
CHAPTER 8

RELATIONAL DB DESIGN

Intro to DB

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 2

Chapter 8: Relational Database Design

▪ Features of Good Relational Design

▪ Atomic Domains and First Normal Form

▪ Decomposition Using Functional Dependencies

▪ Functional Dependency Theory

▪ Algorithms

▪ Decomposition Using Multivalued Dependencies

▪ More Normal Form

▪ Database-Design Process

▪ Modeling Temporal Data

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 3

Pitfalls of Relational Database Design

▪ Relational database design

Find a “good” collection of relation schemas for our information need

 R = (A B C D E) <----- single relation schema

 DB1 = { R1, …… , Rn } <----- DB schema (set of relation schemas)

▪ Design Goals:

 Ensure that relationships among attributes are represented (information content)

 Avoid redundant data

 Facilitate enforcement of database integrity constraints

▪ A bad design may lead to

 Inability to represent certain information

 Repetition of Information

 Loss of information

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 4

Example
Lending-schema = (branch-name, branch-city, assets, customer-name, loan-

number, amount)

▪ Redundancy:

 Data for branch-name, branch-city, assets are repeated for each loan

 Wastes space

 Complicates updating, introducing possibility of inconsistency of assets value

▪ Null values

 Can use null values, but they are difficult to handle.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 5

Redundancy creates problems

▪ Anomalies (by Codd)

 Insertion anomaly: cannot store information about a branch if no loans exist

 Deletion anomaly: lose branch info when that last account for the branch is deleted

 Update anomaly: what happens when you modify asset for a branch in only a single record?

▪ The problems are caused by redundancy!

▪ Solution

decompose schema so that each information content is represented only once (later)

 information content: relationship between attributes

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 6

First Normal Form

▪ Domain is atomic if its elements are considered to be indivisible units

 Examples of non-atomic domains:

 set of names, composite attributes

 identification numbers like CS101 that can be broken up into parts

▪ A relational schema is in first normal form (1NF)

if the domains of all attributes are atomic

▪ Atomicity is actually a property of how the elements of the domain are used

 Student ID numbers: CS0012, EE1127, …

▪ Non-atomic attributes leads to

 encoding of information in the application program …

 … rather than in the database

 complication in storage and query processing

▪ We assume all relations are in first normal form

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 7

Relational Theory

Goal: Devise a theory for the following

▪ Decide whether a particular relation R is in “good” form.

▪ In the case that a relation R is not in “good” form,

decompose it into a set of relations {R1, R2, ..., Rn} such that

 each relation is in good form

 the decomposition is lossless (preserves the information in the original relation before decomposition)

▪ Our theory is based on:

 functional dependencies

 multivalued dependencies (not covered in this semester)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 8

Functional Dependencies

▪ Constraints on the set of legal relations.

▪ Require that the value for a certain set of attributes determines uniquely the value for another

set of attributes.

▪ A functional dependency is a generalization of the notion of a key.

▪ Example

 Which attribute’s values depend on other attributes?

Student=(ID, Name, Dept, Dept_office, College, Dean, Advisor, Adv_phone)

Supplies=(Supplier, S-contact, Part-ID, Part-Name, Size, Proj-ID, Location, Manager, P-contact, Quantit

y)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 9

Functional Dependencies (Cont.)

▪ Let R be a relation schema

  R and   R

▪ The functional dependency  →  holds on R if and only if

 for any legal relations r(R),

 whenever any two tuples t1 and t2 of r agree on the attributes ,

 they also agree on the attributes .

 That is,

t1[] = t2 []  t1[] = t2 []

▪ Example

 Consider r(A,B) with the following instance of r

 On this instance, A → B does NOT hold, but B → A does hold

1 4

1 5

3 7

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 10

Applications of FD

▪ K is a superkey for relation schema R if and only if K → R

▪ K is a candidate key for R if and only if

 K → R, and

 for no   K,  → R

▪ Functional dependencies allow us to express constraints that cannot be expressed using
superkeys.

Loan-info-schema = (customer-name, loan-number, branch-name, amount)

We expect the following functional dependencies to hold:

loan-number → amount

loan-number → branch-name

but would not expect the following to hold:

loan-number → customer-name

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 11

Applications of FD (Cont.)

▪ Specify constraints on the set of legal relations

 We say that F holds on R if

all legal relations on R satisfy the set of functional dependencies F

▪ Test relations to see if they are legal under a given set of FDs

 If a relation r is legal under a set F of functional dependencies,

we say that r satisfies F.

▪ Note:

A specific instance of a relation schema may satisfy a functional dependency even if the

functional dependency does not hold on all legal instances.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 12

What causes redundancy?

Lending-schema = (b-name, b-city, assets, c-name, loan#, amount)

F = { b-name → b-city assets ; loan# → amount b-name }, Key = {c-name, loan#}

▪ Redundancy:

 b-city, assets are repeated for each loan with the same branch

 amount, b-name are repeated for each loan

▪ Observations

 Same values repeated for attributes that are functionally dependent on non-key attributes!

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 13

Boyce-Codd Normal Form - informally

▪ A relation R is in “good” form IF attributes are only dependent on keys

 No non-key FDs!

 Solution: Break R into smaller relations that hold tightly related attributes!

▪ Example

Lending-schema = (b-name, b-city, assets, c-name, loan#, amount)

F = { b-name → b-city assets ; loan# → amount b-name }, Key = {c-name, loan#}

=> Decompose

Branch = (b-name, b-city, assets) { b-name → b-city assets }

Loan = (loan#, amount, b-name) { loan# → amount, b-name }

CustLoan = (c-name, loan#)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 14

Trivial FD

▪ A functional dependency is trivial if it is satisfied by all instances of a relation

 E.g.

 customer-name, loan-number → customer-name

 customer-name → customer-name

▪ Lemma:  →  is trivial if   

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 15

Closure of a Set of FDs

▪ Given a set F of FDs, there are other FDs that are logically implied by F

 E.g. If A → B and B → C, then we can infer that A → C

▪ Definition: The set of all functional dependencies logically implied by F is the closure of F

(denoted F+).

▪ We can find all of F+ by applying Armstrong’s Axioms:

 if   , then  →  (reflexivity)

 if  → , then   →   (augmentation)

 if  → , and  → , then  →  (transitivity)

▪ These rules are

 sound (generate only functional dependencies that actually hold)

and

 complete (generate all functional dependencies that hold).

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 16

Example

▪ R = (A, B, C, G, H, I) F= { A → B
A → C
CG → H
CG → I
B → H }

▪ some members of F+

 A → H

 by transitivity from A → B and B → H

 AG → I

 by augmenting A → C with G, to get AG → CG
and then transitivity with CG → I

 CG → HI

 from CG → H and CG → I : “union rule”

 can be inferred from definition of functional dependencies, or

 Augmentation of CG → I to infer CG → CGI, augmentation of
CG → H to infer CGI → HI, and then transitivity

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 17

Boyce-Codd Normal Form – formally

▪ We want a way to decide whether a particular relation R is in “good” form.

▪ Definition: A relation schema R is in BCNF (with respect to a set F of FDs) if for each FD

 →  in F+ (  R and   R), at least one of the following holds:

  →  is trivial (i.e.,   )

  is a superkey for R

▪ Example

R = (A, B, C), F = {A → B ; B → C}, Key = {A}

 R is not in BCNF

 Decompose into R1 = (A, B), R2 = (B, C)

 R1 and R2 are in BCNF

▪ Is the decomposed set of schemas equivalent to the original schema?

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 18

Decomposition

▪ Decompose schema so that each information content is represented only once

▪ Definition: Let R be a relation scheme

{R1, ..., Rn} is a decomposition of R

if R = R1  ...  Rn (i.e., all of R’s attributes are represented)

▪ We will deal mostly with binary decomposition:

 R into {R1, R2} where R = R1  R2

student(ID, name, dept, dept_chair, dept_phone, year)

=> student’(ID, name, year, dept)

department(dept, chair, phone)

Lending = (b_name, asset, b_city, loan#, c_name, amount)

=> Branch = (b_name, asset, b_city)

Loan = (loan#, c_name, amount)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 19

Lossy Decomposition

▪ Careless decomposition leads to loss of information: Lossy decomposition

▪ Decompose schema so that each information content is represented only once

Lending = (b_name, asset, b_city, loan#, c_name, amount)

=> Branch = (b_name, asset, b_city)

Loan = (loan#, c_name, amount)

- relationship between loan and branch is lost

- loss of information

=> Branch = (b_name, asset, b_city)

Loan = (loan#, c_name, amount, b_city)

- still, we have lost the relationship

- loss of information

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 20

Lossy Decomposition (cont.)

▪ Decomposition of R = (A, B) into

R1 = (A) and R2 = (B)

▪ Can we recover the original information content?

A B







1

2

1

A





B

1

2

A(r) B(r)

A (r) ⋈ B (r)
A B









1

2

1

2

Lossy!

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 21

Lossless-join Decomposition

▪ For r(R) and decomposition {R1, R2}, it is always the case that

r ⊆ R1 (r) ⋈ R2 (r)

▪ Definition: Decomposition {R1, R2} is a lossless-join decomposition of R if

r = R1 (r) ⋈ R2 (r)

 The information content of the original relation r is always the basis

r

r1
r2

a
a
b
b

1
1
2
3

c
d
e
f

a
a
b
b

c
d
e
f

r1
r2

a
b
b

1
2
3

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 22

▪ Lemma: {R1, R2} is a lossless join decomposition if

R1  R2 → R1, or R1  R2 → R2

 i.e., if one of the two sub-schemas hold the key of the other sub-schema

Lossless-join Decomposition

r

r1
r2

a
a
b
b

1
1
2
3

c
d
e
f

a
a
b
b

c
d
e
f

r1
r2

a
b
b

1
2
3

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 23

BCNF Example

▪ R = (bname, bcity, assets, cname, loan#, amount)

F = { bname → assets bcity ; loan# → amount bname }

Key = {loan#, cname}

Decomposition

R1 = (bname, bcity, assets)

R2 = (bname, cname, loan#, amount), not in BCNF

R3 = (bname, loan#, amount)

R4 = (cname, loan#)

Final decomposition result: { R1, R3, R4 }

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 24

Dependency Preservation

Example

student(name, dept, college) name → dept, college

dept→ college

▪ Decomposition 1

student1(name, dept) name → dept

department(dept, college) dept → college

▪ Decomposition 2

student1(name, dept) name → dept

student2(name, college) name → college

 is a lossless decomposition

 but in order to test dept→ college, a join is required

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 25

Dependency Preservation (cont.)

▪ Definition

Let F: set of FD on R. {R1, ..., Rn}: decomposition of R.

The restriction of F to Ri , denoted Fi , is the set of all FDs in F+ that include only attributes of Ri

▪ Definition

Let F' = F1  …  Fn.

The decomposition is dependency-preserving if F+ = F'+

▪ Motivation:

We wish to guarantee F by locally enforcing each restriction (Ri) on the respective

decomposed relation.

 Accessing multiple tables can be expensive

 SQL does not provide a direct way of specifying functional dependencies other than superkeys

 (Assertions can be ad hoc and expensive)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 26

Example

▪ R = (A, B, C)

F = { A → B, B → C }

▪ R1 = (A, B), R2 = (B, C)

 Lossless-join decomposition: R1  R2 = { B } and B → BC

 Dependency preserving

▪ R1 = (A, B), R2 = (A, C)

 Lossless-join decomposition: R1  R2 = { A } and A → AB

 Not dependency preserving

(cannot check B → C without computing R1 ⋈ R2)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 27

BCNF and Dependency Preservation

▪ R = (Street, City, Zip)

F = { Street City → Zip; Zip → City }

Two candidate keys: Street City and Street Zip

 R is not in BCNF

 Any decomposition of R will fail to preserve

Street City → Zip

▪ It is not always possible to get a BCNF decomposition that is dependency preserving

▪ There are some situations where

 BCNF is not dependency preserving, and

 efficient checking for FD violation on updates is important

=> solution: define a weaker normal form

St

s1

s2

s3

null

Zp

z1

z1

z2

z3

C

c1

c1

c1

c2

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 28

BCNF and Dependency Preservation (cont.)

▪ BCNF decomposition has

R1(Street, Zip)

R2(Zip, City)

▪ R1, R2 are in BCNF

 but not dependency-preserving

=> Testing for Street City → Zip requires a join

St

s1

s2

s3

Zp

z1

z1

z2

Zp

z1

z2

z3

C

c1

c1

c2

St

s1

s2

s3

null

Zp

z1

z1

z2

z3

C

c1

c1

c1

c2

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 29

Third Normal Form

▪ Third Normal Form

 Allows some redundancy (with resultant problems)

 But FDs can be checked on individual relations without a join

 There is always a lossless-join, dependency-preserving decomposition into 3NF

▪ A relation schema R is in third normal form (3NF) if

for all  →  in F+ at least one of the following holds:

  →  is trivial (i.e.,   )

  is a superkey for R

 Each attribute A in  –  is contained in a candidate key for R.

(NOTE: each attribute may be in a different candidate key)

▪ If a relation is in BCNF it is in 3NF

 since in BCNF one of the first two conditions above must hold

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 30

Example

R = (Street, City, Zip)

F = { Street City → Zip; Zip → City }

▪ Two candidate keys: Street City and Street Zip

▪ R is in 3NF

Street City → Zip : Street City is a superkey

Zip → City : City is contained in a candidate key

▪ But not in BCNF (nontrivial & zip is not key)

▪ There is some redundancy in this schema

 repetition of information (e.g., the relationship z1, c1)

 need to use null values (e.g., to represent the relationship z3, c2 where there is no corresponding

value for St)

St

s1

s2

s3

null

Zp

z1

z1

z2

z3

C

c1

c1

c1

c2

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 31

Comparison of BCNF and 3NF

▪ It is always possible to decompose a relation into relations in 3NF and

 the decomposition is lossless

 the dependencies are preserved

▪ It is always possible to decompose a relation into relations in BCNF and

 the decomposition is lossless

 it may not be possible to preserve dependencies.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 32

Design Goals

▪ When we decompose a relation schema R with a set of functional dependencies F into R1,
R2,.., Rn we want

1. Lossless decomposition

2. No redundancy

3. Dependency preservation

▪ First, try to achieve

 BCNF

 Lossless join

 Dependency preservation

▪ If we cannot achieve this, we accept one of

 Lack of dependency preservation

 Redundancy due to use of 3NF

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 33

Algorithms

▪ Testing for BCNF

▪ BCNF Decomposition

▪ Testing for 3NF

▪ 3NF Decomposition

▪ Closure of FDs

▪ Closure of attributes

▪ Cover

▪ Canonical cover

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 34

Closure of Attribute Sets

▪ Definition: Given a set of attributes , the closure of  under F (denoted by +) is

the set of attributes that are functionally determined by  under F:

 →  is in F+    +

▪ Algorithm to compute +

result := ;

while (changes to result) do

for each  →  in F do

begin

if   result then result := result  
end

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 35

Example

▪ R = (A, B, C, G, H, I)

▪ F = { A → B; A → C; CG → H; CG → I; B → H }

▪ (AG)+

1. result = AG

2. result = ABCG (A → C and A → B)

3. result = ABCGH (CG → H and CG  AGBC)

4. result = ABCGHI (CG → I and CG  AGBCH)

▪ Is AG a candidate key?
 Is AG a super key?

 Does AG → R?

 Is any subset of AG a superkey?
 Does A+ → R?

 Does G+ → R?

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 36

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

▪ Testing for superkey: “is  a superkey?”

 Compute +, and check if + contains all attributes of R.

▪ Testing functional dependencies: “does  →  hold?”

 Or, in other words, is  →  in F+

 Just check if   +.

 Is a very useful simple test

▪ Computing the closure of F: F+

 For each   R, we find the closure +, and

 for each S  +, we output a functional dependency  → S.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 37

Testing for BCNF

▪ Check if  → cause a violation of BCNF

1. compute + (the attribute closure of ), and

2. verify that it includes all attributes of R (i.e., it is a superkey of R)

▪ Check if R is in BCNF (w.r.t. F)

Check only the dependencies in F (rather than F+) for violation

 It can be shown that if none of the dependencies in F causes a violation of BCNF, then none of the

dependencies in F+ will cause a violation of BCNF either

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 38

Testing for BCNF (cont.)

▪ However, using only F is incorrect

when testing a relation in a decomposition of R

▪ Example

Consider R (A, B, C, D) with F = { A→B, B→C }

 Decompose into R1(A, B) and R2(A, C, D)

 Neither of the dependencies in F contain only attributes from (A, C, D) so we might be

mislead into thinking R2 satisfies BCNF.

 In fact, dependency A → C in F+ shows R2 is not in BCNF.

Chap 8 - 39

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee

result := {R}; done := false

compute F+

while (not done) do

if (there is a schema Ri in result that is not in

BCNF)

then begin

let  →  (   = )

be a nontrivial FD

that holds on Ri , and

→Ri is not in F+

result := (result – Ri) 

(Ri – )  (, );

end

else done := true;

* Each Ri in result is in BCNF, and decomposition

is lossless-join.

R = (bname, bcity, assets, cname, loan#, amount)

F = { bname→assets bcity;

loan# → amount bname }

Key={loan#, cname}

Decomposition

R1 = (bname, bcity, assets),

R2 = (bname, cname, loan#, amount)

R3 = (bname, loan#, amount)

R4 = (cname, loan#)

Final decomposition result:

R1, R3, R4

BCNF Decomposition Algorithm

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 40

Overall Database Design Process

▪ We have assumed schema R is given

R could have been

▪ a single relation containing all attributes that are of interest

 called universal relation

 Normalization breaks R into smaller relations.

▪ generated when converting E-R diagram to a set of tables.

▪ the result of some ad hoc design of relations, which we then test/convert to normal form.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 41

Denormalization for Performance

▪ May want to use non-normalized schema for performance

 E.g. displaying customer-name along with account-number and balance requires join of account

with depositor

▪ Alternative 1: Use denormalized relation containing attributes of account as well as

depositor with all above attributes

 faster lookup

 extra space and extra execution time for updates

 extra coding work for programmer and possibility of error in extra code

▪ Alternative 2: use a materialized view defined as

account ⋈ depositor

 benefits and drawbacks same as above

 except no extra coding work for programmer and avoids possible errors

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 42

Other Design Issues

▪ Some aspects of database design are not caught by normalization

Instead of earnings(company-id, year, amount), use

▪ earnings-2000, earnings-2001, earnings-2002, …

 all on the schema (company-id, earnings).

 above are in BCNF

 but make querying across years difficult and

 needs new table each year

▪ company-year(comp-id, earnings2000, earnings2001, earnings2002)

 Also in BCNF

 makes querying across years difficult and

 requires new attribute each year.

 Is an example of a crosstab, where values for one attribute become column names => used in
spreadsheets and data analysis tools

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 43

Testing for 3NF

▪ Need to check only FDs in F (not F+)

▪ For each dependency  → ,

 Check if  is a superkey (attribute closure check)

▪ If  is not a superkey

 we have to verify if each attribute in  is contained in a candidate key

 this test is rather more expensive, since it involves finding candidate keys

▪ Testing for 3NF has been shown to be NP-hard

▪ Interestingly, decomposition into third normal form can be done in polynomial time

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 44

Cover

▪ Sets of functional dependencies may have redundant dependencies that can be inferred from
the others

 A → C is redundant in: { A → B, B → C, A → C }

 Parts of a functional dependency may be redundant

 E.g. on RHS: { A → B, B → C, A → CD } can be simplified to
{ A → B, B → C, A → D }

 E.g. on LHS: { A → B, B → C, AC → D } can be simplified to
{ A → B, B → C, A → D }

▪ A cover of F is any F’ such that F’+ = F+

▪ A FD g  F is redundant if (F – {g})+ = F+ or g  (F – {g})+

▪ F’ is a nonredundant (minimal) cover of F if
 F’+ = F+ and
 F’ contains no redundant FD

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 45

Extraneous Attributes

▪ Let  →  in F.

 A   is extraneous if F  (F – {→})  { ( – A)→ }

 A   is extraneous if F  (F – {→})  { →( – A) }

▪ Note: implication in the opposite direction is trivial, since a “stronger” functional dependency
always implies a weaker one

▪ Example

 Given F = {A → C, AB → C }

 B is extraneous in AB → C because

 A → C logically implies AB → C

▪ Example

 Given F = {A → C, AB → CD}

 C is extraneous in AB → CD since

 A → C can be inferred even after deleting C

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 46

Testing if an Attribute is Extraneous

 →   F

▪ To test if attribute A   is extraneous in 

1. compute ({} – A)+ using the dependencies in F

2. A is extraneous if ({} – A)+ contains 

▪ To test if attribute B   is extraneous in 

1. compute + using only the dependencies in

F’ = (F – { → })  {  →( – B) },

2. B is extraneous if + contains B,

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 8 - 47

Canonical Cover

▪ Definition:

A canonical cover for F is a set of dependencies Fc such that

 Fc
+ = F+

 No FD in Fc contains an extraneous attribute

 Each left side of a FD in Fc is unique

▪ Intuitively, Fc is

 a “minimal” set equivalent to F

 with no redundant FD

 with no redundant parts of dependencies

Chap 8 - 48

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee

repeat

replace any 1 → 1 and 1 → 1

with 1 → 1 2 (union rule)

Find  →  with extraneous attribute either in 
or  and delete the extraneous attribute from 
→ 

until F does not change

▪ Union rule may become applicable after
some extraneous attributes have been
deleted, so it has to be re-applied

▪ O(n2)

R = (A, B, C) F = { A → BC

B → C

A → B

AB → C }

▪ Combine A → BC and A → B into A → BC

F’= { A → BC, B → C, AB → C }

▪ A is extraneous in AB → C

 B → C logically implies AB → C.

F’’= { A → BC, B → C }

▪ C is extraneous in A → BC

 A → BC is logically implied by

A → B and B → C.

▪ The canonical cover:

Fc= { A → B, B → C }

Algorithm for Canonical Cover

Chap 8 - 49

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee

Fc (canonical cover for F)

i := 0

for each FD  →  in Fc do

if no Rj, 1  j  i contains  

then { i := i + 1

Ri :=   }

if no Rj, 1  j  i contains a candidate key for

R then

{ i := i + 1;

Ri := any candidate key

for R }

return (R1, R2, ..., Ri)

Banker = (branch, cname, banker, office#)

F={ banker → branch office#

cname branch → banker }

Key= {cname, branch}

Follow the algorithm

B1 = (banker, branch, office#)

B2 = (cname, branch, banker)

Since B2 contains a candidate key, we are

done.

3NF Decomposition Algorithm

END OF CHAPTER 8

