Two-dimensional materials and applications

4. Properties of 2D Semiconductors Part 2

Properties of Black Phosphorous

1st paper by Fudan

1.6-2.5 nm 📥 3.5 nm 1.4 🔫 4.0 nm Band gap (eV) 1.0-0.8-0.6-Wave length = 500 nm Contrast (%) 05 05 175 0.4 0.2 120 180 240 Polarization (°) ò 60 300 0.0 550 700 0 450 600 650 400 500 Wave length (nm)

L. Li et al. Nature Nanotechnol. (2014) Received 9/12/2013 and published 3/2/2014

Properties of Black Phosphorous

2nd paper by Yale

Temperature- and direction-dependence of mobility

F. Xia et al. Nature Commun. (2014) Received 2/21/2014 and published 7/21/2014

Properties of Black Phosphorous

3rd paper by Perdue

Received 3/2/2014 and published 3/17/2014 H. Liu et al. ACS Nano (2014)

Strain-Induced Bandgap Change in Black Phosphorous

Stability of Black Phosphorous

6 µm 6 µm 6 µm 6 µm 6 µm 2 µm

Fast adsorption of water on thinner flake Layer-by-layer thinning Transformation of edges to single layer Etching by reaction with water or oxygen

Continuous degradation and final breakdown

J. O. Island et al. 2D Materials (2015)

Stability of Black Phosphorous

 $\mathsf{BP} + \mathsf{3H}_2\mathsf{O} \to \mathsf{BP}_{\mathsf{2Vac}} + \mathsf{PH}_3 + \mathsf{PO}_3\mathsf{H}_3$

Degradation by reaction with <u>water molecules</u> only at the <u>nanosheet</u> <u>edge</u>, leading to the removal of phosphorus atoms and the formation of phosphine and phosphorous acid.

Ultrahigh carrier mobility in hBN encapsulated BP

Anisotropic Two-dimensional Materials

Electrical anisotropy of ReS₂

Liu, E. et al. Nat. Commun. (2015)

Polarization-sensitive ReSe₂ photodetectors

Zhang, E. et al. ACS Nano (2016)

Photocurrent is generated with 0° polarized light while there is no photocurrent with 90° polarized light

Semiconductor-to-metal Transition of PtSe₂

Indirect to Direct Bandgap Transition in InSe

Hamer, M. J. et al. ACS Nano (2019)

Electrical Tunability of 2D Semiconductors

Photoluminescence

J. S. Ross et al. Nature Nanotechnol. (2014) & B. W. H. Baugher et al. Nature Nanotechnol. (2014) & A. Pospischil et al. Nature Nanotechnol. (2014)

Group IV 2D Materials

Zhao, J. et al. Pro. in Mat. Sci. (2016)

Lu, P. et al. Sci. Rep. (2017)

- Graphene-like honeycomb structure materials
- Linear dispersion at Dirac point
- High electron mobility
- ➢ 2-3% of light absorption
- Strong spin-orbit coupling
 - \rightarrow Better tunability of the band gap

Functionalization of Silicene

Band gap of silicene can be opened by functionalization, converted sp² hybridized silicon into sp³

Electrical Properties of Silicene

Zhao, J. et al. Pro. in Mat. Sci. (2016)

Band gap tuning in hBN-sandwiched silicene

Hydrogenated silicene nanoribbon FET

Li, H. Eur. Phys. J. B (2012)