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Fundamental
Concepts

* Bode's Rules

¢ Association of Poles
with Nodes

¢ Miller's Theorem

CH 11 Frequency Response

High=Frequency
Models of Transistors

® Bipolar Model
* MOS Model
* Transit Frequency

Frequency
Response of Circuits

¢ CE/CS Stages
¢ CB/CG Stages
* Followers

* Cascode Stage
¢ Differential Pair
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(a) (b)

» As frequency of operation increases, the gain of amplifier
decreases. This chapter analyzes this problem.
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[ Natural Voice ] [Telephone Systerrﬂ
20 Hz 20kHz f 400 Hz 3.59kHz f

(a) (b)

» Audible sound spans a frequency range from 20Hz to 20kHz.
However, conventional telephone system passes

frequencies from 400Hz to 3.5kHz over which human voice
can produce.
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Path traveled by the human voice to the voice recorder

[ ot }_{ A }_,[ cocorder }

Path traveled by the human voice to the human ear
[ Mouth } —>[ Air } —> [ Ear }
\ [ Skull J /

» Since the paths are different, the results will also be
different.
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(a) (b)

| High Bandwidth | | Low Bandwidth |

» Video signals without sufficient bandwidth become fuzzy as
they fail to abruptly change the contrast of pictures from
complete white into complete black. (The case with analog

raster-scan)
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Vi, C)t :TL c, Vniut 1.0 _\

» In this simple example, as frequency increases the
Impedance of C,decreases and the voltage divider consists
of C, and R, attenuates V,, to a greater extent at the output.
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Rp = V;

|n°_+ -L © Vout
L L
Vmo_“: M, ICL - = — I

(a) (b)

1
Vout — _gmvin (RD ” C—l_SJ

» The capacitive load, C, is the culprit for gain roll-off since
at high frequency, it will “steal” away some signal current
and shunt it to ground.
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—3— V.
Vout 3-dB

Y A Bandwidth -3-dB
n-o |- > _a— Rolloff =—9m[RD

_ _ngD

: - R,C s+1

R1C @ Vout — ngD
o Vi | JREC20 +1

» At low frequency, the capacitor is effectively open and the
gain is flat. As frequency increases, the capacitor tends to
a short and the gain starts to decrease. A special

frequency is w=1/(R,C,), where the gain drops by 3dB.

CH 11 Frequency Response
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Gain x Bandwidth

— V| FOM.=
cC Power Consumption
Rc.= Re %
C - gm C X RCCL
. . O Vout | Vee
o, . 1
A —R
Vin°_ |:. Q1 ™ CL — Vi © i ReCy
— = ICVCC
™ - [ B 1 J
ViVecCo

» This metric quantifies a circuit’s gain, bandwidth, and power
dissipation. In the bipolar case, low temperature, supply, and

load capacitance mark a superior figure of merit.
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a 1 N O : I
H(s=jow) = Voo (1) =Vo| 1—exp— |u(t)
i JRiCZ? +1 ) | ™ RC, ) 7

» Therelationship is such that as R,C, increases, the
bandwidth drops and the step response becomes slower.
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» When we hit a zero, w,;, the Bode magnitude rises with a
slope of +20dB/dec.

» When we hit a pole, wy;, the Bode magnitude falls with a
slope of -20dB/dec
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Vino_IIa-M1 — CL

» The circuit only has one pole (no zero) at 1/(R,C,), so the
slope drops from 0O to -20dB/dec as we pass w,;.
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Vout ngD
Vin \/(1+ a)z/a)§1X1+ 0)2/50§2L
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» The pole of a circuit is computed by finding the effective

resistance and capacitance from a node to GROUND.

» The circuit above creates a problem since neither termin
of Cr is grounded.

al
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» If A, is the gain from node 1 to 2, then a floating impedance
Zccan be converted to two grounded impedances Z, and Z,.
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Vino » o Vout —> Vin Vout
AV T "AoM Cr (1+A,) Ce(1+—)

I 1w
1

Z, = =
1_K (1+AlbjCFs

» With Miller’s theorem, we can separate the floating
capacitor. However, the input capacitor is larger than the
original floating capacitor. We call this Miller multiplication.
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oV
Rs l 1 ° Vout Rs l out
Vino—W I M, '

4 O a 1 N
1 Doyt =
win — 1
RS (1+ ngD )CF RD£1+ ]CF
N ) \_ OnRp J
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(a) (b)

V

out

Vin

_ RC.o
\/ R/Clwf +1

» The voltage division between a resistor and a capacitor can
be configured such that the gain at low frequency is reduced.

CH 11 Frequency Response 20/ 78



1
R; —— <
Vo) %—HIM RC 27 x(20Hz)

Ci
T Vo —=C. > . =79.6nF
100k x 27 x 20
1,(¥) I g
T - a)poutz—m227zx(20kHZ)
y CL
[R, 100 kQ } .. 1 20 8nE
< = oJ.00N
g =1/200 O L 000% 27 x 20K

» In order to successfully pass audio band frequencies (20
Hz-20 kHz), large input and small output capacitances are
needed.
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Rp = R, Rp =
Y +—I L m, P—Lm,

Vin°—||:_M2 ;1? Vin°—||.:_M2 ;1@

(a) (b)

[ Capacitive Coupling | | Direct Coupling |

» Capacitive coupling, also known as AC coupling, passes
AC signals from Y to X while blocking DC contents.

» This technique allows independent bias conditions between
stages. Direct coupling does not.
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[ Cﬂ':Cb+Cje }

» At high frequency, capacitive effects come into play. C,
represents the base charge, whereas C,and Cj are the
junction capacitances.
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c B E Cu
T T T+ B o o C
t A2y J xk v ®a Trole
J— ) I
Substrate T Ces
CH E

» Since an integrated bipolar circuit is fabricated on top of a
substrate, another junction capacitance exists between the
collector and substrate, namely Cs.
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o

p-substrate

» For a MOS, there exist oxide capacitance from gate to channel,
junction capacitances from source/drain to substrate, and
overlap capacitance from gate to source/drain.
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CGF
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e
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S ; Cse

» The gate oxide capacitance is often partitioned between source
and drain. In saturation, C, ~C,,,, and C; ~0. They are in
parallel with the overlap capacitance to form Csgand Cgp,.
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Vuut
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GS1 I I *Cos
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" GND
Q
¥ 1
"m |-.. VII'I ]
Cin _:
fcut ac
" GND
LM,
I,rm |-.' Vin —

Z, :_”r 1 Iout :gmlinzin

VA

., rCs+l rCs+1

la ) o v2c2e? = g2 10 2

T
in

= @, :anng—m

T

The transit frequency of MOSFETS
Is obtained in a similar fashion.
I

GS

w, =2rf. =

» Transit frequency, f, is defined as the frequency where the
current gain from input to output drops to 1.
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From Problem 11.28,
3

ac
. 3y,
——I" g\p 271, =S (Vs —Viw )

[+ m.

— :T,today — 100 : - 400 5 z59
T ,1980s (65><10_ ) (l><10_6)

If 1, =400 cm?®/(V -s),
f ~ 226 GHz

T ,today

» The minimum channel length of MOSFETSs has been scaled
from 1ym in the late 1980s to 65nm today. Also, the
Inevitable reduction of the supply voltage has reduced the
gate-source overdrive voltage from about 400mV to 100mV.
By what factor has the f- of MOSFETSs increased?

CH 11 Frequency Response
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KThe frequency response refers to the magnitude of the \

transfer function.

» Bode’s approximation simplifies the plotting of the
frequency response if poles and zeros are known.

» In general, it is possible to associate a pole with each node
in the signal path.

» Miller’'s theorem helps to decompose floating capacitors
into grounded elements.

» Bipolar and MOS devices exhibit various capacitances that

KIimit the speed of circuits. /
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KDetermine which capacitor impact the low-frequency region
of the response and calculate the low-frequency pole
(neglect transistor capacitance).

Calculate the midband gain by replacing the capacitors with
short circuits (neglect transistor capacitance).

Include transistor capacitances.

Merge capacitors connected to AC grounds and omit those
that play no role in the circuit.

>
>
>
» Determine the high-frequency poles and zeros.

(Plot the frequency response using Bode’s rules or exact /

analysis.
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Ve ()= RlRe __ (RiR)Ces
in R1||R2+i (R1||R2)Ci5+1
Cs

ThUS, < 1:sig,min

» Ci acts as a high pass filter.

» Lower cut-off frequency must be lower than the lowest
signal frequency f 1 (20 Hz in audio applications).

sig,mi
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1 1+gmRg

Vout (S) _ _RD Vout (S) _ _RD _ _ngD (RSCbS +1)
Vx R +gi Vy R || Cl n 1 RC,s+0. R +1
m bS gm

» In order to increase the midband gain, a capacitor C, is
placed in parallel with R..

» The pole frequency must be well below the lowest signal
frequency to avoid the effect of degeneration.
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Vehev C) Cin ==

CH 11 Frequency Response
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RThev X Y
lNT l l i l l © out
VThevé I CmI VX ?gm X Icout ICY R
‘a)p,in = - |a)|0’°“t - 1
Rrpey [Cin +(1+ ng'—)CXY] R |:COUt +(1 g]inCXY:|
m" L
CE Stage CS Stage
r
VThEV - Vlrl p -I-TERS VThEV = v
I
Rthev=Rs || ['7Z Rthev=Rs
Cx=Cu(1+gnmRy) Cx = Cap (1+9mR, )
1 1
Cy=Cp(1+ =Cop {1+
Y H Im RL) P 9m RL)
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» (a) Calculate the input and output poles if R =2 kQ. Which
node appears as the speed bottleneck?

R =

Rs Vout

Vino—W Q4

R, =200Q, I.=1mA
=100, C_=100 fF
C,=20fF, C, =30 fF

CH 11 Frequency Response

1

‘a)p,in

(R¢|r.)|C, +(1+g,R.)C, |

1
R | Cog +[ 14+
e (MR )

= 27z><(516 MHZ)
= 27r><(1.59 GHZ)

wp,in

wp,out
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> (b)Is it possible to choose R, such that the output pole
limits the bandwidth?

‘a)p,in >‘a)p,out
N 1 S 1
(Ry]r.)[C, +(1+9,R )C, ] R{CCS{H 1 )C}
ngL g
Ifg R, >1,

:>[CCS +C, —gm(RS ||r”)Cﬂ]RL >(RS ||rﬂ)Cﬂ

With the values assumed in this example, the left-hand side is negative,
Implying that no solution exists. Thus, the input pole remains the speed
bottleneck.
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CH 11 Frequency Response
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bias current 4 2X

L

|

|

a I
gm — \/zluncox % ID \L 2X
capacitances ¥ 2X

( _ N
bandwidth T 2X
gain { 2X
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At Node Y: (V, -V,

out

1
C,.S+—+C
XY R

S

out
L

out)CXYS - ngX +Vout (Ri+c Sj :>VX :V ut

L CXYS - gm
. Vx _VThev
At Node X: (V,,, =V, )Cyys =V, C,.s+
Thev
1
CyS+—+C,,S
1 R V.
— VoutCXY S— (CXY S+ CinS + j - Vout = e
Thev va S—0n RThev
C,.S— R
= \#(S) = ( XY2 bgm )1 : Where a= RThevF\)L (CinCXY +CoutCXY +CinCout)’
Thev as” + DS +
b= (1+ ngL)CXY River T RrineCin + R (CXY + Cout)

CH 11 Frequency Response
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o |
XY

2
as? +hs+l=| —— +1| ——41|=—2> 4 1 + 1 s+1
Wy o w0, |0, o,

: -1 -1 -1 . . .
It w,>0, = o0,+o,~a0, [ Dominant-pole approximation }

=b= =l
@
(o - 1 :
& (1+ g m RL)CXY I:eThev + RThevCin + I:QL (CXY + Cout)
| @ |_ E . (1+ g m RL)CXY RThev + RThevCin + RL (CXY + Cout)
===
\ i RThev I:QL (CinCXY +CoutCXY +CinCout) /
» Direct analysis yields different pole locations and an extra
Zero.
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Csg2
.L_" Cin =Csst
"TF_I Cbs2 C,, =Cqp,
Voo c I_'_-I- Cout =Cor1+Cop2 +Cog.
Vb'—l M2 GDZ
CGD1 out
Rs Vout l out
ine Ml c : C|::El1 Hw%lﬁwh T Cout %fm”foz
- GS1

A 1 N

e [+ G (Fon 11 Fo2)JC xy Rs + RsCi +(Foq [l o2 XCxy +Cie)
®,, ~ [1"‘ gml(r01 | roz)]C xv Rs +RsC;; +(ro1 | roz)(va +Cout)
\p Rs (r01 (Y )(CinCXY +CouCxy +CinC0ut) -
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VDD 30 ——r—my — :
IooIoIoItIii: I I I I 3v== Dominant-Pole Appr.
RL —— - . : :3===Miller's Approx.
- o] = Exact Eq.

20 S T I e L L e ok Iy

Rs Vour & | G oiiiitmoc oA Diiiin
VinO—’W\r—l M, Dorozozziii Doorozozziiny R
R, =200Q \ =
C, =250 fF
C,, =80 fF

=30

g _ (150 Q)—l 10 10 10 10

Frequency (Hz)

This error arises because we have multiplied C., by the midband
\QL 2kQ / gain (1+g R, ) rather than the gain at high frequencies.

Magnitude of Transfer Function (dB)
(=]
1

Miller’s Exact Dominant Pole
27r>< 571 MHZ) 27r><(264 I\/IHZ) 27z><(249 MHZ)

= 277x(4.79 GHz)

pln ‘ pln

‘ p|n

27z>< 428 MHz

=27x(453GHz)  ||@pou
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1 6 1 :

In ~ _ ” rﬂ' Zin ~
{Cn +(1+9,Re )Cﬂ JS Cos +(1+9,Rp )Ceo Is
VAN Y
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Vino—W—] '
/ !
! Im 0]

= (1 "'Q'mRs]Ci
h(s): Rc _ 9.R:Cis
\/in RS +(CiS)_1+1/gm (1+ngS)CiS+gm

» As with CE and CS stages, the use of capacitive coupling
leads to low-frequency roll-off in CB and CG stages
(although a CB stage is shown above, a CG stage is similar).
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= QY :CGD +CDB /

» Similar to a CB stage, the input pole is on the order of f;, so
rarely a speed bottleneck.
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== VoD ’—II:J.M 5

’_“tlmz Y
° Vout

R5M1 J—v VinD—‘M—lX

o Vout

Coe1*Cepi1*C +C
Mr_l :_II_. Vi I DE1 GD1 GSs2 DB2

Vi oA —— T Cse1* Cast
(a) (b)
4 1 1 M
a)p’x = 1 a)p’Y = 1
R.||— (CSBl+C681) (Copa +Cepr +Cass +Cosy)
\ gml gm2 )

CH 11 Frequency Response

49/78



Rs y Cas
I"FinD—ij-J-

I Csg

(R,=200Q
Cgs = 250 fF
Cep =80 fF
Cps =100 fF
g, =(150 Q)"
A=0

\R,=2kQ /

CH 11 Frequency Response

Magnitude of Frequency Response (dB)

(3)
o
1/

10" 10°
Frequency (Hz)

-

e

O
R, /C, =27 x(442 MHz)

Oy x| =1/(RS [ i)cx =27 x(5.31 GHz)
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—_— V —_— V
C“ ccC CGD gﬂ
—e |__ DB
Rs X 4"_"'
Vino—W I:Q1 M1
CTET Y CGS

+

CSB

C-T) %CL out G) l out

(a) (D)

» The following will discuss the frequency response of
emitter and source followers using direct analysis.

» Emitter follower is treated first and source follower is
derived easily by allowing r, to go to infinity.
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At node X: Yo +I:{/ﬂ ~Vin + (Vi +V”)Cﬂs+\£+vﬁcﬁs =0
S rﬂ'
\Y V,.C.S
Atoutput node: *++V C s+g,V, =V,,Cs = V_ = 1 ot L
f C \ rﬂ r_+C”S+ gm
1+—*s z
Vou g - A R O
M = . with r_ > =
V. astths+l - > 0, |where a . (c.c,+C,.C +C.C )
- g C Ry |C
|a)z|=%z T b=RSCﬂ+—”+(1+—S]—L
T \ gm r;z' gm J
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f C R, )
14+ —CS g a= _(CGDCGS +Cep (Css +C, ) +Cgs (Css +C, ))

Vo 0r o
in - as® +bs +1 b:RSCGD"'CGD—'_;:SB_'_CL
- i /
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X
Vino—W II:M1

Cas
Y
T IQ Vout
I Csp*t CL
R=2000 )
C, =100 fF
Coe = 250 fF
C,, =80 fF
C,, =100 fF
g, =(150 Q)"
=0 J

CH 11 Frequency Response

Magnitude of Frequency Response (dB)

- H H HE--- | H H - H B s 3 3 23
10 10° 10 10
Frequency (Hz)

a=258x10"'s™

b=58x10"s

®, =9,/ Css =27x(4.24 GHz)

w, =2r|1.79 GHz+ j(2.57 GHz) |
,, =2r|1.79 GHz - j(2.57 GHz) |
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R, o
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ml
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&
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c VG c - VDD

“ ]
o F a o ff I m, %Cna
Cxy=CrF v va=ﬂ=:;s.|. v °
R, %c,_ RLE %CL"' Csg
{a]= j ('J)= )
R 1
A/:RL+L91 — Cx:(l_A\/)CXY:1+ngL XY

C
[Cin =(C, or CGD)+1+ QX;RL }
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1)y -
Cs| - (I, +9,V, )R, -V, =V,

(1x +ngﬁ)(r,,

v | r N V., R Cs+r +R;
—>V_ =- = =
* " rCs+pB+1 l, rC s+p+1
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V, RrC

S+TI_+ R

Iy rC s+p+1
withg, -r. = —

\i ~ RCges+1
IX CGSS+gm

CH 11 Frequency Response
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|Zout| ) V, Rr.Cs+r +Rg Zout|

» The plot above shows the output impedance of emitter and
source followers. Since a follower’s primary duty is to
lower the driving impedance (Rs>1/g,,), the “active inductor”
characteristic on the right is usually observed.
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V. ._I M — - VDD
° 2 [rOB_OO} rotllroz
il ” 3
vin°_||: M1 '_°Vout - 5
T ® l
- Zout
4 )
Vx _ (o1 [l o5 )Ces3S +1
|y CisaS+ Oms

\
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Assuming r, = oo for all transistors,

Ay = —9m ~_—1 C, :(1_ A xy )CXY
gm2 ~ 2°CXY

» For cascode stages, there are three poles and Miller
multiplication is smaller than in the CE/CS stage.
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- 1 ) e
@, x = 1

a) ou —
R |:C681 "‘(1"' I jCGD1:| ot RL(CDBZ + CGDZ)
\_ =/

gm2
V,
RL; DD

.

I:T l ° |/cnut
Voe [, M, Cep2* Cpg2
Y I

X |

V. M i Im2
in I:_ly_ﬁ-CGSZ"'CGm (1+ m )+CDB1+CSBZ
I gm1
gm1 -

a 1 N

1 O
|:CDBl + Cgso + (1"‘ 2 jCGD1:|
\ gmz gml /
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0
@
=
Magnitude of Frequency Response (dB)

/Ry =200 Q2
Cqs = 250 fF
Cop =80 fF
Cps =100 fF
g, =(150 Q)
A=0

QLZZKQ J

CH 11 Frequency Response
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-

w, x| =27 %(1.95 GHZ)\

@,y |=27x(1.73 GHz)
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a 3 1 I 1
W, x = g @ ot =
Re| Cosy +| 1+ 5™ |Copy R.(Cos2 +Cop2)
\ gm2 /
Voo
V, Ry
b2 —[Z M
Vout
Vo1 e[, M,
Rs Y
. 1 N
@, = ; ;
|:CDBl + CGSZ +[1+ s jCGDl + CSBZ + CGD3 + C:DB3:|
\\ gnﬂ gnﬂ //

CH 11 Frequency Response
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out

lCGDZ"'CDBZ
. I
V. .o ‘\MS - Im2
" Ces2t Cgpq (17 ; )+ Cpg1+Cgp2
gm m
Cest+Capy (14 =2
gmz
a 1 N ~ 1 N
Zin T g : Zout — RL ” C C
Cogy H 1+ 5™ [Copy IS (Capz +Cpa2 s
L L Omo A \_ /
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[ Half Circuit)

» Since bipolar differential pair can be analyzed using half-
circuit, its transfer function, I/O impedances, locations of
poles/zeros are the same as that of the half circuit’s.
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W | P | MW—o Vinz Vin1 L Icnm

Casi T My | SCgpy

1 {H®

[ Half Circuit)

» Since MOS differential pair can be analyzed using half-
circuit, its transfer function, I/O impedances, locations of
poles/zeros are the same as that of the half circuit’s.
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CGDl
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Rs Xx

Vin“_'WVTI
Im1 =

C +Cgpq (1+ )
GS1 9 I

CH 11 Frequency Response

1
" Ri[Ces1 + A+ 0911/ 91n3)Copi]
o = 1
pY
Llc tc..+Co. +| 1+ 9ms
pe1 T “ess T g T| 1t
gm3 gml
. 3 1
\p’om R. (Coes +Caps)
°vout
Cep3* Cpgr3
Im3
Cgs3*Cgpq (1 — )+Cpgq +Cgps
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‘i 2 -'Ia'm
RgsCss Css

~
_ UnARp (RsCss5+1)
1 j RCeS+29. Ry +1

SSS

J

» C., will lower the total impedance between point P to
ground at high frequency, leading to higher CM gain which
degrades the CM rejection ratio.
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17- CsB2

Css1 I
: Ma ;

K> Source-Body Capacitance of M, M, A
» Drain-Body Capacitance of M,
» Gate-Drain Capacitance of M,

= /
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100kQ =Rgq Re= 1kQ
C1

Vino & £ =100

20’) nF *1-.@1 VA —
For Q,, assuming Vg, =800 mV, For Q,, assuming V., =800mV,
., = ﬂVCCR_VBEl —1.7 mA Vee = IBZF\:;Z +V\;E2 +Rele,

B1 = ., =—C "B _113mA
Ve, =Vy In(lg, /1, ) =748 mV Reo !+ Re
1, =175mA= g, = (14.9 Q)—l Iteration yields .
1, =1.49 kO l., =117 mA, g,, =(22.2 Q)

—r,=222kQ
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Rp1
Rs Vout Miller Effect
200 €2 8.7kQY
Rs1 a R- )
200 QT Rin = 1-A
2
?m - 1 \ A, = =0n,Rp, =—6.67
W, = = R, =130 kQ
1 \ in2 J
R31 ”— C1
Om e 1 ™
R., +1 @, , =
— i - (RDl + RinZ)CZ
Rs,C,
\_ =27x(424 MHz) | =27x(692MHz)
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Magnitude of Frequency Response (dB)

Frequency (Hz)
CH 11 Frequency Response

| = 277 % (308 MHz)
@, = 27 % (2.15 GHz)

With Miller effect,

(1_ A;; ) Copz #1.15-Cqp,
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