\right)-2 L\left(L_{2}-L_{1}\right)^{2}\right](L / 2)+L_{1}{ }^{4}-L_{1} L\right.$
$\left.\left(\mathrm{L}_{2}{ }^{2}+\mathrm{L}_{1}{ }^{2}\right)+2 \mathrm{LL}_{1}\left(\mathrm{~L}_{2}-\mathrm{L}_{1}\right)^{2}\right]$
$=(w / 24 E I)\left[-L^{4} / 16+L_{1}^{4}+2 L\left(L_{2}-L_{1}\right)^{3} / 8+\left(L_{1}{ }^{2}+L_{2}^{2}\right)\left(L^{2} / 2-L_{1} L\right)+\left(L_{2}-L_{1}\right)^{2}\left(-L^{2}+2 L L_{1}\right)\right]$
From $L / 2-L_{1}=\left(L_{2}-L_{1}\right) / 2,-L^{2}+2 L L_{1}=2 L\left(L_{1}-L / 2\right)=-2 L\left(L_{2}-L_{1}\right) / 2=-L\left(L_{2}-L_{1}\right)$
Thus,
$\underline{\delta(L / 2)=(w / 24 E I)}\left[-L^{4} / 16+L_{1}{ }^{4}-(3 / 4) L\left(L_{2}-L_{1}\right)^{3}+\left(L_{1}{ }^{2}+L_{2}{ }^{2}\right) L\left(L_{2}-L_{1}\right) / 2\right]$ eq(2)

For Double support case, $L_{1}=0, L_{2}=L$, then from eq(1), eq(2)
$\delta(0)=0$
$\delta(L / 2)=\left(w L^{4} / 24 E I\right)[-1 / 16-(3 / 4)+(1 / 2)]$
$=\left(w L^{4} / 24 E I\right)[(-1-12+8) / 16]=-(5 / 384) w L^{4} / E I=-0.01302 w L^{4} / E I$

Airy Points Support:

Support for standard metre-bars to remove any bending at both ends, it means to locate L_{1}, L_{2} such that end faces of beams are vertical, that is $y^{\prime}(0)=0$ and $y^{\prime}(\mathrm{L})=0$. Thus,

Ely ${ }^{\prime}(0)=C_{3}=0$
Ely $^{\prime}(\mathrm{L})=-w L^{3} / 6+w L\left(L-L_{1}\right)^{2} / 4+w L\left(L-L_{2}\right)^{2} / 4=0$
Divide by $w L_{;}-L^{2} / 6+\left(L-L_{1}\right)^{2} / 4+\left(L-L_{2}\right)^{2} / 4=0$,
*12/L L^{2}, and remembering $L_{1}+L_{2}=L$, and $L_{1} / L=x, L_{2} / L=1-x$
$-2+3(1-x)^{2}+3 x^{2}=0$, and $6 x^{2}-6 x+1=0$, thus $x=(3 \pm \sqrt{ } 3) / 6$
Thus $L_{1} / L=(3-\sqrt{ } 3) / 6=0.211, L_{2} / L=(3+\sqrt{ } 3) / 6=0.788$, and
$\mathrm{L}_{2}-\mathrm{L}_{1}=2 \sqrt{ } 3 \mathrm{~L} / 6=0.577 \mathrm{~L}$: Airy Points Support
At Airy points support,
$\delta(0)=(w / 24 E I)\left[L_{1}{ }^{4}-\mathrm{L}_{1} \mathrm{~L}\left(\mathrm{~L}_{2}{ }^{2}+\mathrm{L}_{1}{ }^{2}\right)+2 \mathrm{LL}_{1}\left(\mathrm{~L}_{2}-\mathrm{L}_{1}\right)^{2}\right]$

```
\(=\left(w L^{4} / 24 E I\right)\left[0.211^{4}-0.211\left(0.788^{2}+0.211^{2}\right)+2(0.211)(0.577)^{2}\right]\)
\(=\left(w L^{4} / 24 E \mathrm{I}\right)[0.00206]\)
\(=0.000086\left(w L^{4} / E I\right)\)
\(\underline{\delta(L / 2)}=(w / 24 E I)\left[-L^{4} / 16+L_{1}^{4}-(3 / 4) L\left(L_{2}-L_{1}\right)^{3}+\left(L_{1}^{2}+L_{2}^{2}\right) L\left(L_{2}-L_{1}\right) / 2\right]\)
\(=\mathrm{wL}^{4} / 24 \mathrm{EI}\left[-1 / 16+0.211^{4}-0.75(0.577)^{3}+\left(0.211^{2}+0.788^{2}\right)(0.577) / 2\right]\)
\(=\left(w L^{4} / 24\right)[-0.0126]\)
\(\fallingdotseq-0.000525 \mathrm{wL}^{4} / \mathrm{El}\)
```

Thus deflection, $\delta=\delta(0)-\delta(\mathrm{L} / 2)=0.000611 \mathrm{wL}^{4} / \mathrm{El}$

For double support condition from eq(1), eq(2): $L_{1}=0, L_{2}=L$ $\delta(0)=0$
$\delta(L / 2)=(w / 24 E I)\left(-5 L^{4} / 16\right)=-5 w L^{4} / 384 E I=-0.01302 w L^{4} / E I$
\therefore About 4.7\% $(\fallingdotseq 0.000611 / 0.01302)$ deflection when compared to the Double Support condition.

*Minimum straightness support points

The straightness due to bending deflection $=\delta_{\text {max }}-\delta_{\text {min }}$
To find the L_{1}, L_{2} such that $\delta_{\text {max }}-\delta_{\text {min }}$ be minimum
This condition is to find L_{1} such that $\delta(0)=\delta(L / 2)$;
From eq(1), eq(2);
Left $=24 E I \delta(0) / w=L_{1}{ }^{4}-L_{1} L\left(L_{2}^{2}+L_{1}{ }^{2}\right)+2 L_{1}\left(L_{2} \underline{L}_{1} L_{1}\right)^{2}$
Right $=24 E I \delta(L / 2) / w=-L^{4} / 16+L_{1}{ }^{4}-(3 / 4) L\left(L_{2}-L_{1}\right)^{3}+\left(L_{1}^{2}+L_{2}^{2}\right) L\left(L_{2}=L_{1}\right) / 2$
$/ L^{4}$, and let $x=L_{1} / L$, then $L_{2} / L=1-x_{1}\left(L_{2}-L_{1}\right) / L=1-2 x$
$x^{4}-x\left[(1-x)^{2}+x^{2}\right]+2 x(1-2 x)^{2}=-1 / 16+x^{4}-0.75(1-2 x)^{3}+\left[x^{2}+(1-x)^{2}\right](1-2 x) / 2$
Left $=x^{4}-x\left(1-2 x+2 x^{2}\right)+2 x\left(1-4 x+4 x^{2}\right)=x^{4}+6 x^{3}-6 x^{2}+x$
Right $=-1 / 16+x^{4}-0.75\left[1-3(2 x)+3(2 x)^{2}-(2 x)^{3}\right]-\left(2 x^{2}-2 x+1\right)(x-1 / 2)$
$=-1 / 16+x^{4}-\left(0.75-4.5 x+9 x^{2}-6 x^{3}\right)-\left(2 x^{3}-3 x^{2}+2 x-1 / 2\right)$
$=x^{4}+4 x^{3}-6 x^{2}+2.5 x+(-1-12+8) / 16$
Left-Right $=2 x^{3}-1.5 x+5 / 16=0$
By solving the cubic equation by numerical method,
$\mathrm{L}_{1}=0.223 \mathrm{~L}, \mathrm{~L}_{2}=0.777 \mathrm{~L}$, and $\mathrm{L}_{2}-\mathrm{L}_{1}=0.554 \mathrm{~L}$.
Then $\delta(0)=(w / 24 E I)\left[L_{1}^{4}-L_{1} L\left(L_{2}^{2}+L_{1}^{2}\right)+2 L L_{1}\left(L_{2}-L_{1}\right)^{2}\right]$
$=\left(w L^{4} / 24 E I\right)\left[0.223^{4}-(0.223)\left(0.777^{2}+0.223^{2}\right)+2(0.223)(0.554)^{2}\right]$
$=w L 4 / 24 E I(-0.00636)=(-0.000265) w L / 4 / E I$

The straightness error $=\delta\left(\mathrm{L}_{1}\right)-\delta(0)=-\delta(0)=0.000265 \mathrm{wL}^{4} / \mathrm{El}$
\therefore About $2 \%(\doteqdot 0.000265 / 0.01302)$ of Double support case

Therefore, the supporting locations for beam elements give very strong influence on the beam bending or deformation, and thus better to be located at the optimum position.

