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Objectives of the chapter
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« When a small amount of load is

applied to a material, elastic
deformation occurs.

For most metals the load (F) and
elongation (L-Ly) are
proportional to each other in the
elastic range.

In other words, the stress and
strain relationship is linear.
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Objectives of the chapter

« This linear relationship between the stress and strain is known as
Hooke’s |law. For instance, in uniaxial tension:

o= Ee¢ - Hooke’s law in uniaxial tension

« This simple representation is not sufficient in reality for two reasons. First,
the material property can be different depending on the loading direction
(material anisotropy).
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Objectives of the chapter

« Second, the stress state of a material may not be simply uniaxial but
multi-axial.
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Objectives of the chapter

« Second, the stress state of a material may not be simply uniaxial but
multi-axial.

Tank wall: Biaxial tension Hydrostatic compression
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Objectives of the chapter

In this chapter, we are going to learn:

« How to construct an anisotropic elasticity law considering three-
dimensional states of stress and strain

1-D 3-D
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We will introduce ‘stiffness’ and ‘compliance’
tensors for this purpose

« How to reduce the number of elasticity constants for single crystals
having symmetry



Background
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* Elastic deformation originates from the change of interatomic
spacing under external loads.

* Therefore, the elastic modulus is proportional to the slope of the
interatomic force-distance curve at the equilibrium spacing:

E « ar
dr

To



Background
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Elastic-plastic
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Elastic regime

Engineering stress

Engineering strain

* Elastic deformation is reversible.

* Plastic deformation is irreversible.

Elastic deformation

1. Initial 2. Small load 3. Unload

Elastic-plastic deformation
1. Initial 2. Small load 3. Unload

(Atomic bonds stretch & slip occurs)



Background

Elastic properties of engineering materials

60:% 1000 Elastic modulus | Shear modulus | Poisson’s
Metal alloy

Porous ceramics [G Pa] [G Pa] ratio

8| '

100

sg'aﬁs.go Aluminum 0.33
Brass 97 37 0.34

Metals and alloys
1> I ' Copper 110 46 0.34

Composites
; _m Magnesium 45 17 0.29

Woods and wood products

el = Nickel 207 76 0.31
oo | —— Steel 207 83 0.30
<o | . Titanium 107 45 0.34
Polymer foams
<001 , ] 0.5 Tungsten 407 160 0.28
0.01 Ofl | 10 100 1000

Flexible = YOUNG'S MODULUS(STIFFNESS) (GPa) — stiff



Background

* Consequently, the elastic behavior of a material is affected by
the nature of atomic bond as well as crystallographic structure.

* For instance, in the simple cubic structure, the elastic response
is different depending on the loading direction, i.e., anisotropic.

Simple cubic Body-centered cubic Face-centered cubic

[001] [001] [001]




Stress and strain tensor
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Anisotropic elasticity

* We will keep the concept of linear elasticity, i.e., the stress-
strain relationship is linear.

* Then, each stress component can be expressed as a linear
combination of the strain components. For example,

Oxx = Coxxxxx t Conxy€ay + Cornzuz Using tensor notation:
+ Cxxyxgyx + Cxxyygyy + Cxxyzgyz
+ Cxxzx€zx + Cxxzygzy + Cxxz2€22 Oijj = Cijklgkl for L7, k,l=x,y,z
Constants Ciji - Stiffness tensor
axx — xxxxgxx + Cxxxygxy + CXXXZSXZ

(The ratio of the stress component

t CoxyxEyx  Coxyy€yy + CuxyzEyz
0;; to the strain component ;)

Contribution of the strain component
£, to the stress component o,.,




Anisotropic elasticity

* Alternatively, each strain component can be expressed as a
linear combination of the stress components.

Exx = OxxxxOxx T Sxxxyo-xy + Sxxxzo-xz gij = Sijklo-kl for i,j, k,l =X,¥,Z
+Sxxyxayx + SxxyyOyy + Sxxyz0yz
+iSsxzx02x t Sxxzy0zy + Sxxz2022 Sijki : Compliance tensor
4
Contribution of the stress component (The ratio of the strain component
0, to the stress component ¢, &;; to the strain component gy;)
Remarks

* |t is conventional to use the symbols ‘C’ for stiffness tensor and ‘S’
for compliance tensor.

* Ingeneral, Cyxxx & 1/(Sxsxrx)-



Anisotropic elasticity

* We need nine equations to express the entire set of stress (or
strain) components.

Oxy = Note This matrix notation is equwalent

to the tensor notation of

xxxxExx T Cxxxygxy + CyxxzExz
+ Cxxyxgyx + Cxxyygyy + Cxxyzeyz
+ Cyxzx€zx T Cxxzygzy + CyxzzEz22 - Cl]klgkl for L,J, k,l=x,y,z

el | Cover Corry Corez Ceryx Crryy Coya Cocx Cuxay Covaa || 5
Oy Cxyxx  Cxyxy Cxyxz Cayyx Cayyy Cxyyz Cayzx Cxyzy  Cayzz gxy
Oxz Cxzxx  Cxzxy Cxzxz Crzyx  Crzyy Cxzyz Cxzzx Crzzy  Cxzzz Cxz
Oyx _ nyxx nyxy nyxz ny
Iyy| | Cyyxx Cyyxy Cyyxz eyy
Oyz Cyzxx Cyzxy Cyzxz gyz
Ozx Czxxx  Czxxy Czxxz 8 2
Ozy Czyxx Czyxy Czyxz €zy
Ozz L szxx szxy szxz Cr222 _ _SZZ

Stiffness (and also compliance) tensor contains 9 x 9 = 81 components!



Anisotropic elasticity

* The 81 components of stiffness or compliance tensors are not
completely independent.

* This implies that it is possible to reduce the number of

constants and to simplify the expression.

Step-1) First, we can reduce the number of constants by taking

only the six independent components of stress and strain.

Vector (or Voigt) notation for stress and strain:

Oxx

O-Z X

Oxy Oxz
Oyy Oyz| ™
Ozy Ozz

normal
gxx
gZ.X
shear

Vzx |




Anisotropic elasticity

Remarks

[C]=[S]""and [S] = [C]7}
(But €11 # S11 in general)

Then, we need only 6 x 6 = 36 constants to express six stress
components in terms of six strain components.



Anisotropic elasticity

Step-2) Next, consider the symmetry of stiffness and compliance
tensors. This comes from the path-independent nature of linear
elasticity.

Elastic strain energy

When an external load is applied, the work done to the material is
stored as a form of elastic strain energy.

F 1-D case: t
4  Ox
N
- AW  FAL A Aw
LO » [ W = VO - AOLO - on¢e O | l
.................... v R | 2 Ae 3
—— = — - — ©
F Area: A, - 208 o

AW = FAL : Elastic strain energy per unit volume



Anisotropic elasticity

3-D case:
Aw = 0, As, + GyAe, + 03Aes + 4, + oghes + ahe, mp | O Very small Ag;
Aw  dw
A = 0;
W = E (0-181 + 07&- + .- 0-686) Agi agi '
for i=1, ..., 6.
9, d (0 { )
C12 = % = w - E Recall that 01 = Cllgl + CIZEZ + e+ 61686 E
de, 0dé&y \0égg § !
and 0y, = 62181 + 62282 + .-+ C2686 E
c do, 0 (0w
21— 681 081 682
2w 0w

Si _ (this equality comes from the path-independent nature of
ince = . R4
de,de;  0dg0€,  linear elasticity)

Ci; = Cy1 oringeneral, Cij =Cj for i,j=1,..,6.



Anisotropic elasticity

01 .511 Ciz Ciz Ciy Cis Cigl] & |
02 Cy3w. (22 Ca3 (a4 (35 (a6l €2
o3 | | Ci3 Co5o. C 33 C34 (35 C36if| €3
Oy Cia Caa Cii. ¢ 4 Cas  Casi|| €4
05| | Cis Cos Cas Cig-Css Csell| e
| 0p | Ci6 C26 C36 Cas CsgC 66:1L €6 |

This reduces the number of elasticity constants to 6+5+...+1 = 21
for fully anisotropic materials.



Rotational symmetry

2 Axis of rotation /

(out of plane, +2)

When we rotate the image by 0 < 0 < 2m, we can find two rotated
images that are identical to the original image: two-fold rotational

symmetry . ,

If we can find the identical image when it is rotated by a multiple
of 2rt/n, this image is said to have n-fold symmetry.



Crystal systems

Triclinic Monoclinic Orthorhombic Tetragonal
ﬁ + 9()° a+c

a, B,y #90° a,y =90° a*b#c D
NN N
C

. .
“ L\—i
b a '

Rhombohedral Hexagonal Cubic

a=p=y # 90°



Crystal systems

Example: Orthorhombic crystal

axb#c
Vi
C
Y a
X
Crystal system Lattice parameter relationships Defining symmetry

* Four-fold symmetry with respect to
X-, Y- and z-axis.

* Orthorhombic crystal has 3 four-fold
axes of rotational symmetry.

Triclinic azb#c,azpfzy=#90° -
Monoclinic azb#c,a=y=90°%p 1 two-fold axis
Orthorhombic azbzc,a=B=y=90° 3 two-fold axes
Tetragonal a=b#c,a=B=y=90° 1 four-fold axis
Rhombohedral a=b=c,a=B=y=#90° 1 three-fold axis
Hexagonal a=b#c,a=p=90°%y=120° 1 six-fold axis

Cubic a=b=c,a=B=y=90° 4 three-fold axes



Elasticity constants of orthorhombic crystal

Rotate the crystal (or equivalently, ’ :
>/ mp rotate the coordinate axes) by m = V<[

with respect to the z-axis

* For orthorhombic (= orthotropic) crystals this rotation must

not affect the crystal structure. material property.
* This implies that the stiffness tensor must be identical for

these two crystals.

--------------------------

o] =[Clle] €] =C; 0] = 1C][]

Stress-strain relationship
written in the rotated

coordinate system (x’, y’, Z’)

Stress-strain relationship
written in the original
coordinate system (x, y, z)



Elasticity constants of orthorhombic crystal

-----------------------------------
Y L4

b c g
—55 : Rotation by m with:
: respect to the z-axis :
x' = —x
I __
y ==Yy
] z'=z
ix'=—x and x' = —x
! / I !
Oyy Oyy op) op) Eyy Eyy ) €
14 4
, = or , — , — or , =
Oxy Oxy Oy Oy Vxy Vxy €4 €4
!/ / ! !/
Oyz Oyz Os —05 Yyz Vyz Eg —&s
-~ 7 /
jgzxi __O-zx_ i 0-6’ ] i _0-6_ _}/Zx_ __]/Z.X_ L Eé i _ _86_

--------------------------------------------------------



Elasticity constants of orthorhombic crystal

If we express [o]

 C11

Ciq

C12
622

ClZ
CZ 2

= [C][€] with their components

C13
(23
C33

Cis Cig|] €1
Cas Cpe|| €2
C35 (36| €3
Cas Cue || €4
Css  Cse || &5
C66 | &6
= [C][€"] with their components
Cis Ci]| &1 | (o1 | [ op e | [ &
Cas Cae || &2 02 92 £ &2
C3s Cse|| €3 03 03 &3 €3
, | = and| , |=
Css  Cue || €4 04 04 €4 €4
Css  Cse || &5 o% —0s € —&s
Ceo | &g | | 06| | —06] &) | %

-----------------------------------------------------------------------------------------



Elasticity constants of orthorhombic crystal

- C11 ClZ 613 Cl4 ClS 616-

C22 C23 CZ4- C25 CZ6
C33 C34 C35 C36

Caa Cus Cue
Css  Cse
Cee

-Cll C12 C13 C14- _C15 _616-

C22 CZB C24 _CZS _CZ6
C33 C34 _C35 _C36

This must be identical to (]

€]

The symmetry condition can
be satisfied only when we have:

Ci5 =—C15=0
Cy5 = —C5 =0
C35 = =(35 =0
Ca5 = —C45 =0
Ci6 = —C16=0
C6 = —C26 =0
C36 = —C36 =0
C46 = —C46 =0



Elasticity constants of orthorhombic crystal

 We have two more two-fold axes of symmetry: x- and y-axes.

-----------------------------------
. Yo
-
3

Rotation by m with'§
: respect to the y-axis :

i Rotation by m with
: respect to the x-axis
x'=x

y'=-y

7' = —z

* *
------------------------------------

* If we repeat the same procedures for these two rotations...



Elasticity constants of orthorhombic crystal

o1 ] [Cy Cz Gz 0 0 0 ][&
o7 Chy Cps 0 0 0 ||&
o3 C.s 0 0 0 ||e
oy |~ Cse O 0 &4
Os Css 0 €5
Kz Cee | | €6
& S11 S12 Si3 0 0 0 |[o
€2 S22 S23 0 0 0 || o
&3 S33 0 0 0 03
&4 | Sia 0 0 Oy4
Es Sce 0 Oc
& | | Se6 | | 06

Orthorhombic (= orthotropic) materials have 9 independent
elasticity constants.



Elasticity constants of cubic crystal

 Cubic crystals automatically satisfy the
symmetry condition of orthorhombic crystal.

 Therefore, we can utilize the stiffness matrix of
orthorhombic crystal with 9 constants.

* We can further reduce the number of
constants using the additional symmetry
conditions of cubic crystals.

--------------------------------------------------------------------------------------------------------------
ttttttttt

Rotation by /2 with'g Rotation by nt/2 with'; ! Rotation by /2 with';
: respect to the z-axis |  respect to the y-axis : : respect to the x-axis :

x’:y - x'=—7 x'=x
r I - I __

y = —x y' =y F y =z
Z’:Z Z’:_X‘ : . Z’:—y

’’’’’’’’’’
------------------------------------------------------------------------------------------------------------



Elasticity constants of cubic crystal

. respect to the z-axis

x'=y
y'=—x
z' =2z

. 0
. %4
------------------------------------

o* e,
. - _ - _ - —
> < /

------------------------------------------------------------

I} !

Oyy Oxx 03 01
Y !

Ozz Ozz O3 03
, - or , ]

ny - O-xy o) 4 —0 4
I !

O-y z —O0zx g —0g

:"‘- I /

':gzx:'_ i O-y zZ i Og i i Ot

--------------------------------------------------------

Insert these to the equation

lo'] = [C"][e'] = [C][€]




Elasticity constants of cubic crystal

0-2 | | Cll ClZ 613 O O 0 I 82 | ] o
o Cry Cpz O 0 0 £ This .symmetry condition
requires
O3 C33 0 0 0 &3 9
— 04 Caqa O 0 —&4 C11 = Cy2
—0y 655 0 —&p (:13 - CZ3
Os Ceo || &5 | Css = Cee
We can rewrite the above expression as If we repeat the same
procedure for the other
o1 | [Chpy Ciy Co3 0 0 0] & ] two rotations we can also
0-2 Cll C13 O O 0 82 flnd
g C 0 0 0 €
3 1= 33 3 C11 = Cyp = (33
Oy C4_4_ 0 0 &y
C12 = C33 = (13
Os Ces 0 €5
C Ca4 = Cs55 = (g
Og | 55 | | &g i

o] This must be identical to [C] [€]



Elasticity constants of cubic crystal

(o] [Cy €, Cn 0 0 0][&”
02 Ci1 Cyp O 0 0 €2
03 Ci1 O 0 0 &3
o4 |~ Caa O 0 &4
Oc Cas O €5

| 06 | Cag || &6 |

& | 511 S12 S12 O 0 0 |[o1]
€2 511 S12 O 0 0 (|0
£ S, 0 0 0 ||a
g |~ Siu 0 0 || oy
€5 Saa 0 || o5

| &6 | Sia || og |

Cubic crystals have only 3 independent elasticity constants.



Elasticity constants of other crystals

Monoclinic Rhombohedral
— Cll 612 613 0 615 0 - - Cll C12 613 C14 0 0
C2 Gz 0 Cps O . Ciy Ciz —Cig O 0
C33 0 C35 O C33 O 0 0
Caa 0 Cyuq Cia O 0
Css 0 Cag C14
| 13 constants ... Ceg | 6 constants o (C11— C12)/2]
Tetragonal Hexagonal
(C;y Cz €3 0 0 0] [Cq Cp Cs 0 0 0
: C;p Ci3 O 0 0 Ci1 Ci3 O 0 0
Czz 0 0 0 Czz 0 0 0
Cia 0 O Cio O 0
Cag O Caq 0
| 6 constants  Ceg | 5 constants e (C11 — C12)/2)




Elasticity constants of isotropic material

* [Isotropic materials exhibit the same property along any direction.
* Therefore, the stiffness tensor is preserved for any rotation.

* Considering that isotropic material automatically satisfy the cubic
and hexagonal symmetries, we can utilize the previous results to
obtain the isotropic stiffness tensor:



Elasticity constants of isotropic material

01 Ci1 Ci C 0 0 0]fl&
0-2 Cll C22 0 0 O 82
O3 _ C11 0 0 0 &3 ) ; B C11 . C22
Oy Cyuo O 0 g, | WNEre Lyy = >
Og C44 0 &g
| 06 _ Caa || &6 |
KN S11 S12 Sz O 0 0 |[o1
) 511 512 0 0 0 o))
€ S 0 0 0 o
3 — H 3 where S4_4_ = 2(311 — 522)
£ Seu 0 0 ||,
&s 544 0 Og
| €6 | S4-4- | Og |

Isotropic materials have only 2 independent elasticity constants.



Elasticity constants of isotropic material

It is conventional to o] [A+2u 2 A0 0 0]l[&
designate (i, and Cy4 op A+2p A 0 0 0| &
as A and u, which are o3 | | . A+2u 0 0 0 || &
called Lamé constants. o | | w0 0 ||&
O uo 0| &s
| 06 | | HoJl e
Recall the elasticity constants we learned in the previous lectures:
[0y ] (1—-v v v 0 0 0 &
o 1—v v 0 0 0 2| ¢ = E
O3 E _ 1-v 0 0 €4 2(14+v)
o, | A+v)A-2v)| ° (1-2v) O 0 | e E
Is 1-2v) O e | X302
Og i (1-2v)|| & |

(Generalized Hooke’s law for isotropic material)



Elasticity constants of isotropic material

Because there are only two independent constants in isotropic
elasticity, E, v, G, K, A, and u are not completely independent.
If any two of these constants are given, the other constants can

be determined.

(G =2p)

Known Elastic Constants E 1 7, K A
Shear modulus y, Okt Ik—2u u p I—2u
Bulk modulus x Sty Oty )
Young’s modulus E, E y E E Ev
Young’s modulus E, £ E-2y p Ep u(E=2u)
Shear modulus u Zu 33u—E) 3u-E
Young's modulus E, £ W E WE . Ik(3k—E)
Bulk modulus & b« M—E M—E
Shear modulus g, w(31420) 1 1 3142u 1
Lame’s constant .1 A+p AA+p) 3




Elastic property of polycrystal

* Most of crystalline materials are polycrystal.
e The elastic property that we typically observe with these
materials is therefore the averaged value over a large number of

crystals.

EBSD image of a thin
ferritic stainless steel

Each color represents
the orientation of the
grain.




Summary

* At the beginning of this chapter we had 81 elasticity constants
for fully anisotropic material.

Oux| - Crxxx Cxxxy Cyxxz Cxxyx Cxxyy Cxxyz Cyxzx Cxxzy Cyxzz || Exx
Oxy nyxx nyxy nyxz nyyx nyyy nyyz nyzx nyzy nyzz Exy
Oxz szxx szxy szxz szyx szyy szyz szzx szzy szzz Exz
Oyx _ nyxx nyxy nyxz Eyx
Tyy| Cyyxx Cyyxy Cyyxz Eyy
Oyz Cyzxx Cyzxy Cyzxz Eyz
Ozx Coxxx szxy Crxxz Ezx
Ozy Czyxx Czyxy Czyxz Ezy
| 0zz | L szxx szxy szxz Crzzz [ 2z |




Summary

 But we found that there are only 21 independent constants out
of 81, owing to (1) the symmetry of stress and strain tensors and
(2) path-independent nature of elastic strain energy.

o1] [Ci1 Cp Gz Cig Cis Ciglf &1 ]
02 Coz Coz3 Coy Cys Coel| &2
O3 | C33 (34 (35 C36|| &3
O4 Caa Cus Cup || &4
Os Css  Cse €sg
| g Ces || &6




Summary

 We could further reduce the number of independent constants
for single crystals using their symmetry (Higher symmetry = less
number of constants)

* Finally we found that there are only two independent constants

for isotropic materials.

o] [A+2u 2 A 0 0 0]l[&
02 A+2u A 0 0 0| &
03 A+2u 0 0 0 || &
04 N L 0 0 || &
Os po 0] &s
| 06 e -




Exercises (1)

Problem Uniaxial tension tests were performed for some metal alloys. From
these experiments the Young’s modulus and Poisson’s ratio of the materials could
be obtained, as given in the table below. If we assume these materials are
isotropic, what will be the shear and bulk moduli of these materials?

Table Elastic constants of some metal alloys

70.5 0.34

Be 309.0 0.05

a-Fe 208.2 0.29
Mg 44.3 0.29

Cu 122.5 0.34



Exercises (2)

Problem Show that the stiffness or compliance tensor of tetragonal crystal has
six independent constants as below:

(Ci1 Cip Gz O 0 0 | (S11 Siz2 Si3 O 0 0 |
C,;y C;s 0 0 0 S;1 C3 0 0 0

Czz 0 0 0 S;3 0 0 0

Co 0 O Sea 0 0

Cags O Sas 0

Ceo | ] S66 |

Approach
(1) Note that the tetragonal symmetry satisfies the orthotropic symmetry.
(2) Then, consider the additional symmetry conditions of tetragonal crystal.



Exercises (3)

Problem a-Fe has a cubic crystal structure. Three elasticity constants for Fe can
be found in the table below. When uniaxial tension is applied to a single crystal of
o-Fe along [100] direction, what will be the elastic modulus?

Approach

(1) Choose which of the expressions will be useful: [a] = [C][e] or [e] = [S][o]
(2) Calculate the stress and strain along the tensile direction (the x-direction in
this example).

(3) The elastic modulus is then the ratio gy /&xx-

Table Elastic constants of some cubic crystals
_ C,1 [GPa] | Cy, [GPa] | Cyq [GPa] 54 [TPar]
339.8 58.6 99.0 3.10 -0.46 10.10
a-Fe 231.4 134.7 116.4 7.56 -2.78 8.59
K 3.7 3.14 1.88 1223.9 56.19 53.19



Exercises (4)

Problem Consider a single crystal of a-Fe again. When uniaxial tension is applied
along [110] direction, what will be the elastic modulus?

Approach

(1) Express the applied stress as a stress tensor in the crystallographic coordinate
system (Hint: use the transformation of stress tensor that we learned in the
previous chapter).

(2) Calculate the resultant strain using the stress-strain relationship for cubic
crystal.

(3) Calculate strain along the loading direction [110].

(3) The elastic modulus is then the ratio oy1101/€[110]-



Appendix
- Slides from Prof. Han



Elasticity

- Elasticity are extremely important because engineering
design is done In the elastic region.

- Material fracture is related to elastic properties because
the elastic energy release is one of driving force for
fracture.

- Elastic behavior is inherently anisotropic for individual
grains. However, most polycrystalline materials are
elastically isotropic. Polycrystalline materials can be
anisotropic if they are textured.

2021-04-01
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Basis for linear elasticity

Consider two atoms
F.. IS a force that should

—  Fex be applied to separate
C) Q> the atom from r,
position ; external force
\ Frep
F=
§ F ot tFrep <A_I;
Cb? To Fexe '
Lll
,"/Fatt

2021-04-01 <:”:>
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Basis for linear elasticity
(Young’s modulus)

Consider cubic crystal material

) ”0

[100]

Potential energy
\ Increase

decrease
atomic distance

[010]

Applied force: increase
atomic distance

[001]

decrease
atomic distance

-dU/aR

F=

Slope : modulus

Slope ~ modulus

2021-04-01 <::”::>
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Basis for linear elasticity
(Bulk modulus)

Relate elastic modulus to volume change

\ (auj
) . F=— — [xarea
o)
b O=— —C
- o€ Bulk modulus
fblfb ./' I > ()
~ Y Oapp 200 -7 2
Y - K=—Q{6Gj o, 28
\\ ,// aQ QO 59 QO
SlopeatQ=Q
=-KIQ

2021-04-01 <:”:>
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Basis for linear elasticity
(Bulk modulus)

¢ Alkali metal “"“"\y‘
¢ Covalent bonded e
T | W

=—CdTe

¢ Diamond cubic

I

K (Gm®)

ali

10—

o MNa
sk Figure L7

Bulk moduli of the alkali metals
and tetrahedral covalently
bonded erystals as a function
of their interatomic spacing.
The slope of —4 observed on
these logarithmic coordinates
b Bh shows K ~ (ry)~%. The generally
higher moduli of the covalent
solids is indicative of their

o K

Cs inherently stronger bonding.
L (Data ebtained from J. J. Gilman,
! ! L L L1 Micromechanics of Flow in
o 03 0405 07 L0 golids, McGraw-Hill, New York, <:||:>
ralnm) 1969, Chap. 2, pp. 29=41.)
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Basis for linear elasticity
(Temperature effect)

Bulk (Young’s) moduli relates to
¢ Curvature of bonding energy
Bonding energy correlates with the melting temperature

U, oc kT

m k=1.38x10"°J/atom K
KT,
Q2
Temperature (heat) increases atomic vibration
¢ Thermal energy added

¢ Potential increased
¢ Curvature of bonding energy decreases

2021-04-01 <:”:>

E




Range of Elastic Moduli

Figure 2.1

A bar chart illustrating elastic moduli values of the primary material classes
(ceramics, metals, and polymers) and of composites (a hybrid of materials from the
different primary classes). Although there is considerable variation in elastic moduli
within a given material class, ceramics as a whole have the highest elastic moduli
and polymers the lowest. Moduli of composites are intermediate to those of their
constituents. It is noteworthy that elastic moduli of engineering solids span about

six orders of magnitude. (From Michael F. Ashby and David R. H. Jones, Engineering
Materials I—An Introduction to their Properties and Applications, Pergamon Press,
Oxford, 1980.)
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Basis for linear elasticity
(anisotropy)

54

The forces between atoms, molecules, or
lons in crystals depends on the distances
between them. Thus, they also vary with
crystallographic direction so it should
not be surprising that crystalline moduli
are anisotropic.

<D
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Hooke's Law In One Dimension

Robert Hooke [1635-1702] first drew attention to the linear relation between the
impressed force and the resulting displacement, and in recognition of this we have
Hooke's Law. By definition, this holds for all linear elastic solids, and for the
example of the wire it simply states that the applied uniaxial stress o is linearly
related to the longitudinal strain €. In one dimension, this relation can be written
either as

c=Ce¢ or e=No

where C is known as the stiffness and § as the compliance. In one dimension, the
stiffness is also referred to as Young's modulus or elastic modulus.
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Hooke's Law In Three Dimensions

The alternative forms of Hooke's law are best written in the repeated suffix
notation

Oij :Cijklgkl and & = Sijklakl

Each of these statements of Hooke's law stands for 9 equations each having nine

terms on the right-hand side, altogether making 81 components of the stiffness or
compliance.

i :Sijklakl = &5 =30

The number of independent components of compliance is reduced to 36.

An exactly parallel argument can be used to conclude that the stiffness,C ,, also
has just 36 components.
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Hooke's Law In Three Dimensions

Changing Reference Axes.
The compliance or stiffness constants defined by these equations are themselves
tensors and consequently they obey the transformation law for a fourth-rank tensor
Sin =@y, a, S and  Cj,=a,a,a,a,C

min MRoD m-"in MRoD

Contracted or Matrix Notation.

The compliance (or stiffness) is a fourth rank tensor and so its components have
four subscripts. A more economical notation has been devised for the components
of compliance (or stiffness) having only two subscripts; this is called the contracted
or matrix notation. Each pair of subscripts of the tensor components is replaced by
a single subscript according to the following table;

Tensor 11 22 33 23 or 32 13 or 31 12 or 21
Contracted 1 2 3 4 5 6

2021-04-01 <:”:>
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Hooke's Law In Three Dimensions

0-6 02 0-4 (921 822 823 — 86 /2 82 84 / 2

0; = Ciju &« = 0,=C; §

& = Siji Ok =W €= 5; G;

PSix (in the tensor notation) is equal to S,,, (in the matrix notation) where s and »
correspond to i and kl, respectively

PSirt = Sun
where p=1whenbothmandnarel,2or3 (5,551, =5, ceeees )
p=2wheneithermornarel,2or3 (25,,,,=5,,,25,37=5 5 ce0ees )
p=4whenbothmandnared4,Sor6(45,,,=5,,, 45, T ceeees )
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IMmensIions

Hooke's Law In Three D

[£1= S]] o]

and

lo1=[C]l4]
[C]=[ST"

1S1=[C]"

or

<>
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Elastic Strain Energy

y y
A A
> ds, |« 6 deg |«
R 7 /'Y -7
< 1 r——’: — 7 '—'7
B >/ b/
1 M _» o —>/ 1 el
_>| 1 —./ —pf
I [/ N
I L/ Il7/
— ]
\ 4 ! » x y » x

Normal strain de, due to normal stress &, . Shear strain d, due to shear stress o

The works done by these stresses is o; dg; and oy de;.

.
dw=C;ede,
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Elastic Strain Energy

If the straining is carried out isothermally and reversibly, the energy
expended is equal to the change in free energy (d¢g) of the body.

dg=Cygdg  or %ZC@;@
oe,

o 0

9 (9

= Ci'
o, 0O€, ) ’

Since the free energy is a state property, this is a perfect differential and
the order of differentiation is immaterial.

Cij :Cji

The matrix array of the components of stiffness is symmetrical. There
can be no more than twenty-one independent components of stiffness.

o =w=(1/2) C; g & =(1/2) 6; & = (1/2) §; o;

2021-04-01
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Effect of Materials Symmetry on
Elastic Constants (Cubic System)

If the crystal is rotated through

m
Ok /2 about a fourfold axis,
4
X y z
s X1 0 0
| Y0 0 -1
zl 0 1 0
X 7 _ ‘ _
C, C, C, 0 0 0
7_2r “x \Qﬁ’z—' 11 12 12
XJ CIZ Cll Cl2 0 0 0
2 c, C, C, 0 0 0
o 0 o0 C, 0 0
o o0 ¢C, 0
Three fourfold axes of rotation in cubic symmetry | 0 0 Y J 0 Cy
There are only three independent components of stiffness and three of
compliance.

2021-04-01 <:I:>



Effect of Materials Symmetry on
Elastic Constants (Cubic System)

TR

Anisotropy ratio

Cll C12

Material class Material (10 N/m?) (10° N/m?) (101° N/m?) (Cyy — C)2Cyy
Metals Ag 12.4 9.3 4.6 0.34
Al 10.8 6.1 2.9 0.81
Au 18.6 15.7 4.2 0.35
Cu 16.8 12.1 7.5 0.31
a-Fe 23.7 14.1 11.6 0.41
Mo 46.0 17.6 11.0 1.29
Na 0.73 0.63 0.42 0.12
N1 24.7 14.7 12.5 0.40
Pb 5.0 4.2 1.5 0.27
W 50.1 19.8 15.1 1.00
Covalent Si 16.6 6.4 8.0 0.64
solids Diamond 107.6 12.5 57.6 0.83
TiC 51.2 11.0 17.7 1.14
Tonic solids LiF 11.2 4.6 6.3 0.52
MgO 29.1 9.0 15.5 0.65
NaCl 4.9 1.3 1.3 1.38
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Effect of Materials Symmetry on Elastic
Constants (Isotropic System)

Obviously, this includes cubic symmetry
as a special case. Accordingly, let us
transform the stiffness tensor of cubic
material for a rotation of @about x-axis,

X y z
x| 1 0 0

y’'l 0 cos® —sind
z'| 0 sin© cosO

(A+2u) A A 0 00

A (A+2u) A 0 0 O

A A (A+24) 0 0 O

A rotation of 0 about x-axis 0 0 0 u 0 0

In isotropic material 0 0 0 0 u O
0 0 0 0 0 u

We conclude that there are two independent components of stiffness.
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Effect of Materials Symmetry on Elastic
Constants (Isotropic System)

We can determine the compliances simply by taking the inverse of
the matrix of stiffness components,

Su S S 0 0 0 . L+ A
SlZ Sll S12 0 0 0 H u(37y + 2“)
Sz S Sy 0 0 0
0 0 0 2(5,-S,) 0 0 S,, = —A
0 0 O 0 2(S,,—Sy,) 0 2U(3\ +2p)
0 0 O 0 0 2(S,, - Sp,) |

Suppose that an elastically isotropic sample is acted on solely uniaxial
stress along x-axis,

g,=6=S,0, -&/&=-8,/8 =-5,/8] C> Poisson’s ratio, v=-S,,/S;

&= Sy00 or  o/g=l/5, Young's modulus, E=1/S,,

2021-04-01
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Effect of Materials Symmetry on Elastic
Constants (Isotropic System)

Suppose now that the sole applied stress is a shear stress g,

o, =ue, & =2A8,-S,)e, [ > Shear modulus, G=

2(1+v)
Let us consider the effect of a hydrostatic stress o;,, ,
E
A= g+e,+8=30,(5,+28,) > Bulkmodulus, B= 3_2)
B 2(1+v) V_3(B/G)—2
G 3(1-2v) 6(B/G)+2

One extreme of properties is reached when B >> G, whereupon v — 1/2.
At the other extreme we have B/G — 0, with v approaching a value of -1,
and so the possible value range of Poisson's ratio is -1 <v <1/2.
Poisson's ratio of zero arises when B/G = 2/3.
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|sotropy considerations

¢, ¢, ¢, 0 0 0 (S, S, S, 0 0 0
¢, C, 0 0 0 -8, S, 00 0
c. 0 0 0 - S, 0 0 0
c, 0 0 S, 0 0
C, O - 8, 0
' - G \ - Sy
Cun = i 5 = Sy =2(S,;,-S))

For these systems, anisotropy is defined by the Zener ratio:
When the Zener ratio = 1, the material is isotropic.

(C11 o C12) / 2C44
or

S, 12(S,, -
2021-04-01 ! 250~ 5%) <>



Elastic Moduli in Cubic Materials

68

We can use the different relations among elastic constants to
ascertain elastic moduli along any orientation,

l ¥ | v v l v 2 2 2 2 2 2
:511—2(5“ —512—2544)(41 [+ 1,707 + 10

ifk

where [;;, [;, [;.3 equal the direction cosines between the [1jK]

direction and the [100], [010], and [001] directions.
(i.e., axes x, Yy, and z)
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Elastic Moduli in Cubic Materials

69

R R R R R e R T O P e o R A R R o B O A e R R T R R R e

Eoyerystal E > E 100> Anisotrop
Material class Material* (10°N/m?)  (10°N/m?) (10°N/m?) E_;40-/'F 111> ratiot
Metals Al 70 76 64 0.84 0.81
Au 78 117 43 0.37 0.35
Cu 121 192 67 0.35 0.31
a-Fe 209 276 129 0.47 0.41
W 411 411 411 1.00 1.00
Covalent solids  Diamond — 1200 1030 0.88 0.83
TiC — 429 476 1.11 1.14
Tonic solids MgO 310 343 247 0.72 (.65
NaCl 37 32 44 1.38 [.38

*For the materials listed £, = E,, and E_jy0. =
tNote: E.,p/E. 1 1- should scale with the anisotropy ratio (Table 2.2).
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E_. except for TiC and NaCl, for which the reverse applies.
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