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Objectives of the chapter

• When a small amount of load is
applied to a material, elastic
deformation occurs.

• For most metals the load (F) and
elongation (L-L0) are
proportional to each other in the
elastic range.

• In other words, the stress and
strain relationship is linear.
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Objectives of the chapter

• This linear relationship between the stress and strain is known as
Hooke’s law. For instance, in uniaxial tension:

σ = Eε : Hooke’s law in uniaxial tension

• This simple representation is not sufficient in reality for two reasons. First,
the material property can be different depending on the loading direction
(material anisotropy).
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Objectives of the chapter

• Second, the stress state of a material may not be simply uniaxial but
multi-axial.
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Pressurized tank

Objectives of the chapter

• Second, the stress state of a material may not be simply uniaxial but
multi-axial.

Tank wall: Biaxial tension Hydrostatic compression
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Objectives of the chapter

In this chapter, we are going to learn:

• How to construct an anisotropic elasticity law considering three-
dimensional states of stress and strain

1-D 3-D

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧
𝜀𝑦𝑥 𝜀𝑦𝑦 𝜀𝑦𝑧
𝜀𝑧𝑥 𝜀𝑧𝑦 𝜀𝑧𝑧

𝜎 = 𝐸𝜀
(?)

• How to reduce the number of elasticity constants for single crystals
having symmetry

We will introduce ‘stiffness’ and ‘compliance’ 
tensors for this purpose



Background

• Elastic deformation originates from the change of interatomic
spacing under external loads.

• Therefore, the elastic modulus is proportional to the slope of the
interatomic force-distance curve at the equilibrium spacing:

r
(interatomic distance)
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Background

Engineering strain
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Elastic regime

Elastic-plastic 
regime

Elastic deformation

Elastic-plastic deformation

2. Small load

F

1. Initial 3. Unload

(Atomic bonds stretch)Δle

2. Small load

F

1. Initial 3. Unload

(Atomic bonds stretch & slip occurs)

Δle + Δlp Δlp

• Elastic deformation is reversible.

• Plastic deformation is irreversible.



Background

Metal alloy
Elastic modulus 

[GPa]
Shear modulus 

[GPa]
Poisson’s 

ratio

Aluminum 69 25 0.33

Brass 97 37 0.34

Copper 110 46 0.34

Magnesium 45 17 0.29

Nickel 207 76 0.31

Steel 207 83 0.30

Titanium 107 45 0.34

Tungsten 407 160 0.28

Elastic properties of engineering materials



Background

• Consequently, the elastic behavior of a material is affected by
the nature of atomic bond as well as crystallographic structure.

• For instance, in the simple cubic structure, the elastic response
is different depending on the loading direction, i.e., anisotropic.

Simple cubic Body-centered cubic Face-centered cubic

[010]
[111]

[110]



Stress and strain tensor

x
y

z
σxx

σxy

σxz

σyx

σyy

σyz

σzx
σzy

σzz

𝜎𝑖𝑗 =

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

Using tensor notation: σij for  i=x,y,z (surface normal) and 
j=x,y,z (force direction)

σyx

σxx

σzx

σxy

σyy

σzy

σxz

σyz

σzz

𝜎𝑖𝑗 =

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑥𝑦 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧𝑧

9 components σzy

σzy

σyzσyz

Sum of moments = 0 (equilibrium)

σyx = σxy

σzy = σyz

σzx = σxz

(σij = σji for i≠j)

6 independent 
components

normal shear



Anisotropic elasticity

• We will keep the concept of linear elasticity, i.e., the stress-
strain relationship is linear.

• Then, each stress component can be expressed as a linear
combination of the strain components. For example,

𝜎𝑥𝑥 = 𝐶𝑥𝑥𝑥𝑥𝜀𝑥𝑥 + 𝐶𝑥𝑥𝑥𝑦𝜀𝑥𝑦 + 𝐶𝑥𝑥𝑥𝑧𝜀𝑥𝑧
+ 𝐶𝑥𝑥𝑦𝑥𝜀𝑦𝑥 + 𝐶𝑥𝑥𝑦𝑦𝜀𝑦𝑦 + 𝐶𝑥𝑥𝑦𝑧𝜀𝑦𝑧
+ 𝐶𝑥𝑥𝑧𝑥𝜀𝑧𝑥 + 𝐶𝑥𝑥𝑧𝑦𝜀𝑧𝑦 + 𝐶𝑥𝑥𝑧𝑧𝜀𝑧𝑧

𝜎𝑥𝑥 = 𝐶𝑥𝑥𝑥𝑥𝜀𝑥𝑥 + 𝐶𝑥𝑥𝑥𝑦𝜀𝑥𝑦 + 𝐶𝑥𝑥𝑥𝑧𝜀𝑥𝑧
+ 𝐶𝑥𝑥𝑦𝑥𝜀𝑦𝑥 + 𝐶𝑥𝑥𝑦𝑦𝜀𝑦𝑦 + 𝐶𝑥𝑥𝑦𝑧𝜀𝑦𝑧
+ 𝐶𝑥𝑥𝑧𝑥𝜀𝑧𝑥 + 𝐶𝑥𝑥𝑧𝑦𝜀𝑧𝑦 + 𝐶𝑥𝑥𝑧𝑧𝜀𝑧𝑧

Constants

Contribution of the strain component 
𝜀𝑧𝑥 to the stress component 𝜎𝑥𝑥

Using tensor notation:

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 𝑖, 𝑗, 𝑘, 𝑙 = 𝑥, 𝑦, 𝑧for

𝐶𝑖𝑗𝑘𝑙 : Stiffness tensor

(The ratio of the stress component 
𝜎𝑖𝑗 to the strain component 𝜀𝑘𝑙)



Anisotropic elasticity

• Alternatively, each strain component can be expressed as a
linear combination of the stress components.

𝜀𝑥𝑥 = 𝑆𝑥𝑥𝑥𝑥𝜎𝑥𝑥 + 𝑆𝑥𝑥𝑥𝑦𝜎𝑥𝑦 + 𝑆𝑥𝑥𝑥𝑧𝜎𝑥𝑧
+ 𝑆𝑥𝑥𝑦𝑥𝜎𝑦𝑥 + 𝑆𝑥𝑥𝑦𝑦𝜎𝑦𝑦 + 𝑆𝑥𝑥𝑦𝑧𝜎𝑦𝑧
+ 𝑆𝑥𝑥𝑧𝑥𝜎𝑧𝑥 + 𝑆𝑥𝑥𝑧𝑦𝜎𝑧𝑦 + 𝑆𝑥𝑥𝑧𝑧𝜎𝑧𝑧

Contribution of the stress component 
𝜎𝑧𝑥 to the stress component 𝜀𝑥𝑥

𝜀𝑖𝑗 = 𝑆𝑖𝑗𝑘𝑙𝜎𝑘𝑙 𝑖, 𝑗, 𝑘, 𝑙 = 𝑥, 𝑦, 𝑧for

𝑆𝑖𝑗𝑘𝑙 : Compliance tensor

(The ratio of the strain component 
𝜀𝑖𝑗 to the strain component 𝜎𝑘𝑙)

Remarks

• It is conventional to use the symbols ‘C’ for stiffness tensor and ‘S’
for compliance tensor.

• In general, 𝐶𝑥𝑥𝑥𝑥 ≠ 1/(𝑆𝑥𝑥𝑥𝑥).



Anisotropic elasticity

• We need nine equations to express the entire set of stress (or
strain) components.

𝜎𝑥𝑥 = 𝐶𝑥𝑥𝑥𝑥𝜀𝑥𝑥 + 𝐶𝑥𝑥𝑥𝑦𝜀𝑥𝑦 + 𝐶𝑥𝑥𝑥𝑧𝜀𝑥𝑧
+ 𝐶𝑥𝑥𝑦𝑥𝜀𝑦𝑥 + 𝐶𝑥𝑥𝑦𝑦𝜀𝑦𝑦 + 𝐶𝑥𝑥𝑦𝑧𝜀𝑦𝑧
+ 𝐶𝑥𝑥𝑧𝑥𝜀𝑧𝑥 + 𝐶𝑥𝑥𝑧𝑦𝜀𝑧𝑦 + 𝐶𝑥𝑥𝑧𝑧𝜀𝑧𝑧

𝜎𝑥𝑥
𝜎𝑥𝑦

𝜎𝑥𝑧
𝜎𝑦𝑥

𝜎𝑦𝑦

𝜎𝑦𝑧

𝜎𝑧𝑥
𝜎𝑧𝑦

𝜎𝑧𝑧

𝜀𝑥𝑥
𝜀𝑥𝑦

𝜀𝑥𝑧
𝜀𝑦𝑥

𝜀𝑦𝑦

𝜀𝑦𝑧

𝜀𝑧𝑥
𝜀𝑧𝑦

𝜀𝑧𝑧

=

𝐶𝑥𝑥𝑥𝑥
𝐶𝑥𝑦𝑥𝑥

𝐶𝑥𝑧𝑥𝑥
𝐶𝑦𝑥𝑥𝑥

𝐶𝑦𝑦𝑥𝑥

𝐶𝑦𝑧𝑥𝑥

𝐶𝑧𝑥𝑥𝑥
𝐶𝑧𝑦𝑥𝑥

𝐶𝑧𝑧𝑥𝑥

𝐶𝑥𝑥𝑥𝑦
𝐶𝑥𝑦𝑥𝑦

𝐶𝑥𝑧𝑥𝑦
𝐶𝑦𝑥𝑥𝑦

𝐶𝑦𝑦𝑥𝑦

𝐶𝑦𝑧𝑥𝑦

𝐶𝑧𝑥𝑥𝑦
𝐶𝑧𝑦𝑥𝑦

𝐶𝑧𝑧𝑥𝑦

𝐶𝑥𝑥𝑥𝑧
𝐶𝑥𝑦𝑥𝑧

𝐶𝑥𝑧𝑥𝑧
𝐶𝑦𝑥𝑥𝑧

𝐶𝑦𝑦𝑥𝑧

𝐶𝑦𝑧𝑥𝑧

𝐶𝑧𝑥𝑥𝑧
𝐶𝑧𝑦𝑥𝑧

𝐶𝑧𝑧𝑥𝑧

𝐶𝑥𝑥𝑦𝑥
𝐶𝑥𝑦𝑦𝑥

𝐶𝑥𝑧𝑦𝑥

𝐶𝑥𝑥𝑦𝑦
𝐶𝑥𝑦𝑦𝑦

𝐶𝑥𝑧𝑦𝑦

𝐶𝑥𝑥𝑦𝑧
𝐶𝑥𝑦𝑦𝑧

𝐶𝑥𝑧𝑦𝑧

𝐶𝑥𝑥𝑧𝑥
𝐶𝑥𝑦𝑧𝑥

𝐶𝑥𝑧𝑧𝑥

𝐶𝑥𝑥𝑧𝑦
𝐶𝑥𝑦𝑧𝑦

𝐶𝑥𝑧𝑧𝑦

𝐶𝑥𝑥𝑧𝑧
𝐶𝑥𝑦𝑧𝑧

𝐶𝑥𝑧𝑧𝑧

⋱

𝐶𝑧𝑧𝑧𝑧

⋮

⋯

Stiffness (and also compliance) tensor contains 9 x 9 = 81 components!

Note: This matrix notation is equivalent 
to the tensor notation of

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 𝑖, 𝑗, 𝑘, 𝑙 = 𝑥, 𝑦, 𝑧for



Anisotropic elasticity

• The 81 components of stiffness or compliance tensors are not
completely independent.

• This implies that it is possible to reduce the number of
constants and to simplify the expression.

𝜎𝑥𝑥

𝜎𝑥𝑦

𝜎𝑦𝑦

𝜎𝑦𝑧

𝜎𝑧𝑥

𝜎𝑧𝑧

Step-1) First, we can reduce the number of constants by taking
only the six independent components of stress and strain.

Vector (or Voigt) notation for stress and strain:

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

𝜎1

𝜎4

𝜎2

𝜎5

𝜎6

𝜎3

𝜀𝑥𝑥

2𝜀𝑥𝑦

𝜀𝑦𝑦

2𝜀𝑦𝑧

2𝜀𝑧𝑥

𝜀𝑧𝑧

𝜀1

𝜀4

𝜀2

𝜀5

𝜀6

𝜀3
𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧
𝜀𝑦𝑥 𝜀𝑦𝑦 𝜀𝑦𝑧
𝜀𝑧𝑥 𝜀𝑧𝑦 𝜀𝑧𝑧

=

𝜀𝑥𝑥

𝛾𝑥𝑦

𝜀𝑦𝑦

𝛾𝑦𝑧

𝛾𝑧𝑥

𝜀𝑧𝑧

normal

shear



Anisotropic elasticity

=

𝐶11

𝐶21

𝐶31

𝐶41

𝐶51

𝐶61

𝐶44

𝐶54

𝐶64

𝐶12

𝐶22

𝐶32

𝐶42

𝐶52

𝐶62

𝐶45

𝐶55

𝐶65

𝐶13

𝐶23

𝐶33

𝐶43

𝐶53

𝐶63

𝐶46

𝐶56

𝐶66

𝐶14

𝐶24

𝐶34

𝐶15

𝐶25

𝐶35

𝐶16

𝐶26

𝐶36

Then, we need only 6 x 6 = 36 constants to express six stress
components in terms of six strain components.

𝜎1

𝜎4

𝜎2

𝜎5

𝜎6

𝜎3

𝜀1

𝜀4

𝜀2

𝜀5

𝜀6

𝜀3

=

𝑆11

𝑆21

𝑆31

𝑆41

𝑆51

𝑆61

𝑆44

𝑆54

𝑆64

𝑆12

𝑆22

𝑆32

𝑆42

𝑆52

𝑆62

𝑆45

𝑆55

𝑆65

𝑆13

𝑆23

𝑆33

𝑆43

𝑆53

𝑆63

𝑆46

𝑆56

𝑆66

𝑆14

𝑆24

𝑆34

𝑆15

𝑆25

𝑆35

𝑆16

𝑆26

𝑆36

𝜀1

𝜀4

𝜀2

𝜀5

𝜀6

𝜀3

𝜎1

𝜎4

𝜎2

𝜎5

𝜎6

𝜎3

Remarks

𝜎 = 𝐶 𝜀 = 𝐶 [𝑆] 𝜎

𝐶 𝑆 = 𝐼

𝐶 = 𝑆 −1 and 𝑆 = 𝐶 −1

(But 𝐶11 ≠ 𝑆11 in general)



Anisotropic elasticity

Step-2) Next, consider the symmetry of stiffness and compliance
tensors. This comes from the path-independent nature of linear
elasticity.

Elastic strain energy

When an external load is applied, the work done to the material is
stored as a form of elastic strain energy.

F

F Area: A0

L0 L

1-D case:

∆𝑊 = 𝐹∆𝐿

∆𝑤 =
∆𝑊

𝑉0
=

𝐹∆𝐿

𝐴0𝐿0
= 𝜎∆𝜀

σ

ε

σ

Δε

Δw

w

𝑤 =
1

2
𝜎𝜀 =

1

2
𝐸𝜀2

: Elastic strain energy per unit volume



Anisotropic elasticity

3-D case:

∆𝑤 = 𝜎1∆𝜀1 + 𝜎2∆𝜀2 + 𝜎3∆𝜀3 + 𝜎4∆𝜀4 + 𝜎5∆𝜀5 + 𝜎6∆𝜀6

𝑤 =
1

2
(𝜎1𝜀1 + 𝜎2𝜀2 +⋯𝜎6𝜀6)

𝐶𝑖𝑗 = 𝐶𝑗𝑖

Recall that 𝜎1 = 𝐶11𝜀1 + 𝐶12𝜀2 +⋯+ 𝐶16𝜀6

𝜎2 = 𝐶21𝜀1 + 𝐶22𝜀2 +⋯+ 𝐶26𝜀6and

∆𝑤

∆𝜀𝑖
≈
𝜕𝑤

𝜕𝜀𝑖
= 𝜎𝑖

for 𝑖=1, …, 6.

For very small ∆𝜀𝑖

𝐶12 =
𝜕𝜎1
𝜕𝜀2

=
𝜕

𝜕𝜀2

𝜕𝑤

𝜕𝜀1

𝐶21 =
𝜕𝜎2
𝜕𝜀1

=
𝜕

𝜕𝜀1

𝜕𝑤

𝜕𝜀2

Since
𝜕2𝑤

𝜕𝜀2𝜕𝜀1
=

𝜕2𝑤

𝜕𝜀1𝜕𝜀2

(this equality comes from the path-independent nature of 
linear elasticity)

𝐶12 = 𝐶21 or, in general, for 𝑖, 𝑗 = 1, …, 6.



Anisotropic elasticity

=

𝐶11

𝐶12

𝐶13

𝐶14

𝐶15

𝐶16

𝐶44

𝐶45

𝐶46

𝐶12

𝐶22

𝐶23

𝐶24

𝐶25

𝐶26

𝐶45

𝐶55

𝐶56

𝐶13

𝐶23

𝐶33

𝐶34

𝐶35

𝐶36

𝐶46

𝐶56

𝐶66

𝐶14

𝐶24

𝐶34

𝐶15

𝐶25

𝐶35

𝐶16

𝐶26

𝐶36

𝜎1

𝜎4

𝜎2

𝜎5

𝜎6

𝜎3

𝜀1

𝜀4

𝜀2

𝜀5

𝜀6

𝜀3

This reduces the number of elasticity constants to 6+5+…+1 = 21
for fully anisotropic materials.



Rotational symmetry

Z x

y

θ

Z x

y

π

When we rotate the image by 0 < θ ≤ 2π, we can find two rotated
images that are identical to the original image: two-fold rotational
symmetry

Axis of rotation
(out of plane, +z) Z x

y

2π

+ x

y

π/2+ * x

y

π/3

*
If we can find the identical image when it is rotated by a multiple 
of 2π/n, this image is said to have n-fold symmetry.



Crystal systems

Triclinic Monoclinic Orthorhombic Tetragonal

Rhombohedral Hexagonal Cubic



Crystal systems

Crystal system Lattice parameter relationships Defining symmetry

Triclinic a ≠ b ≠ c, α ≠ β ≠ γ ≠ 90° -

Monoclinic a ≠ b ≠ c, α = γ = 90° ≠ β 1 two-fold axis

Orthorhombic a ≠ b ≠ c, α = β = γ = 90° 3 two-fold axes

Tetragonal a = b ≠ c, α = β = γ = 90° 1 four-fold axis

Rhombohedral a = b = c, α = β = γ ≠ 90° 1 three-fold axis

Hexagonal a = b ≠ c, α = β = 90°, γ = 120° 1 six-fold axis

Cubic a = b = c, α = β = γ = 90° 4 three-fold axes

Example: Orthorhombic crystal

x
y

z

• Four-fold symmetry with respect to
x-, y- and z-axis.

• Orthorhombic crystal has 3 four-fold
axes of rotational symmetry.



Elasticity constants of orthorhombic crystal

y'

x'

z'

πRotate the crystal (or equivalently,
rotate the coordinate axes) by π
with respect to the z-axisx

z

y

• For orthorhombic (= orthotropic) crystals this rotation must
not affect the crystal structure. material property.

• This implies that the stiffness tensor must be identical for
these two crystals.

𝜎 = 𝐶 [𝜀] 𝜎′ = 𝐶′ [𝜀′]

Stress-strain relationship 
written in the original

coordinate system (x, y, z)

Stress-strain relationship 
written in the rotated

coordinate system (x’, y’, z’)

𝐶 = 𝐶′



Elasticity constants of orthorhombic crystal

y'

x'

z'

π

x

z

y

𝑎

2
,
𝑏

2
,
𝑐

2
−
𝑎

2
, −

𝑏

2
,
𝑐

2

𝜎𝑥𝑥

𝜎𝑥𝑦

𝜎𝑦𝑦

−𝜎𝑦𝑧

−𝜎𝑧𝑥

𝜎𝑧𝑧

𝜎1
′

𝜎4
′

𝜎2
′

𝜎5
′

𝜎6
′

𝜎3
′

=

𝜎𝑥𝑥
′

𝜎𝑥𝑦
′

𝜎𝑦𝑦
′

𝜎𝑦𝑧
′

𝜎𝑧𝑥
′

𝜎𝑧𝑧
′

or

𝜎1

𝜎4

𝜎2

−𝜎5

−𝜎6

𝜎3
=

𝜀𝑥𝑥

𝛾𝑥𝑦

𝜀𝑦𝑦

−𝛾𝑦𝑧

−𝛾𝑧𝑥

𝜀𝑧𝑧

𝜀1
′

𝜀4
′

𝜀2
′

𝜀5
′

𝜀6
′

𝜀3
′

=

𝜀𝑥𝑥
′

𝛾𝑥𝑦
′

𝜀𝑦𝑦
′

𝛾𝑦𝑧
′

𝛾𝑧𝑥
′

𝜀𝑧𝑧
′

or

𝜀1

𝜀4

𝜀2

−𝜀5

−𝜀6

𝜀3
=

𝑥′ = −𝑥 and 𝑥′ = −𝑥

𝑧′ = 𝑧 and 𝑥′ = −𝑥

Rotation by π with
respect to the z-axis

𝑥′ = −𝑥
𝑦′ = −𝑦
𝑧′ = 𝑧



Elasticity constants of orthorhombic crystal

𝜎1
′

𝜎4
′

𝜎2
′

𝜎5
′

𝜎6
′

𝜎3
′

=

𝜀1
′

𝜀4
′

𝜀2
′

𝜀5
′

𝜀6
′

𝜀3
′

𝜎 = 𝐶 [𝜀]

𝜎′ = 𝐶′ 𝜀′ = 𝐶 [𝜀′]

=

𝐶11

𝐶44

𝐶12

𝐶22

𝐶45

𝐶55

𝐶13

𝐶23

𝐶33

𝐶46

𝐶56

𝐶66

𝐶14

𝐶24

𝐶34

𝐶15

𝐶25

𝐶35

𝐶16

𝐶26

𝐶36

𝜎1

𝜎4

𝜎2

𝜎5

𝜎6

𝜎3

𝜀1

𝜀4

𝜀2

𝜀5

𝜀6

𝜀3

𝜎1
′

𝜎4
′

𝜎2
′

𝜎5
′

𝜎6
′

𝜎3
′

𝜎1

𝜎4

𝜎2

−𝜎5

−𝜎6

𝜎3
=

𝜀1
′

𝜀4
′

𝜀2
′

𝜀5
′

𝜀6
′

𝜀3
′

𝜀1

𝜀4

𝜀2

−𝜀5

−𝜀6

𝜀3
=

If we express with their components 

If we express with their components 

and

𝐶11

𝐶44

𝐶12

𝐶22

𝐶45

𝐶55

𝐶13

𝐶23

𝐶33

𝐶46

𝐶56

𝐶66

𝐶14

𝐶24

𝐶34

𝐶15

𝐶25

𝐶35

𝐶16

𝐶26

𝐶36

⋮

⋯

⋮

⋯



Elasticity constants of orthorhombic crystal

=

𝜎1

𝜎4

𝜎2

−𝜎5

−𝜎6

𝜎3

𝜀1

𝜀4

𝜀2

−𝜀5

−𝜀6

𝜀3

𝜎1

𝜎4

𝜎2

𝜎5

𝜎6

𝜎3

𝜀1

𝜀4

𝜀2

𝜀5

𝜀6

𝜀3

We can rewrite the above expression as

=

𝐶15 = −𝐶15 = 0

𝜎 [𝜀]

𝐶11

𝐶44

𝐶12

𝐶22

𝐶45

𝐶55

𝐶13

𝐶23

𝐶33

𝐶46

𝐶56

𝐶66

𝐶14

𝐶24

𝐶34

𝐶15

𝐶25

𝐶35

𝐶16

𝐶26

𝐶36

−𝐶46

𝐶56

𝐶66

−𝐶16

−𝐶26

−𝐶36

𝐶11

𝐶44

𝐶12

𝐶22

−𝐶45

𝐶55

𝐶13

𝐶23

𝐶33

𝐶14

𝐶24

𝐶34

−𝐶15

−𝐶25

−𝐶35

This must be identical to [𝐶]

The symmetry condition can
be satisfied only when we have:

𝐶25 = −𝐶25 = 0

𝐶35 = −𝐶35 = 0

𝐶45 = −𝐶45 = 0

𝐶16 = −𝐶16 = 0

𝐶26 = −𝐶26 = 0

𝐶36 = −𝐶36 = 0

𝐶46 = −𝐶46 = 0

⋮

⋯

⋮

⋯



Elasticity constants of orthorhombic crystal

y'

x'

z'

πx

z

y

𝑎

2
,
𝑏

2
,
𝑐

2
−
𝑎

2
,
𝑏

2
, −

𝑐

2
Rotation by π with
respect to the y-axis

𝑥′ = −𝑥
𝑦′ = 𝑦
𝑧′ = −𝑧

• We have two more two-fold axes of symmetry: x- and y-axes.

• If we repeat the same procedures for these two rotations... 

y'

x'
z'

π

x

z

y

𝑎

2
,
𝑏

2
,
𝑐

2

𝑎

2
, −

𝑏

2
, −

𝑐

2
Rotation by π with
respect to the x-axis

𝑥′ = 𝑥
𝑦′ = −𝑦
𝑧′ = −𝑧



Elasticity constants of orthorhombic crystal

𝜎1

𝜎4

𝜎2

𝜎5

𝜎6

𝜎3

𝜀1

𝜀4

𝜀2

𝜀5

𝜀6

𝜀3
=

𝐶11

𝐶44

𝐶12

𝐶22

0

𝐶55

𝐶13

𝐶23

𝐶33

0

0

𝐶66

0

0

0

0

0

0

0

0

0

Orthorhombic (= orthotropic) materials have 9 independent 
elasticity constants.

𝜎1

𝜎4

𝜎2

𝜎5

𝜎6

𝜎3

𝜀1

𝜀4

𝜀2

𝜀5

𝜀6

𝜀3
=

𝑆11

𝑆44

𝑆12

𝑆22

0

𝑆55

𝑆13

𝑆23

𝑆33

0

0

𝑆66

0

0

0

0

0

0

0

0

0

⋮

⋯

⋮

⋯



Elasticity constants of cubic crystal

y'

z'

x'

• Cubic crystals automatically satisfy the
symmetry condition of orthorhombic crystal.

• Therefore, we can utilize the stiffness matrix of
orthorhombic crystal with 9 constants.

• We can further reduce the number of
constants using the additional symmetry
conditions of cubic crystals.

x

z

y

π/2

Rotation by π/2 with
respect to the z-axis

𝑥′ = 𝑦
𝑦′ = −𝑥
𝑧′ = 𝑧

Rotation by π/2 with
respect to the y-axis

𝑥′ = −𝑧
𝑦′ = 𝑦
𝑧′ = 𝑥

Rotation by π/2 with
respect to the x-axis

𝑥′ = 𝑥
𝑦′ = 𝑧
𝑧′ = −𝑦



Elasticity constants of cubic crystal

y'

z'

x'

x

z

y π/2

Rotation by π/2 with
respect to the z-axis

𝑥′ = 𝑦
𝑦′ = −𝑥
𝑧′ = 𝑧

𝜎𝑦𝑦

−𝜎𝑥𝑦

𝜎𝑥𝑥

−𝜎𝑧𝑥

𝜎𝑦𝑧

𝜎𝑧𝑧

𝜎1
′

𝜎4
′

𝜎2
′

𝜎5
′

𝜎6
′

𝜎3
′

=

𝜎𝑥𝑥
′

𝜎𝑥𝑦
′

𝜎𝑦𝑦
′

𝜎𝑦𝑧
′

𝜎𝑧𝑥
′

𝜎𝑧𝑧
′

or

𝜎2

−𝜎4

𝜎1

−𝜎6

𝜎5

𝜎3
=

𝑥′ = 𝑦 and 𝑥′ = 𝑦

𝑧′ = 𝑧 and 𝑥′ = 𝑦

Insert these to the equation

𝜎′ = 𝐶′ 𝜀′ = 𝐶 [𝜀′]



Elasticity constants of cubic crystal

𝜎2

−𝜎4

𝜎1

−𝜎6

𝜎5

𝜎3
=

𝜀2

−𝜀4

𝜀1

−𝜀6

𝜀5

𝜀3

𝐶11

𝐶44

𝐶12

𝐶22

0

𝐶55

𝐶13

𝐶23

𝐶33

0

0

𝐶66

0

0

0

0

0

0

0

0

0

We can rewrite the above expression as

𝜎1

𝜎4

𝜎2

𝜎5

𝜎6

𝜎3
=

𝜀1

𝜀4

𝜀2

𝜀5

𝜀6

𝜀3

𝐶22

𝐶44

𝐶12

𝐶11

0

𝐶66

𝐶23

𝐶13

𝐶33

0

0

𝐶55

0

0

0

0

0

0

0

0

0

This symmetry condition
requires

𝐶11 = 𝐶22
𝐶13 = 𝐶23

𝜎 [𝜀]This must be identical to [𝐶]

𝐶55 = 𝐶66

If we repeat the same
procedure for the other
two rotations we can also
find

𝐶11 = 𝐶22 = 𝐶33

𝐶12 = 𝐶23 = 𝐶13

𝐶44 = 𝐶55 = 𝐶66

⋮

⋯

⋮

⋯



Elasticity constants of cubic crystal

𝜎1

𝜎4

𝜎2

𝜎5

𝜎6

𝜎3

𝜀1

𝜀4

𝜀2

𝜀5

𝜀6

𝜀3
=

𝐶11

𝐶44

𝐶12

𝐶11

0

𝐶44

𝐶12

𝐶22

𝐶11

0

0

𝐶44

0

0

0

0

0

0

0

0

0

Cubic crystals have only 3 independent elasticity constants.

𝜎1

𝜎4

𝜎2

𝜎5

𝜎6

𝜎3

𝜀1

𝜀4

𝜀2

𝜀5

𝜀6

𝜀3
=

𝑆11

𝑆44

𝑆12

𝑆11

0

𝑆44

𝑆12

𝑆12

𝑆11

0

0

𝑆44

0

0

0

0

0

0

0

0

0

⋮

⋯

⋮

⋯



Elasticity constants of other crystals

𝐶11

𝐶44

𝐶12

𝐶11

0

𝐶44

𝐶13

𝐶13

𝐶33

0

𝐶14

(𝐶11 − 𝐶12)/2

𝐶14

−𝐶14

0

0

0

0

0

0

0

𝐶11

𝐶44

𝐶12

𝐶22

0

𝐶55

𝐶13

𝐶23

𝐶33

𝐶46

0

𝐶66

0

0

0

𝐶15

𝐶25

𝐶35

0

0

0

RhombohedralMonoclinic

Tetragonal Hexagonal

𝐶11

𝐶44

𝐶12

𝐶11

0

𝐶44

𝐶13

𝐶13

𝐶33

0

0

𝐶66

0

0

0

0

0

0

0

0

0

𝐶11

𝐶44

𝐶12

𝐶11

0

𝐶44

𝐶13

𝐶13

𝐶33

0

0

(𝐶11 − 𝐶12)/2

0

0

0

0

0

0

0

0

0

13 constants 6 constants

6 constants 5 constants

⋮

⋯

⋮

⋯

⋮

⋯

⋮

⋯



Elasticity constants of isotropic material

x

z

y
x'

z'

y'

θ
x

• Isotropic materials exhibit the same property along any direction.

• Therefore, the stiffness tensor is preserved for any rotation.

• Considering that isotropic material automatically satisfy the cubic
and hexagonal symmetries, we can utilize the previous results to
obtain the isotropic stiffness tensor:



Elasticity constants of isotropic material

𝜎1

𝜎4

𝜎2

𝜎5

𝜎6

𝜎3

𝜀1

𝜀4

𝜀2

𝜀5

𝜀6

𝜀3

𝐶11

𝐶44

𝐶12

𝐶11

0

𝐶44

𝐶12

𝐶22

𝐶11

0

0

𝐶44

0

0

0

0

0

0

0

0

0

𝜎1

𝜎4

𝜎2

𝜎5

𝜎6

𝜎3

𝜀1

𝜀4

𝜀2

𝜀5

𝜀6

𝜀3
=

𝑆11

𝑆44

𝑆12

𝑆11

0

𝑆44

𝑆12

𝑆12

𝑆11

0

0

𝑆44

0

0

0

0

0

0

0

0

0

Isotropic materials have only 2 independent elasticity constants.

where 𝐶44 =
C11 − C22

2

where 𝑆44 = 2(S11 − S22)

= ⋮

⋯

⋮

⋯



Elasticity constants of isotropic material

It is conventional to
designate 𝐶12 and 𝐶44
as 𝜆 and 𝜇, which are
called Lamé constants.

𝜎1

𝜎4

𝜎2

𝜎5

𝜎6

𝜎3

𝜀1

𝜀4

𝜀2

𝜀5

𝜀6

𝜀3

𝜆 + 2𝜇

𝜇

𝜆

𝜆 + 2𝜇

0

𝜇

𝜆

𝜆

𝜆 + 2𝜇

0

0

𝜇

0

0

0

0

0

0

0

0

0
=

Recall the elasticity constants we learned in the previous lectures:

𝜎1

𝜎4

𝜎2

𝜎5

𝜎6

𝜎3

𝜀1

𝜀4

𝜀2

𝜀5

𝜀6

𝜀3

1 − 𝜈

1 − 2𝜈

𝜈

1 − 𝜈

0

1 − 2𝜈

𝜈

𝜈

1 − 𝜈

0

0

1 − 2𝜈

0

0

0

0

0

0

0

0

0
=

𝐸

1 + 𝜈 1 − 2𝜈

𝐺 =
𝐸

2 1 + 𝜈

𝐾 =
𝐸

3 1 − 2𝜈

(Generalized Hooke’s law for isotropic material)

⋮

⋯

⋮

⋯



Elasticity constants of isotropic material

• Because there are only two independent constants in isotropic
elasticity, 𝐸, 𝜈, 𝐺, 𝐾, 𝜆, and 𝜇 are not completely independent.

• If any two of these constants are given, the other constants can
be determined.

(𝐺 = 2𝜇)



Elastic property of polycrystal

• Most of crystalline materials are polycrystal.
• The elastic property that we typically observe with these

materials is therefore the averaged value over a large number of
crystals.

RD

TD

ND

EBSD image of a thin
ferritic stainless steel
: Each color represents
the orientation of the
grain.



Summary

• At the beginning of this chapter we had 81 elasticity constants
for fully anisotropic material.

𝜎𝑥𝑥
𝜎𝑥𝑦

𝜎𝑥𝑧
𝜎𝑦𝑥

𝜎𝑦𝑦

𝜎𝑦𝑧

𝜎𝑧𝑥
𝜎𝑧𝑦

𝜎𝑧𝑧

𝜀𝑥𝑥
𝜀𝑥𝑦

𝜀𝑥𝑧
𝜀𝑦𝑥

𝜀𝑦𝑦

𝜀𝑦𝑧

𝜀𝑧𝑥
𝜀𝑧𝑦

𝜀𝑧𝑧

=

𝐶𝑥𝑥𝑥𝑥
𝐶𝑥𝑦𝑥𝑥

𝐶𝑥𝑧𝑥𝑥
𝐶𝑦𝑥𝑥𝑥

𝐶𝑦𝑦𝑥𝑥

𝐶𝑦𝑧𝑥𝑥

𝐶𝑧𝑥𝑥𝑥
𝐶𝑧𝑦𝑥𝑥

𝐶𝑧𝑧𝑥𝑥

𝐶𝑥𝑥𝑥𝑦
𝐶𝑥𝑦𝑥𝑦

𝐶𝑥𝑧𝑥𝑦
𝐶𝑦𝑥𝑥𝑦

𝐶𝑦𝑦𝑥𝑦

𝐶𝑦𝑧𝑥𝑦

𝐶𝑧𝑥𝑥𝑦
𝐶𝑧𝑦𝑥𝑦

𝐶𝑧𝑧𝑥𝑦

𝐶𝑥𝑥𝑥𝑧
𝐶𝑥𝑦𝑥𝑧

𝐶𝑥𝑧𝑥𝑧
𝐶𝑦𝑥𝑥𝑧

𝐶𝑦𝑦𝑥𝑧

𝐶𝑦𝑧𝑥𝑧

𝐶𝑧𝑥𝑥𝑧
𝐶𝑧𝑦𝑥𝑧

𝐶𝑧𝑧𝑥𝑧

𝐶𝑥𝑥𝑦𝑥
𝐶𝑥𝑦𝑦𝑥

𝐶𝑥𝑧𝑦𝑥

𝐶𝑥𝑥𝑦𝑦
𝐶𝑥𝑦𝑦𝑦

𝐶𝑥𝑧𝑦𝑦

𝐶𝑥𝑥𝑦𝑧
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⋱

𝐶𝑧𝑧𝑧𝑧

⋮

⋯



Summary

• But we found that there are only 21 independent constants out
of 81, owing to (1) the symmetry of stress and strain tensors and
(2) path-independent nature of elastic strain energy.
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Summary

• We could further reduce the number of independent constants
for single crystals using their symmetry (Higher symmetry → less
number of constants)

• Finally we found that there are only two independent constants
for isotropic materials.
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Exercises (1)

Problem Uniaxial tension tests were performed for some metal alloys. From
these experiments the Young’s modulus and Poisson’s ratio of the materials could
be obtained, as given in the table below. If we assume these materials are
isotropic, what will be the shear and bulk moduli of these materials?

Table Elastic constants of some metal alloys

E [GPa] ν [-] G [GPa] K [GPa]

Al 70.5 0.34

Be 309.0 0.05

α-Fe 208.2 0.29

Mg 44.3 0.29

Cu 122.5 0.34



Exercises (2)

Problem Show that the stiffness or compliance tensor of tetragonal crystal has
six independent constants as below:

𝐶11

𝐶44

𝐶12

𝐶11

0

𝐶44

𝐶13

𝐶13

𝐶33

0

0

𝐶66

0

0

0

0

0

0

0

0

0

Approach
(1) Note that the tetragonal symmetry satisfies the orthotropic symmetry.
(2) Then, consider the additional symmetry conditions of tetragonal crystal.

𝑆11

𝑆44

𝑆12

𝑆11

0

𝑆44

𝑆13

𝐶13

𝑆33

0

0

𝑆66

0

0

0

0

0

0

0

0

0



Exercises (3)

Problem α-Fe has a cubic crystal structure. Three elasticity constants for Fe can
be found in the table below. When uniaxial tension is applied to a single crystal of
α-Fe along [100] direction, what will be the elastic modulus?

Approach
(1) Choose which of the expressions will be useful:
(2) Calculate the stress and strain along the tensile direction (the x-direction in
this example).
(3) The elastic modulus is then the ratio 𝜎xx/𝜀xx.

Table Elastic constants of some cubic crystals

C11 [GPa] C12 [GPa] C44 [GPa] S11 [TPa-1] S12 [TPa-1] S44 [TPa-1]

Cr 339.8 58.6 99.0 3.10 -0.46 10.10

α-Fe 231.4 134.7 116.4 7.56 -2.78 8.59

K 3.7 3.14 1.88 1223.9 56.19 53.19

𝜎 = 𝐶 [𝜀] 𝜀 = 𝑆 [𝜎]or



Exercises (4)

Problem Consider a single crystal of α-Fe again. When uniaxial tension is applied
along [110] direction, what will be the elastic modulus?

Approach
(1) Express the applied stress as a stress tensor in the crystallographic coordinate
system (Hint: use the transformation of stress tensor that we learned in the
previous chapter).
(2) Calculate the resultant strain using the stress-strain relationship for cubic
crystal.
(3) Calculate strain along the loading direction [110].
(3) The elastic modulus is then the ratio 𝜎[110]/𝜀[110].



Appendix
- Slides from Prof. Han
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- Elasticity are extremely important because engineering 

design is done in the elastic region.

- Material fracture is related to elastic properties because 

the elastic energy release is one of driving force for 

fracture.

- Elastic behavior is inherently anisotropic for individual 

grains.  However, most polycrystalline materials are 

elastically isotropic. Polycrystalline materials can be 

anisotropic if they are textured.

Elasticity



48

2021-04-01

Basis for linear elasticity

 Consider two atoms
Fext is a force that should 

be applied to separate 

the atom from ro

position ; external force

Fext

F =

𝑭𝒂𝒕𝒕+𝑭𝒓𝒆𝒑

𝑭𝒂𝒕𝒕

𝑭𝒓𝒆𝒑

𝑭𝒆𝒙𝒕

r

F
 =

 -
𝝏
𝑼
/𝝏
𝒓

𝒓𝟎

Δr
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 Consider cubic crystal material

 Slope : modulus

Potential energy 

increase

Basis for linear elasticity
(Young’s modulus)

F =

𝑭𝒂𝒕𝒕+𝑭𝒓𝒆𝒑

𝑭𝒆𝒙𝒕
r

F
 =

 -
𝝏
𝑼
/𝝏
𝑹

𝒓𝟎

Δr

Slope ~ modulus

a
[100]

[010]

[001]

Applied force: increase 

atomic distance

decrease 

atomic distance

decrease 

atomic distance

𝑼𝟎

U

r

𝒓𝟎

0
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Basis for linear elasticity
(Bulk modulus)

 Relate elastic modulus to volume change

area
U

F 



























U


 Bulk modulus

00

2

2

00

U
K





























Ω
U

Ω 𝟎
atomic

volume

2Ω 𝟎

Slope at Ω = Ω 𝟎

= -K/Ω 𝟎

Ω

σ
=

 (
−

𝝏
𝑼

𝝏
Ω

)

Ω 𝟎
2Ω 𝟎

σ𝒂𝒑𝒑

Ω 𝟎 + 𝚫𝛀
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Basis for linear elasticity
(Bulk modulus)

Alkali metal

Covalent bonded

Diamond cubic
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Basis for linear elasticity
(Temperature effect)

 Bulk (Young’s) moduli relates to

Curvature of bonding energy

 Bonding energy correlates with the melting temperature

 Temperature (heat) increases atomic vibration

Thermal energy added

 Potential increased

Curvature of bonding energy decreases

mkTU 0 KatomJk  /1038.1 3


 mkT

E
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Range of Elastic Moduli
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Basis for linear elasticity
(anisotropy)

 The forces between atoms, molecules, or 

ions in crystals depends on the distances 

between them. Thus, they also vary with 

crystallographic direction so it should 

not be surprising that crystalline moduli 

are anisotropic.
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Hooke's Law in One Dimension 



56

2021-04-01

Hooke's Law in Three Dimensions 

klijklij C   klijklij S  and

klijklij S   kljiklji S  =
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Hooke's Law in Three Dimensions 
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Hooke's Law in Three Dimensions 
















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
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

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

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
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ij = Cijkl kl i = Cij j

ij = Sijkl kl  i = Sij j
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Hooke's Law in Three Dimensions 
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Elastic Strain Energy 

The works done by these stresses is 1 d1  and 6 d6.

  ij j idw C d
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Elastic Strain Energy 

If the straining is carried out isothermally and reversibly, the energy 

expended is equal to the change in free energy (d) of the body.

Since the free energy is a state property, this is a perfect differential and 

the order of differentiation is immaterial.

The matrix array of the components of stiffness is symmetrical. There 

can be no more than twenty-one independent components of stiffness.

φ = w = (1/2) Cij i j = (1/2) i i = (1/2) Sij i j

ij jiC C
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Effect of Materials Symmetry on 
Elastic Constants (Cubic System)

If the crystal is rotated through 

π/2 about a fourfold axis, 

There are only three independent components of stiffness and three of 

compliance.
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Effect of Materials Symmetry on 
Elastic Constants (Cubic System)
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Effect of Materials Symmetry on Elastic 
Constants (Isotropic System)

Obviously, this includes cubic symmetry 

as a special case. Accordingly, let us 

transform the stiffness tensor of cubic 

material for a rotation of  about x-axis, 

We conclude that there are two independent components of stiffness. 

A rotation of  about x-axis 

in isotropic material

1x 2x 3x
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Effect of Materials Symmetry on Elastic 
Constants (Isotropic System)

We can determine the compliances simply by taking the inverse of 

the matrix of stiffness components, 

































)(200000

0)(20000

00)(2000

000

000

000

1211

1211

1211

111212

121112

121211

SS

SS

SS

SSS

SSS

SSS

)23(
S11






)23(2
S12






Suppose that an elastically isotropic sample is acted on solely uniaxial 

stress along x-axis,

Young's modulus, E=1/S11

Poisson's ratio, =-S12/S11
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Effect of Materials Symmetry on Elastic 
Constants (Isotropic System)

Suppose now that the sole applied stress is a shear stress 4 ,

Shear modulus, G=
2(1 )

E



Let us consider the effect of a hydrostatic stress m ,

Bulk modulus, B=
3(1 2 )

E



)21(3

)1(2










G

B

2)/(6

2)/(3






GB

GB


One extreme of properties is reached when B >> G, whereupon  → 1/2. 

At the other extreme we have B/G → 0, with  approaching a value of -1, 

and so the possible value range of Poisson's ratio is -1 <  < 1/2.

Poisson's ratio of zero arises when B/G = 2/3.
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Isotropy considerations

11 12 44

44 11 12

( ) / 2

/ 2( )

C C C

or

S S S





For these systems, anisotropy is defined by the Zener ratio:

When the Zener ratio = 1, the material is isotropic.

11 12
44

2

C C
C


 44 11 122( )S S S 
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Elastic Moduli in Cubic Materials

We can use the different relations among elastic constants to 

ascertain elastic moduli along any orientation,

where 𝑙𝑖1, 𝑙𝑗2, 𝑙𝑘3 equal the direction cosines between the [ijk] 

direction and the [100], [010], and [001] directions.

(i.e., axes x, y, and z)
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Elastic Moduli in Cubic Materials


