
CHAPTER 8

RELATIONAL DB DESIGN

Intro to DB

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 2

Chapter 8: Relational Database Design

▪ Features of Good Relational Design

▪ Atomic Domains and First Normal Form

▪ Decomposition Using Functional Dependencies

▪ Functional Dependency Theory

▪ Algorithms

▪ Decomposition Using Multivalued Dependencies

▪ More Normal Form

▪ Database-Design Process

▪ Modeling Temporal Data

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 3

Pitfalls of Relational Database Design

▪ Relational database design

Find a “good” collection of relation schemas for our information need

 R = (A B C D E) <----- single relation schema

 DB1 = { R1, …… , Rn } <----- DB schema (set of relation schemas)

▪ Design Goals:

 Ensure that relationships among attributes are represented (information content)

 Avoid redundant data

 Facilitate enforcement of database integrity constraints

▪ A bad design may lead to

 Inability to represent certain information

 Repetition of Information

 Loss of information

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 4

Example
Lending-schema = (branch-name, branch-city, assets, customer-name, loan-

number, amount)

▪ Redundancy:

 Data for branch-name, branch-city, assets are repeated for each loan

 Wastes space

 Complicates updating, introducing possibility of inconsistency of assets value

▪ Null values

 Can use null values, but they are difficult to handle.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 5

Redundancy creates problems

▪ Anomalies (by Codd)

 Insertion anomaly: cannot store information about a branch if no loans exist

 Deletion anomaly: lose branch info when that last account for the branch is deleted

 Update anomaly: what happens when you modify asset for a branch in only a single record?

▪ The problems are caused by redundancy!

▪ Solution

decompose schema so that each information content is represented only once (later)

 information content: relationship between attributes

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 6

First Normal Form

▪ Domain is atomic if its elements are considered to be indivisible units

 Examples of non-atomic domains:

 set of names, composite attributes

 identification numbers like CS101 that can be broken up into parts

▪ A relational schema is in first normal form (1NF)

if the domains of all attributes are atomic

▪ Atomicity is actually a property of how the elements of the domain are used

 Student ID numbers: CS0012, EE1127, …

▪ Non-atomic attributes leads to

 encoding of information in the application program …

 … rather than in the database

 complication in storage and query processing

▪ We assume all relations are in first normal form

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 7

Relational Theory

Goal: Devise a theory for the following

▪ Decide whether a particular relation R is in “good” form.

▪ In the case that a relation R is not in “good” form,

decompose it into a set of relations {R1, R2, ..., Rn} such that

 each relation is in good form

 the decomposition is lossless (preserves the information in the original relation before decomposition)

▪ Our theory is based on:

 functional dependencies

 multivalued dependencies (not covered in this semester)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 8

Functional Dependencies

▪ Constraints on the set of legal relations.

▪ Require that the value for a certain set of attributes determines uniquely the value for another

set of attributes.

▪ A functional dependency is a generalization of the notion of a key.

▪ Example

 Which attribute’s values depend on other attributes?

Student=(ID, Name, Dept, Dept_office, College, Dean, Advisor, Adv_phone)

Supplies=(Supplier, S-contact, Part-ID, Part-Name, Size, Proj-ID, Location, Manager, P-contact, Quantit

y)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 9

Functional Dependencies (Cont.)

▪ Let R be a relation schema

 R and R

▪ The functional dependency → holds on R if and only if

 for any legal relations r(R),

 whenever any two tuples t1 and t2 of r agree on the attributes ,

 they also agree on the attributes .

 That is,

t1[] = t2 [] t1[] = t2 []

▪ Example

 Consider r(A,B) with the following instance of r

 On this instance, A → B does NOT hold, but B → A does hold

1 4

1 5

3 7

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 10

Applications of FD

▪ K is a superkey for relation schema R if and only if K → R

▪ K is a candidate key for R if and only if

 K → R, and

 for no K, → R

▪ Functional dependencies allow us to express constraints that cannot be expressed using
superkeys.

Loan-info-schema = (customer-name, loan-number, branch-name, amount)

We expect the following functional dependencies to hold:

loan-number → amount

loan-number → branch-name

but would not expect the following to hold:

loan-number → customer-name

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 11

Applications of FD (Cont.)

▪ Specify constraints on the set of legal relations

 We say that F holds on R if

all legal relations on R satisfy the set of functional dependencies F

▪ Test relations to see if they are legal under a given set of FDs

 If a relation r is legal under a set F of functional dependencies,

we say that r satisfies F.

▪ Note:

A specific instance of a relation schema may satisfy a functional dependency even if the

functional dependency does not hold on all legal instances.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 12

What causes redundancy?

Lending-schema = (b-name, b-city, assets, c-name, loan#, amount)

F = { b-name → b-city assets ; loan# → amount b-name }, Key = {c-name, loan#}

▪ Redundancy:

 b-city, assets are repeated for each loan with the same branch

 amount, b-name are repeated for each loan

▪ Observations

 Same values repeated for attributes that are functionally dependent on non-key attributes!

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 13

Boyce-Codd Normal Form - informally

▪ A relation R is in “good” form IF attributes are only dependent on keys

 No non-key FDs!

 Solution: Break R into smaller relations that hold tightly related attributes!

▪ Example

Lending-schema = (b-name, b-city, assets, c-name, loan#, amount)

F = { b-name → b-city assets ; loan# → amount b-name }, Key = {c-name, loan#}

=> Decompose

Branch = (b-name, b-city, assets) { b-name → b-city assets }

Loan = (loan#, amount, b-name) { loan# → amount, b-name }

CustLoan = (c-name, loan#)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 14

Trivial FD

▪ A functional dependency is trivial if it is satisfied by all instances of a relation

 E.g.

 customer-name, loan-number → customer-name

 customer-name → customer-name

▪ Lemma: → is trivial if

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 15

Closure of a Set of FDs

▪ Given a set F of FDs, there are other FDs that are logically implied by F

 E.g. If A → B and B → C, then we can infer that A → C

▪ Definition: The set of all functional dependencies logically implied by F is the closure of F

(denoted F+).

▪ We can find all of F+ by applying Armstrong’s Axioms:

 if , then → (reflexivity)

 if → , then → (augmentation)

 if → , and → , then → (transitivity)

▪ These rules are

 sound (generate only functional dependencies that actually hold)

and

 complete (generate all functional dependencies that hold).

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 16

Example

▪ R = (A, B, C, G, H, I) F= { A → B
A → C
CG → H
CG → I
B → H }

▪ some members of F+

 A → H

 by transitivity from A → B and B → H

 AG → I

 by augmenting A → C with G, to get AG → CG
and then transitivity with CG → I

 CG → HI

 from CG → H and CG → I : “union rule”

 can be inferred from definition of functional dependencies, or

 Augmentation of CG → I to infer CG → CGI, augmentation of
CG → H to infer CGI → HI, and then transitivity

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 17

Boyce-Codd Normal Form – formally

▪ We want a way to decide whether a particular relation R is in “good” form.

▪ Definition: A relation schema R is in BCNF (with respect to a set F of FDs) if for each FD

 → in F+ (R and R), at least one of the following holds:

 → is trivial (i.e.,)

 is a superkey for R

▪ Example

R = (A, B, C), F = {A → B ; B → C}, Key = {A}

 R is not in BCNF

 Decompose into R1 = (A, B), R2 = (B, C)

 R1 and R2 are in BCNF

▪ Is the decomposed set of schemas equivalent to the original schema?

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 18

Decomposition

▪ Decompose schema so that each information content is represented only once

▪ Definition: Let R be a relation scheme

{R1, ..., Rn} is a decomposition of R

if R = R1 ... Rn (i.e., all of R’s attributes are represented)

▪ We will deal mostly with binary decomposition:

 R into {R1, R2} where R = R1 R2

student(ID, name, dept, dept_chair, dept_phone, year)

=> student’(ID, name, year, dept)

department(dept, chair, phone)

Lending = (b_name, asset, b_city, loan#, c_name, amount)

=> Branch = (b_name, asset, b_city)

Loan = (loan#, c_name, amount)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 19

Lossy Decomposition

▪ Careless decomposition leads to loss of information: Lossy decomposition

▪ Decompose schema so that each information content is represented only once

Lending = (b_name, asset, b_city, loan#, c_name, amount)

=> Branch = (b_name, asset, b_city)

Loan = (loan#, c_name, amount)

- relationship between loan and branch is lost

- loss of information

=> Branch = (b_name, asset, b_city)

Loan = (loan#, c_name, amount, b_city)

- still, we have lost the relationship

- loss of information

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 20

Lossy Decomposition (cont.)

▪ Decomposition of R = (A, B) into

R1 = (A) and R2 = (B)

▪ Can we recover the original information content?

A B

1

2

1

A

B

1

2

A(r) B(r)

A (r) ⋈ B (r)
A B

1

2

1

2

Lossy!

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 21

Lossless-join Decomposition

▪ For r(R) and decomposition {R1, R2}, it is always the case that

r ⊆ R1 (r) ⋈ R2 (r)

▪ Definition: Decomposition {R1, R2} is a lossless-join decomposition of R if

r = R1 (r) ⋈ R2 (r)

 The information content of the original relation r is always the basis

r

r1
r2

a
a
b
b

1
1
2
3

c
d
e
f

a
a
b
b

c
d
e
f

r1
r2

a
b
b

1
2
3

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 22

▪ Lemma: {R1, R2} is a lossless join decomposition if

R1 R2 → R1, or R1 R2 → R2

 i.e., if one of the two sub-schemas hold the key of the other sub-schema

Lossless-join Decomposition

r

r1
r2

a
a
b
b

1
1
2
3

c
d
e
f

a
a
b
b

c
d
e
f

r1
r2

a
b
b

1
2
3

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 23

BCNF Example

▪ R = (bname, bcity, assets, cname, loan#, amount)

F = { bname → assets bcity ; loan# → amount bname }

Key = {loan#, cname}

Decomposition

R1 = (bname, bcity, assets)

R2 = (bname, cname, loan#, amount), not in BCNF

R3 = (bname, loan#, amount)

R4 = (cname, loan#)

Final decomposition result: { R1, R3, R4 }

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 24

Dependency Preservation

Example

student(name, dept, college) name → dept, college

dept→ college

▪ Decomposition 1

student1(name, dept) name → dept

department(dept, college) dept → college

▪ Decomposition 2

student1(name, dept) name → dept

student2(name, college) name → college

 is a lossless decomposition

 but in order to test dept→ college, a join is required

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 25

Dependency Preservation (cont.)

▪ Definition

Let F: set of FD on R. {R1, ..., Rn}: decomposition of R.

The restriction of F to Ri , denoted Fi , is the set of all FDs in F+ that include only attributes of Ri

▪ Definition

Let F' = F1 … Fn.

The decomposition is dependency-preserving if F+ = F'+

▪ Motivation:

We wish to guarantee F by locally enforcing each restriction (Ri) on the respective

decomposed relation.

 Accessing multiple tables can be expensive

 SQL does not provide a direct way of specifying functional dependencies other than superkeys

 (Assertions can be ad hoc and expensive)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 26

Example

▪ R = (A, B, C)

F = { A → B, B → C }

▪ R1 = (A, B), R2 = (B, C)

 Lossless-join decomposition: R1 R2 = { B } and B → BC

 Dependency preserving

▪ R1 = (A, B), R2 = (A, C)

 Lossless-join decomposition: R1 R2 = { A } and A → AB

 Not dependency preserving

(cannot check B → C without computing R1 ⋈ R2)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 27

BCNF and Dependency Preservation

▪ R = (Street, City, Zip)

F = { Street City → Zip; Zip → City }

Two candidate keys: Street City and Street Zip

 R is not in BCNF

 Any decomposition of R will fail to preserve

Street City → Zip

▪ It is not always possible to get a BCNF decomposition that is dependency preserving

▪ There are some situations where

 BCNF is not dependency preserving, and

 efficient checking for FD violation on updates is important

=> solution: define a weaker normal form

St

s1

s2

s3

null

Zp

z1

z1

z2

z3

C

c1

c1

c1

c2

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 28

BCNF and Dependency Preservation (cont.)

▪ BCNF decomposition has

R1(Street, Zip)

R2(Zip, City)

▪ R1, R2 are in BCNF

 but not dependency-preserving

=> Testing for Street City → Zip requires a join

St

s1

s2

s3

Zp

z1

z1

z2

Zp

z1

z2

z3

C

c1

c1

c2

St

s1

s2

s3

null

Zp

z1

z1

z2

z3

C

c1

c1

c1

c2

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 29

Third Normal Form

▪ Third Normal Form

 Allows some redundancy (with resultant problems)

 But FDs can be checked on individual relations without a join

 There is always a lossless-join, dependency-preserving decomposition into 3NF

▪ A relation schema R is in third normal form (3NF) if

for all → in F+ at least one of the following holds:

 → is trivial (i.e.,)

 is a superkey for R

 Each attribute A in – is contained in a candidate key for R.

(NOTE: each attribute may be in a different candidate key)

▪ If a relation is in BCNF it is in 3NF

 since in BCNF one of the first two conditions above must hold

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 30

Example

R = (Street, City, Zip)

F = { Street City → Zip; Zip → City }

▪ Two candidate keys: Street City and Street Zip

▪ R is in 3NF

Street City → Zip : Street City is a superkey

Zip → City : City is contained in a candidate key

▪ But not in BCNF (nontrivial & zip is not key)

▪ There is some redundancy in this schema

 repetition of information (e.g., the relationship z1, c1)

 need to use null values (e.g., to represent the relationship z3, c2 where there is no corresponding

value for St)

St

s1

s2

s3

null

Zp

z1

z1

z2

z3

C

c1

c1

c1

c2

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 31

Comparison of BCNF and 3NF

▪ It is always possible to decompose a relation into relations in 3NF and

 the decomposition is lossless

 the dependencies are preserved

▪ It is always possible to decompose a relation into relations in BCNF and

 the decomposition is lossless

 it may not be possible to preserve dependencies.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 32

Design Goals

▪ When we decompose a relation schema R with a set of functional dependencies F into R1,
R2,.., Rn we want

1. Lossless decomposition

2. No redundancy

3. Dependency preservation

▪ First, try to achieve

 BCNF

 Lossless join

 Dependency preservation

▪ If we cannot achieve this, we accept one of

 Lack of dependency preservation

 Redundancy due to use of 3NF

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 33

Algorithms

▪ Testing for BCNF

▪ BCNF Decomposition

▪ Testing for 3NF

▪ 3NF Decomposition

▪ Closure of FDs

▪ Closure of attributes

▪ Cover

▪ Canonical cover

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 34

Closure of Attribute Sets

▪ Definition: Given a set of attributes , the closure of under F (denoted by +) is

the set of attributes that are functionally determined by under F:

 → is in F+ +

▪ Algorithm to compute +

result := ;

while (changes to result) do

for each → in F do

begin

if result then result := result
end

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 35

Example

▪ R = (A, B, C, G, H, I)

▪ F = { A → B; A → C; CG → H; CG → I; B → H }

▪ (AG)+

1. result = AG

2. result = ABCG (A → C and A → B)

3. result = ABCGH (CG → H and CG AGBC)

4. result = ABCGHI (CG → I and CG AGBCH)

▪ Is AG a candidate key?
 Is AG a super key?

 Does AG → R?

 Is any subset of AG a superkey?
 Does A+ → R?

 Does G+ → R?

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 36

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

▪ Testing for superkey: “is a superkey?”

 Compute +, and check if + contains all attributes of R.

▪ Testing functional dependencies: “does → hold?”

 Or, in other words, is → in F+

 Just check if +.

 Is a very useful simple test

▪ Computing the closure of F: F+

 For each R, we find the closure +, and

 for each S +, we output a functional dependency → S.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 37

Testing for BCNF

▪ Check if → cause a violation of BCNF

1. compute + (the attribute closure of), and

2. verify that it includes all attributes of R (i.e., it is a superkey of R)

▪ Check if R is in BCNF (w.r.t. F)

Check only the dependencies in F (rather than F+) for violation

 It can be shown that if none of the dependencies in F causes a violation of BCNF, then none of the

dependencies in F+ will cause a violation of BCNF either

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 38

Testing for BCNF (cont.)

▪ However, using only F is incorrect

when testing a relation in a decomposition of R

▪ Example

Consider R (A, B, C, D) with F = { A→B, B→C }

 Decompose into R1(A, B) and R2(A, C, D)

 Neither of the dependencies in F contain only attributes from (A, C, D) so we might be

mislead into thinking R2 satisfies BCNF.

 In fact, dependency A → C in F+ shows R2 is not in BCNF.

Chap 8 - 39

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee

result := {R}; done := false

compute F+

while (not done) do

if (there is a schema Ri in result that is not in

BCNF)

then begin

let → (=)

be a nontrivial FD

that holds on Ri , and

→Ri is not in F+

result := (result – Ri)

(Ri –) (,);

end

else done := true;

* Each Ri in result is in BCNF, and decomposition

is lossless-join.

R = (bname, bcity, assets, cname, loan#, amount)

F = { bname→assets bcity;

loan# → amount bname }

Key={loan#, cname}

Decomposition

R1 = (bname, bcity, assets),

R2 = (bname, cname, loan#, amount)

R3 = (bname, loan#, amount)

R4 = (cname, loan#)

Final decomposition result:

R1, R3, R4

BCNF Decomposition Algorithm

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 40

Overall Database Design Process

▪ We have assumed schema R is given

R could have been

▪ a single relation containing all attributes that are of interest

 called universal relation

 Normalization breaks R into smaller relations.

▪ generated when converting E-R diagram to a set of tables.

▪ the result of some ad hoc design of relations, which we then test/convert to normal form.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 41

Denormalization for Performance

▪ May want to use non-normalized schema for performance

 E.g. displaying customer-name along with account-number and balance requires join of account

with depositor

▪ Alternative 1: Use denormalized relation containing attributes of account as well as

depositor with all above attributes

 faster lookup

 extra space and extra execution time for updates

 extra coding work for programmer and possibility of error in extra code

▪ Alternative 2: use a materialized view defined as

account ⋈ depositor

 benefits and drawbacks same as above

 except no extra coding work for programmer and avoids possible errors

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 42

Other Design Issues

▪ Some aspects of database design are not caught by normalization

Instead of earnings(company-id, year, amount), use

▪ earnings-2000, earnings-2001, earnings-2002, …

 all on the schema (company-id, earnings).

 above are in BCNF

 but make querying across years difficult and

 needs new table each year

▪ company-year(comp-id, earnings2000, earnings2001, earnings2002)

 Also in BCNF

 makes querying across years difficult and

 requires new attribute each year.

 Is an example of a crosstab, where values for one attribute become column names => used in
spreadsheets and data analysis tools

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 43

Testing for 3NF

▪ Need to check only FDs in F (not F+)

▪ For each dependency → ,

 Check if is a superkey (attribute closure check)

▪ If is not a superkey

 we have to verify if each attribute in is contained in a candidate key

 this test is rather more expensive, since it involves finding candidate keys

▪ Testing for 3NF has been shown to be NP-hard

▪ Interestingly, decomposition into third normal form can be done in polynomial time

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 44

Cover

▪ Sets of functional dependencies may have redundant dependencies that can be inferred from
the others

 A → C is redundant in: { A → B, B → C, A → C }

 Parts of a functional dependency may be redundant

 E.g. on RHS: { A → B, B → C, A → CD } can be simplified to
{ A → B, B → C, A → D }

 E.g. on LHS: { A → B, B → C, AC → D } can be simplified to
{ A → B, B → C, A → D }

▪ A cover of F is any F’ such that F’+ = F+

▪ A FD g F is redundant if (F – {g})+ = F+ or g (F – {g})+

▪ F’ is a nonredundant (minimal) cover of F if
 F’+ = F+ and
 F’ contains no redundant FD

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 45

Extraneous Attributes

▪ Let → in F.

 A is extraneous if F (F – {→}) { (– A)→ }

 A is extraneous if F (F – {→}) { →(– A) }

▪ Note: implication in the opposite direction is trivial, since a “stronger” functional dependency
always implies a weaker one

▪ Example

 Given F = {A → C, AB → C }

 B is extraneous in AB → C because

 A → C logically implies AB → C

▪ Example

 Given F = {A → C, AB → CD}

 C is extraneous in AB → CD since

 A → C can be inferred even after deleting C

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 46

Testing if an Attribute is Extraneous

 → F

▪ To test if attribute A is extraneous in

1. compute ({} – A)+ using the dependencies in F

2. A is extraneous if ({} – A)+ contains

▪ To test if attribute B is extraneous in

1. compute + using only the dependencies in

F’ = (F – { → }) { →(– B) },

2. B is extraneous if + contains B,

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 47

Canonical Cover

▪ Definition:

A canonical cover for F is a set of dependencies Fc such that

 Fc
+ = F+

 No FD in Fc contains an extraneous attribute

 Each left side of a FD in Fc is unique

▪ Intuitively, Fc is

 a “minimal” set equivalent to F

 with no redundant FD

 with no redundant parts of dependencies

Chap 8 - 48

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee

repeat

replace any 1 → 1 and 1 → 1

with 1 → 1 2 (union rule)

Find → with extraneous attribute either in
or and delete the extraneous attribute from
→

until F does not change

▪ Union rule may become applicable after
some extraneous attributes have been
deleted, so it has to be re-applied

▪ O(n2)

R = (A, B, C) F = { A → BC

B → C

A → B

AB → C }

▪ Combine A → BC and A → B into A → BC

F’= { A → BC, B → C, AB → C }

▪ A is extraneous in AB → C

 B → C logically implies AB → C.

F’’= { A → BC, B → C }

▪ C is extraneous in A → BC

 A → BC is logically implied by

A → B and B → C.

▪ The canonical cover:

Fc= { A → B, B → C }

Algorithm for Canonical Cover

Chap 8 - 49

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee

Fc (canonical cover for F)

i := 0

for each FD → in Fc do

if no Rj, 1 j i contains

then { i := i + 1

Ri := }

if no Rj, 1 j i contains a candidate key for

R then

{ i := i + 1;

Ri := any candidate key

for R }

return (R1, R2, ..., Ri)

Banker = (branch, cname, banker, office#)

F={ banker → branch office#

cname branch → banker }

Key= {cname, branch}

Follow the algorithm

B1 = (banker, branch, office#)

B2 = (cname, branch, banker)

Since B2 contains a candidate key, we are

done.

3NF Decomposition Algorithm

END OF CHAPTER 8

