CHAPTER 8 RELATIONAL DB DESIGN

Intro to DB

Chapter 8: Relational Database Design

- Features of Good Relational Design
- Atomic Domains and First Normal Form
- Decomposition Using Functional Dependencies
- Functional Dependency Theory
- Algorithms
- Decomposition Using Multivalued Dependencies
- More Normal Form
- Database-Design Process
- Modeling Temporal Data

Pitfalls of Relational Database Design

Relational database design

- R = (ABCDE) <----- single relation schema</p>
- $DB_1 = \{ R_1, \dots, R_n \}$ <----- DB schema (set of relation schemas)
- Design Goals:
 - Ensure that relationships among attributes are represented (information content)
 - Avoid redundant data
 - Facilitate enforcement of database integrity constraints
- A bad design may lead to
 - Inability to represent certain information
 - Repetition of Information
 - Loss of information

Lending-schema = (branch-name, branch-city, assets, customer-name, loannumber, amount)

			customer-	loan-	
branch-name	branch-city	assets	name	number	amount
Downtown	Brooklyn	9000000	Jones	L-17	1000
Redwood	Palo Alto	2100000	Smith	L-23	2000
Perryridge	Horseneck	1700000	Hayes	L-15	1500
Downtown	Brooklyn	9000000	Jackson	L-14	1500

- Redundancy:
 - Wastes space
 - Complicates updating, introducing possibility of inconsistency of *assets* value
- Null values

• Can use null values, but they are difficult to handle.

Redundancy creates problems

- Anomalies (by Codd)
 - Insertion anomaly: cannot store information about a branch if no loans exist
 - Deletion anomaly: lose branch info when that last account for the branch is deleted
 - Update anomaly: what happens when you modify asset for a branch in only a single record?
- Solution

decompose schema so that each information content is represented only once (later)

information content: relationship between attributes

First Normal Form

- Domain is atomic if its elements are considered to be indivisible units
 - Examples of non-atomic domains:
 - set of names, composite attributes
 - identification numbers like CS101 that can be broken up into parts
- A relational schema is in *first normal form (1NF)*
- Atomicity is actually a property of how the elements of the domain are used
 - Student ID numbers: CS0012, EE1127, ...
- Non-atomic attributes leads to
 - encoding of information in the application program ...
 - ... rather than in the database
 - complication in storage and query processing
- We assume all relations are in first normal form

Relational Theory

Goal: Devise a theory for the following

- Decide whether a particular relation *R* is in "good" form.
- In the case that a relation *R* is not in "good" form,
 - each relation is in good form
 - the decomposition is lossless (preserves the information in the original relation before decomposition)
- Our theory is based on:
 - functional dependencies
 - multivalued dependencies (not covered in this semester)

Functional Dependencies

- Constraints on the set of legal relations.
- Require that the value for a certain set of attributes determines uniquely the value for another set of attributes.

- Example
 - Which attribute's values depend on other attributes?

Student=(ID, Name, Dept, Dept_office, College, Dean, Advisor, Adv_phone)

Supplies=(Supplier, S-contact, Part-ID, Part-Name, Size, Proj-ID, Location, Manager, P-contact, Quantit y)

Functional Dependencies (Cont.)

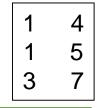
Let R be a relation schema

 $\alpha \subseteq R$ and $\beta \subseteq R$

- The functional dependency $\alpha \rightarrow \beta$ holds on *R* if and only if
 - for any *legal* relations *r*(R),
 - whenever any two tuples t_1 and t_2 of *r* agree on the attributes α ,
 - they also agree on the attributes β .
 - That is,

 $t_1[\alpha] = t_2[\alpha] \implies t_1[\beta] = t_2[\beta]$

- Example
 - Consider r(A,B) with the following instance of r



Applications of FD

- K is a superkey for relation schema R if and only if $K \rightarrow R$
- *K* is a *candidate key* for *R* if and only if
 - $K \rightarrow R$, and
 - for no $\alpha \subset K$, $\alpha \to R$
- Functional dependencies allow us t superkeys.

ed using

Loan-info-schema = (customer-name, loan-number, branch-name, amount)

We expect the following functional dependencies to hold:

 $loan-number \rightarrow amount$ $loan-number \rightarrow branch-name$

but would not expect the following to hold:

Applications of FD (Cont.)

- Specify constraints on the set of legal relations
 - We say that *F* holds on *R* if

all legal relations on R satisfy the set of functional dependencies F

- Test relations to see if they are legal under a given set of FDs
 - If a relation *r* is legal under a set *F* of functional dependencies, we say that *r* satisfies *F*.

Note:

What causes redundancy?

Lending-schema = (b-name, b-city, assets, c-name, loan#, amount)

			customer-	loan-	
branch-name	branch-city	assets	name	number	amount
Downtown	Brooklyn	9000000	Jones	L-17	1000
Redwood	Palo Alto	2100000	Smith	L-23	2000
Perryridge	Horseneck	1700000	Hayes	L-15	1500
Downtown	Brooklyn	9000000	Jackson	L-14	1500

 $F = \{ b \text{-name} \rightarrow b \text{-city assets }; \text{ loan#} \rightarrow amount b \text{-name} \}, \text{ Key} = \{ c \text{-name, loan#} \}$

- Redund
 - b-city
 - amount, b-name are repeated for each loan
- Observations
 - Same values repeated for attributes that are functionally dependent on non-key attributes!

Boyce-Codd Normal Form - informally

- A relation *R* is in "good" form IF attributes are only dependent on keys
 - No non-key FDs!
 - Solution: Break *R* into smaller relations that hold tightly related attributes!
- Example

Lending-schema = (b-name, b-city, assets, c-name, loan#, amount) $F = \{ b\text{-name} \rightarrow b\text{-city} \text{ assets }; \text{ loan#} \rightarrow amount b\text{-name} \}, \text{ Key} = \{ c\text{-name, loan#} \}$

=> Decompose

Branch = (b-name, b-city, assets) $\{ b-name \rightarrow b-city assets \}$ Loan = (loan#, amount, b-name) $\{ loan# \rightarrow amount, b-name \}$ CustLoan = (c-name, loan#)

Trivial FD

- A functional dependency is *trivial* if it is satisfied by all instances of a relation
 - □ *E.g.*
 - customer-name, loan-number \rightarrow customer-name
 - customer-name \rightarrow customer-name
- Lemma:

Closure of a Set of FDs

- Given a set *F* of FDs, there are other FDs that are *logically implied* by *F*
 - E.g. If $A \rightarrow B$ and $B \rightarrow C$, then we can infer that $A \rightarrow C$
- Definition: The set of all functional dependencies logically implied by F is the closure of F (denoted F⁺).
- We can find all of *F*⁺ by applying *Armstrong's Axioms*:
 - if $\beta \subseteq \alpha$, then $\alpha \to \beta$ (reflexivity)
 - if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$ (augmentation)
 - if $\alpha \to \beta$, and $\beta \to \gamma$, then $\alpha \to \gamma$ (*transitivity*)
- These rules are

Example

• R = (A, B, C, G, H, I)

 $\begin{array}{c} A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H \end{array} \}$

- some members of F⁺
 - $A \rightarrow H$
 - by transitivity from $A \rightarrow B$ and $B \rightarrow H$

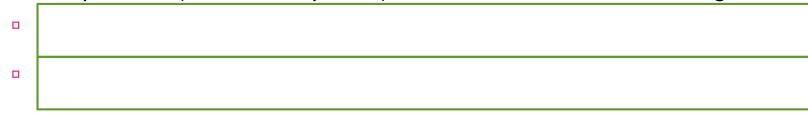
F=

• $AG \rightarrow I$

- $CG \rightarrow HI$
 - from $CG \rightarrow H$ and $CG \rightarrow I$: "union rule"
 - can be inferred from definition of functional dependencies, or
 - Augmentation of $CG \rightarrow I$ to infer $CG \rightarrow CGI$, augmentation of $CG \rightarrow H$ to infer $CGI \rightarrow HI$, and then transitivity

Boyce-Codd Normal Form – formally

- We want a way to decide whether a particular relation *R* is in "good" form.
- **Definition**: A relation schema *R* is in *BCNF* (with respect to a set *F* of FDs) if for each FD $\alpha \rightarrow \beta$ in *F*⁺ ($\alpha \subseteq R$ and $\beta \subseteq R$), at least one of the following holds:



Example

$$R = (A, B, C), \quad F = \{A \rightarrow B; B \rightarrow C\}, \text{ Key} = \{A\}$$

- R is not in BCNF
- Decompose into $R_1 = (A, B), R_2 = (B, C)$
 - R_1 and R_2 are in BCNF
- Is the decomposed set of schemas equivalent to the original schema?

Decomposition

- Decompose schema so that each information content is represented only once
- **Definition**: Let *R* be a relation scheme

 $\{R_1, ..., R_n\}$ is a *decomposition* of *R*

if $R = R_1 \cup \ldots \cup R_n$

- We will deal mostly with binary decomposition:
 - R into $\{R_1, R_2\}$ where $R = R_1 \cup R_2$

student(ID, name, dept, dept_chair, dept_phone, year)

=> student'(ID, name, year, dept) department(dept, chair, phone)

Lending = (b_name, asset, b_city, loan#, c_name, amount)

=> Branch = (b_name, asset, b_city) Loan = (loan#, c_name, amount)

Original Slides: © Silberschatz, Korth and Sudarshan

Lossy Decomposition

- Careless decomposition leads to loss of information: Lossy decomposition
- Decompose schema so that each information content is represented only once

Lending = (b_name, asset, b_city, loan#, c_name, amount)

=> Branch = (b_name, asset, b_city)
Loan = (loan#, c_name, amount)

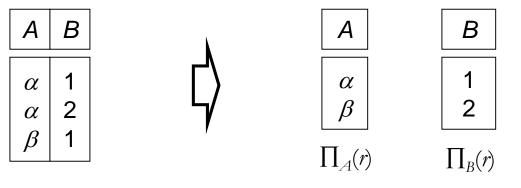
=> Branch = (b_name, asset, b_city)

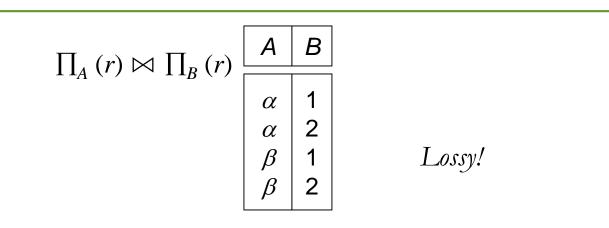
Loan = (loan#, c_name, amount, b_city)

Lossy Decomposition (cont.)

• Decomposition of R = (A, B) into

$$R_1 = (A) \text{ and } R_2 = (B)$$





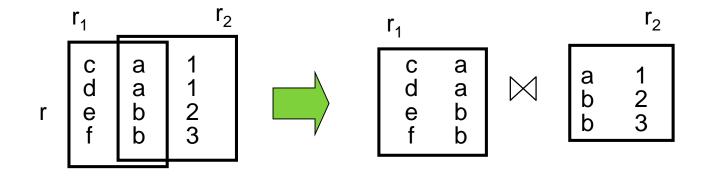
Lossless-join Decomposition

• For r(R) and decomposition $\{R_1, R_2\}$, it is always the case that

• **Definition**: Decomposition $\{R_1, R_2\}$ is a *lossless-join decomposition* of R if

 $r = \prod_{R_1} (r) \bowtie \prod_{R_2} (r)$

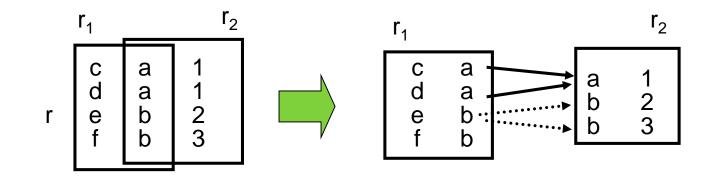
• The information content of the original relation *r* is always the basis



Lossless-join Decomposition

• Lemma: $\{R_1, R_2\}$ is a lossless join decomposition if

i.e., if one of the two sub-schemas hold the key of the other sub-schema



BCNF Example

R = (bname, bcity, assets, cname, loan#, amount)

 $F = \{ bname \rightarrow assets bcity ; loan# \rightarrow amount bname \}$

Key = {*loan#, cname*}

Decomposition

 $R_1 = (bname, bcity, assets)$

R₂ =

Final decomposition result: $\{R_1, R_3, R_4\}$

Dependency Preservation

Example

```
student(name, dept, college)
```

name \rightarrow dept, college dept \rightarrow college

Decomposition 1

student1(name, dept)name \rightarrow deptdepartment(dept, college)dept \rightarrow college

Decomposition 2

student1(name, dept)	name ightarrow dept	
student2(name, college)	name ightarrow college	

Dependency Preservation (cont.)

Definition

Let *F*: set of FD on *R*. { R_1 , ..., R_n }: decomposition of *R*. The *restriction* of *F* to R_i , denoted F_i , is the set of all FDs in *F*⁺ that include only attributes of R_i

Definition

Let $F = F_1 \cup ... \cup F_n$. The decomposition is *dependency-preserving* if $F^+ = F^+$

• *Motivation*:

- Accessing multiple tables can be expensive
- SQL does not provide a direct way of specifying functional dependencies other than superkeys
- (Assertions can be ad hoc and expensive)

Example

- R = (A, B, C) $F = \{ A \rightarrow B, B \rightarrow C \}$
- $R_1 = (A, B), R_2 = (B, C)$
 - Lossless-join decomposition: $R_1 \cap R_2 = \{B\}$ and $B \rightarrow BC$
 - Dependency preserving
- $R_1 = (A, B), R_2 = (A, C)$
 - Lossless-join decomposition: $R_1 \cap R_2 = \{A\}$ and $A \to AB$

BCNF and Dependency Preservation

- R = (Street, City, Zip) $F = \{$ Street City \rightarrow Zip; Zip \rightarrow City $\}$ Two candidate keys: Street City and Street Zip
 - *R* is not in BCNF
 - Any decomposition of *R* will fail to preserve Street City \rightarrow Zip

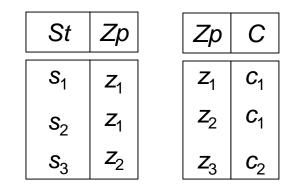
StZpC S_1 Z_1 C_1 S_2 Z_1 C_1 S_3 Z_2 C_1 null Z_3 C_2

- There are some situations where
 - BCNF is not dependency preserving, and
 - efficient checking for FD violation on updates is important
 - => solution: define a weaker normal form

BCNF and Dependency Preservation (cont.)

- BCNF decomposition has *R*₁(Street, Zip) *R*₂(Zip, City)
- R_1 , R_2 are in BCNF
 - but not dependency-preserving
 - => Testing for Street City \rightarrow Zip requires a join

St	Zp	С
S ₁	<i>Z</i> ₁	<i>C</i> ₁
S ₂	<i>Z</i> ₁	<i>C</i> ₁
S ₃	<i>Z</i> ₂	<i>C</i> ₁
null	<i>Z</i> ₃	<i>C</i> ₂



Third Normal Form

Third Normal Form

- Allows some redundancy (with resultant problems)
- But FDs can be checked on individual relations without a join
- There is always a lossless-join, dependency-preserving decomposition into 3NF
- A relation schema R is in *third normal form (3NF)* if

for all $\alpha \rightarrow \beta$ in F^+ at least one of the following holds:

- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \in \alpha$)
- α is a superkey for *R*
- Each attribute A in $\beta \alpha$ is contained in a candidate key for R. (NOTE: each attribute may be in a different candidate key)

Example

R = (Street, City, Zip) $F = \{ Street City \rightarrow Zip; Zip \rightarrow City \}$

• Two candidate keys: Street City and Street Zip

 $\begin{array}{|c|c|c|c|c|c|c|c|}\hline St & Zp & C \\\hline S_1 & Z_1 & C_1 \\\hline S_2 & Z_1 & C_1 \\\hline S_3 & Z_2 & C_1 \\\hline null & Z_3 & C_2 \\\hline \end{array}$

• *R* is in 3NF

Street City \rightarrow Zip : Street City is a superkeyZip \rightarrow City :City is contained in a candidate key

- But not in BCNF (nontrivial & *zip* is not key)
- There is some redundancy in this schema
 - repetition of information (e.g., the relationship z_1, c_1)
 - need to use null values (e.g., to represent the relationship z_3 , c_2 where there is no corresponding value for *St*)

Comparison of BCNF and 3NF

- It is always possible to decompose a relation into relations in 3NF and
 - the decomposition is lossless
 - the dependencies are preserved
- It is always possible to decompose a relation into relations in BCNF and
 - the decomposition is lossless

Design Goals

- When we decompose a relation schema R with a set of functional dependencies F into R_1 , R_2 ,..., R_n we want
 - 1. Lossless decomposition
 - 2. No redundancy
 - 3. Dependency preservation
- First, try to achieve
 - BCNF
 - Lossless join
 - Dependency preservation
- If we cannot achieve this, we accept one of

Algorithms

- Testing for BCNF
- BCNF Decomposition
- Testing for 3NF
- 3NF Decomposition
- Closure of FDs
- Closure of attributes
- Cover
- Canonical cover

Closure of Attribute Sets

 Definition: Given a set of attributes α, the closure of α under F (denoted by α⁺) is the set of attributes that are functionally determined by α under F:

• Algorithm to compute α^+

```
result := \alpha;

while (changes to result) do

for each \beta \rightarrow \gamma in F do

begin

if \beta \subseteq result then result := result \cup \gamma

end
```

Example

- R = (A, B, C, G, H, I)
- $F = \{ A \rightarrow B; A \rightarrow C; CG \rightarrow H; CG \rightarrow I; B \rightarrow H \}$

- Is AG a candidate key?
 - Is AG a super key?
 - Does $AG \rightarrow R$?
 - Is any subset of *AG* a superkey?
 - Does $A^+ \rightarrow R$?
 - Does $G^+ \rightarrow R$?

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

- Testing for superkey: "is α a superkey?"
- **Testing functional dependencies**: "does $\alpha \rightarrow \beta$ hold?"
 - Or, in other words, is $\alpha \rightarrow \beta$ in F^+
 - Just check if $\beta \subseteq \alpha^+$.
 - Is a very useful simple test
- Computing the closure of F: F⁺
 - For each $\gamma \subseteq R$, we find the closure γ^+ , and
 - for each $S \subseteq \gamma^+$, we output a functional dependency $\gamma \to S$.

Testing for BCNF

• Check if $\alpha \rightarrow \beta$ cause a violation of BCNF

- 1. compute α^+ (the attribute closure of α), and
- 2. verify that it includes all attributes of *R* (i.e., it is a superkey of *R*)
- Check if *R* is in BCNF (w.r.t. *F*)

It can be shown that if none of the dependencies in F causes a violation of BCNF, then none of the dependencies in F⁺ will cause a violation of BCNF either

Testing for BCNF (cont.)

- However, using only *F* is *incorrect* when testing a relation in a *decomposition of R*
- Example

Consider R(A, B, C, D) with $F = \{A \rightarrow B, B \rightarrow C\}$

- Decompose into $R_1(A, B)$ and $R_2(A, C, D)$
- Neither of the dependencies in F contain only attributes from (A, C, D) so we might be mislead into thinking R₂ satisfies BCNF.
- In fact, dependency $A \rightarrow C$ in F^+ shows R_2 is not in BCNF.

BCNF Decomposition Algorithm

result := {*R*}; *done* := false

compute F⁺

while (not done) do

if (there is a schema R_i in *result* that is not in BCNF)

then begin

let
$$\alpha \rightarrow \beta \ (\alpha \cap \beta = \emptyset)$$

be a nontrivial FD
that holds on R_i , and
 $\alpha \rightarrow R_i$ is not in F^+
result := $(result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta);$
end

else done := true;

* Each *R_i* in *result* is in BCNF, and decomposition is lossless-join.

R = (bname, bcity, assets, cname, loan#, amount) F = { bname→assets bcity; loan# → amount bname } Key={loan#, cname}

Decomposition

 $R_1 = (bname, bcity, assets),$ $R_2 = (bname, cname, loan#, amount)$ $R_3 = (bname, loan#, amount)$ $R_4 = (cname, loan#)$

Final decomposition result: R_1, R_3, R_4

Overall Database Design Process

• We have assumed schema *R* is given

R could have been

- a single relation containing *all* attributes that are of interest
 - called *universal relation*
 - Normalization breaks *R* into smaller relations.
- the result of some ad hoc design of relations, which we then test/convert to normal form.

Denormalization for Performance

- May want to use non-normalized schema for performance
 - E.g. displaying customer-name along with account-number and balance requires join of account with depositor
- <u>Alternative 1</u>: Use *denormalized* relation containing attributes of *account* as well as *depositor* with all above attributes
 - faster lookup
 - extra space and extra execution time for updates
 - extra coding work for programmer and possibility of error in extra code
- <u>Alternative 2</u>: use a *materialized view* defined as

account \bowtie depositor

benefits and drawbacks same as above

Other Design Issues

Some aspects of database design are not caught by normalization

Instead of earnings(company-id, year, amount), use

- earnings-2000, earnings-2001, earnings-2002, ...
 - all on the schema (company-id, earnings).
 - above are in BCNF
 - but make querying across years difficult and
 - needs new table each year
- company-year(comp-id, earnings2000, earnings2001, earnings2002)
 - Also in BCNF
 - makes querying across years difficult and
 - requires new attribute each year.
 - Is an example of a *crosstab*, where values for one attribute become column names => used in spreadsheets and data analysis tools

Testing for 3NF

- Need to check only FDs in F (not F⁺)
- For each dependency $\alpha \rightarrow \beta$,
 - Check if α is a superkey (attribute closure check)
- If α is not a superkey
 - we have to verify if each attribute in β is contained in a candidate key
 - this test is rather more expensive, since it involves finding candidate keys
- Testing for
- Interestingly, decomposition into third normal form can be done in polynomial time

Cover

- Sets of functional dependencies may have redundant dependencies that can be inferred from the others
 - $A \rightarrow C$ is redundant in: $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$
 - Parts of a functional dependency may be redundant
 - E.g. on RHS: $\{A \rightarrow B, B \rightarrow C, A \rightarrow CD\}$ can be simplified to $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$
 - E.g. on LHS: $\{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$ can be simplified to $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$

- A FD $g \in F$ is *redundant* if $(F \{g\})^+ = F^+$ or $g \in (F \{g\})^+$
- F' is a nonredundant (minimal) cover of F if
 - $F'_{+} = F_{+}$ and
 - *F'* contains no redundant FD

Extraneous Attributes

- Let $\alpha \rightarrow \beta$ in *F*.
 - $A \in \alpha$ is extraneous if $F \Rightarrow (F \{\alpha \rightarrow \beta\}) \cup \{(\alpha A) \rightarrow \beta\}$
 - $A \in \beta$ is extraneous if $F \Leftarrow (F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\}$
- Note: implication in the opposite direction is trivial, since a "stronger" functional dependency always implies a weaker one
- Example
 - Given $F = \{A \rightarrow C, AB \rightarrow C\}$
 - B is extraneous in $AB \rightarrow C$ because
- Example

- Given $F = \{A \rightarrow C, AB \rightarrow CD\}$
- *C* is extraneous in $AB \rightarrow CD$ since

Testing if an Attribute is Extraneous

 $\alpha \rightarrow \beta \in F$

- To test if attribute $A \in \alpha$ is extraneous in α
 - 1. compute $(\{\alpha\} A)^+$ using the dependencies in *F*
 - 2. A is extraneous if $(\{\alpha\} A)^+$ contains β
- To test if attribute $B \in \beta$ is extraneous in β
 - 1. compute α^+ using only the dependencies in
 - 2. *B* is extraneous if α^+ contains *B*,

Canonical Cover

Definition:

A *canonical cover* for *F* is a set of dependencies F_c such that

- $F_c^+ = F^+$
- No FD in F_c contains an extraneous attribute
- Each left side of a FD in F_c is unique
- Intuitively, F_c is
 - a "minimal" set equivalent to F

Algorithm for Canonical Cover

repeat

replace any $\alpha_1 \rightarrow \beta_1$ and $\alpha_1 \rightarrow \beta_1$ with $\alpha_1 \rightarrow \beta_1 \beta_2$ (union rule) Find $\alpha \rightarrow \beta$ with extraneous attribute either in α or β and delete the extraneous attribute from α $\rightarrow \beta$

until F does not change

 Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied

 $\bullet O(n^2)$

$$R = (A, B, C) \qquad F = \{A \rightarrow BC \\ B \rightarrow C \\ A \rightarrow B \\ AB \rightarrow C \}$$

- Combine $A \rightarrow BC$ and $A \rightarrow B$ into $A \rightarrow BC$
- A is extraneous in $AB \rightarrow C$
 - $B \rightarrow C$ logically implies $AB \rightarrow C$.
- C is extraneous in A → BC
 A → BC is logically implied by

 $A \rightarrow B$ and $B \rightarrow C$.

The canonical cover:

3NF Decomposition Algorithm

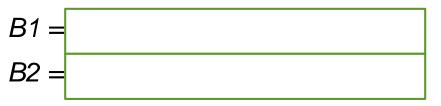
 F_c (canonical cover for F) i := 0

for each FD $\alpha \rightarrow \beta$ in F_c do if no R_j , $1 \le j \le i$ contains $\alpha \beta$ then { i := i + 1 $R_i := \alpha \beta$ }

if no R_j , $1 \le j \le i$ contains a candidate key for R then

{ i := i + 1; $R_i :=$ any candidate key for R } return ($R_1, R_2, ..., R_i$) Banker = (branch, cname, banker, office#)
F={ banker → branch office#
 cname branch → banker }
Key= {cname, branch}

Follow the algorithm



Since *B2* contains a candidate key, we are done.

END OF CHAPTER 8