Intro to DB

CHAPTER 8
RELATIONAL DB DESIGN

Chapter 8. Relational Database Design

= Features of Good Relational Design

= Atomic Domains and First Normal Form

= Decomposition Using Functional Dependencies
= Functional Dependency Theory

= Algorithms

= Decomposition Using Multivalued Dependencies
= More Normal Form

= Database-Design Process

= Modeling Temporal Data

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 2

Pitfalls of Relational Database Design

= Relational database design

= R=(ABCDE) <--m-- single relation schema
= DB;={Rq, , R, } <---- DB schema (set of relation schemas)

= Design Goals:

= Ensure that relationships among attributes are represented (information content)
= Avoid redundant data
= Facilitate enforcement of database integrity constraints

= A Dbad design may lead to

= |nability to represent certain information
= Repetition of Information
= Loss of information

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 3

Example

Original Slides:
© Silberschatz, Korth and Sudarshan

Lending-schema = (branch-name, branch-city, assets, customer-name, loan-

number, amount)

= Redundancy:

customer- | loan-
branch-name | branch-city assets name number | amount
Downtown | Brooklyn 9000000 | Jones L-17 1000
Redwood Palo Alto 2100000 | Smith L-23 2000
Perryridge Horseneck | 1700000 | Hayes L-15 1500
Downtown | Brooklyn 9000000 | Jackson L-14 1500

m]

= \Wastes space

= Complicates updating, introducing possibility of inconsistency of assets value

= Null values

= Can use null values, but they are difficult to handle.

Intro to DB

Copyright © by S.-g. Lee

Chap8-4

Redundancy creates problems

= Anomalies (by Codd)
= Insertion anomaly: cannot store information about a branch if no loans exist
= Deletion anomaly: lose branch info when that last account for the branch is deleted
= Update anomaly: what happens when you modify asset for a branch in only a single record?

= Solution

decompose schema so that each information content is represented only once (later)
= information content: relationship between attributes

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8-5

First Normal Form

Domain is atomic if its elements are considered to be indivisible units

= Examples of non-atomic domains:
= set of names, composite attributes
identification numbers like CS101 that can be broken up into parts

= Arelational schema is in first normal form (1NF)

= Atomicity is actually a property of how the elements of the domain are used
o Student ID numbers: CS0012, EE1127, ...

= Non-atomic attributes leads to

= encoding of information in the application program ...
... rather than in the database

= complication in storage and query processing
= We assume all relations are in first normal form

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 -6

Relational Theory

Goal: Devise a theory for the following
= Decide whether a particular relation R is in “good” form.
= In the case that a relation R is not in “good” form,

= each relation is in good form

= the decomposition is lossless (preserves the information in the original relation before decomposition)
= Qur theory is based on:

= functional dependencies

= multivalued dependencies (not covered in this semester)

Original Slides:

Intro to DB
© Silberschatz, Korth and Sudarshan

Copyright © by S.-g. Lee Chap8-7

Functional Dependencies

= Constraints on the set of legal relations.

= Require that the value for a certain set of attributes determines uniquely the value for another
set of attributes.

= Example
= Which attribute’s values depend on other attributes?

Student=(ID, Name, Dept, Dept_office, College, Dean, Advisor, Adv_phone)

Supplies=(Supplier, S-contact, Part-ID, Part-Name, Size, Proj-ID, Location, Manager, P-contact, Quantit
y)

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 8

Functional Dependencies (Cont.)

= Let R be arelation schema
acR and fcR

= The functional dependency o — £ holds on R if and only if
for any legal relations r(R),

whenever any two tuples t; and t, of r agree on the attributes «,
they also agree on the attributes .

a

a

a

= That s,
blal =t o] = y[B] =, [B]
= Example
= Consider r(A,B) with the following instance of r 1 4
1 5
3 7
Original Slides: Intro to DB

© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8-9

Applications of FD

K is a superkey for relation schema R if and only if K > R
K is a candidate key for R if and only if

= K-> R, and
= fornoacK,a—>R

Functional dependencies allow us t
superkeys.

Loan-info-schema = (customer-name, loan-number, branch-name, amount)

ed using

We expect the following functional dependencies to hold:

loan-number —» amount
loan-number — branch-name

but would not expect the following to hold:

Intro to DB
Chap 8- 10

Original Slides:
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee

Applications of FD (Cont.)

= Specify constraints on the set of legal relations
= We say that F holds on R if
all legal relations on R satisfy the set of functional dependencies F

= Test relations to see if they are legal under a given set of FDs
= |If a relation r is legal under a set F of functional dependencies,
we say that r satisfies F.

= Note:

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee

Chap8-11

What causes redundancy?

Lending-schema = (b-name, b-city, assets, c-name, loan#, amount)

customer- | loan-
branch-name | branch-city assets name number | amount
Downtown | Brooklyn 9000000 | Jones L-17 1000
Redwood Palo Alto 2100000 | Smith L-23 2000
Perryridge Horseneck | 1700000 | Hayes L-15 1500
Downtown | Brooklyn 9000000 | Jackson L-14 1500

F = { b-name — b-city assets ; loan# — amount b-name }, Key = {c-name, loan#}

= Redun
= b-city
o amount, b-name are repeated Tor each loan

= Observations
= Same values repeated for attributes that are functionally dependent on non-key attributes!

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 12

Boyce-Codd Normal Form - informally

= Arelation R is in “good” form IF attributes are only dependent on keys
= No non-key FDs!
= Solution: Break R into smaller relations that hold tightly related attributes!

= Example

Lending-schema = (b-name, b-city, assets, c-name, loan#, amount)
F = { b-name — b-city assets ; loan# — amount b-name }, Key = {c-name, loan#}

=> Decompose
Branch = (b-name, b-city, assets) { b-name — b-city assets }
Loan = (loan#, amount, b-name) { loan# — amount, b-name }
CustLoan = (c-name, loan#)

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee

Chap 8-13

Trivial FD

= A functional dependency is trivial if it is satisfied by all instances of a relation
= E.g.
customer-name, loan-number — customer-name
= customer-name — customer-name

= Lemma:

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8- 14

Closure of a Set of FDs

= Given a set F of FDs, there are other FDs that are logically implied by F
= E.g. If A>Band B— C, thenwe can inferthat A > C

= Definition: The set of all functional dependencies logically implied by F is the closure of F

(denoted F*).

= We can find all of F* by applying Armstrong’s Axioms:

o ffca,thena — (reflexivity)
o fa— g thenyoa—> yf (augmentation)
o fa— g and f— vy, thena — vy (transitivity)
= These rules are
= sound
and
o complete
Original Slides: Intro to DB

© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 15

Example

= R=(A,B,C,G H,I F=

A—C
CG—->H
CG -1
Bo>H }

= some members of F*

= A—>H
by transitivity from A— Band B - H

o AG > |
o CG — HI
« fromCG > Hand CG — | : “union rule”

can be inferred from definition of functional dependencies, or

Augmentation of CG — | to infer CG — CGI, augmentation of
CG — H to infer CGl — HI, and then transitivity

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee

Chap 8- 16

Boyce-Codd Normal Form —formally

We want a way to decide whether a particular relation R is in “good” form.

Definition: A relation schema R is in BCNF (with respect to a set F of FDs) if for each FD
o — pinF* (o cRand fc R), at least one of the following holds:

O

[m}

Example
R=(AB,C), F={A—>B; B—>C}, Key={A}
= Ris notin BCNF
= Decompose into R, =(A, B), R,=(B, C)
- R, and R, are in BCNF

Is the decomposed set of schemas equivalent to the original schema?

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 17

Decomposition

Original Slides:
© Silberschatz,

Decompose schema so that each information content is represented only once

Definition: Let R be a relation scheme
{R4, ..., R} is a decomposition of R

f R=R,uU..UR,

We will deal mostly with binary decomposition:
= R into {R;, R,} where R=R;UR,

student(ID, name, dept, dept_chair, dept_phone, year)
=> student’(ID, name, year, dept)
department(dept, chair, phone)

Lending = (b_name, asset, b_city, loan#, c_name, amount)
=> Branch = (b_name, asset, b_city)
Loan = (loan#, c_name, amount)

Intro to DB
Korth and Sudarshan Copyright © by S.-g. Lee

Chap 8- 18

Lossy Decomposition

= Careless decomposition leads to loss of information: Lossy decomposition
= Decompose schema so that each information content is represented only once

Lending = (b_name, asset, b_city, loan#, c_name, amount)

=> Branch = (b_name, asset, b_city)
Loan = (loan#, ¢_name, amount)

=> Branch = (b_name, asset, b_city)
Loan = (loan#, c_name, amount, b_city)

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 19

Lossy Decomposition (cont.)

= Decomposition of R = (A, B) into
R, = (A) and R, = (B)

A | B A B
all a 1
a| 2 p 2
pl1

>
o

[1a (r) > T15 (1)

Lossy!

™™™ R R
NEF NP

Original Slides:

Intro to DB
© Silberschatz, Korth and Sudarshan

Copyright © by S.-g. Lee

Chap 8 - 20

Lossless-join Decomposition

= For r(R) and decomposition {R;, R,}, it is always the case that

= Definition: Decomposition {R;, R,} is a lossless-join decomposition of R if
r=1Ilgy (r) > 1lgo (1)

= The information content of the original relation r is always the basis

r P r Iy
c | a 1 cC a
d|la]1l d al| [X g %
rle |b 2 e b b 3
flb 3 f b
Original Slides: Intro to DB

© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 -21

Lossless-join Decomposition

= Lemma: {R,, R,}Iis alossless join decomposition if

= |.e., if one of the two sub-schemas hold the key of the other sub-schema

Iy > r P!
cC | a 1 C a o 5 1
d | a 1 d aj}— b 5
rle|b | 2 e b- ::::ZIZ::: b 3
f b | 3 f Db

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee

Chap 8 - 22

BCNF Example

= R = (bname, bcity, assets, cname, loan#, amount)
F = { bname — assets bcity ; loan# — amount bname }
Key = {loan#, cname}

Decomposition
R, = (bname, bcity, assets)

Final decomposition result: {R;, R3, R, }

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 23

Dependency Preservation

Example
student(name, dept, college) = name — dept, college
dept— college
= Decomposition 1
studentl(name, dept) name — dept
department(dept, college) dept — college

= Decomposition 2
studentl(name, dept) name — dept
student2(name, college) name — college

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 24

Dependency Preservation (cont.)

= Definition
Let F:setof FD on R. {R4, ..., R,}: decomposition of R.
The restriction of F to R;, denoted F;, is the set of all FDs in F* that include only attributes of R,

= Definition

LetF=F,u... UF,.
The decomposition is dependency-preserving if F*=F*

= Motivation:

= Accessing multiple tables can be expensive
= SQL does not provide a direct way of specifying functional dependencies other than superkeys
= (Assertions can be ad hoc and expensive)

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 25

Example

= R=(A, B, C)
F={A>B, B>C}

* R;=(A,B), R,=(B,C)
= Lossless-join decomposition: R, "R, ={B} and B —» BC

= Dependency preserving

* R,=(AB), R,=(A C)

= Lossless-join decomposition: R, "R, ={A} and A— AB

u]

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 26

BCNF and Dependency Preservation

= R =(Street, City, Zip)
F ={ Street City - Zip; Zip — City }
Two candidate keys: Street City and Street Zip
= Ris notin BCNF

= Any decomposition of R will fail to preserve
Street City — Zip

St (Zp)| C
51123 |C
S, | 41| Cs
S3 | Z2| G
null | Z3 | C,

= There are some situations where

= BCNF is not dependency preserving, and
= efficient checking for FD violation on updates is important

=> solution: define a weaker normal form

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee

Chap 8 - 27

BCNF and Dependency Preservation (cont.)

= BCNF decornposmon has St [Zp| C
R,(Street, Zip)
R,(Zip, City) Slne
\4IP, LIty S, | 41| G
| 53 22 Cl
= Ry, R,arein BCNF
null | Z3 | C;

= but not dependency-preserving
=> Testing for Street City — Zip requires a join

St | Zp Zp| C
S, Z, Z, | G
S, | 7 Z, | Cq
S3 | % Z3 | G

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 28

Third Normal Form

= Third Normal Form
= Allows some redundancy (with resultant problems)
= But FDs can be checked on individual relations without a join
= There is always a lossless-join, dependency-preserving decomposition into 3NF

= Arelation schema R is in third normal form (3NF) if

foralloo —» £ In F* at least one of the following holds:
= o — fistrivial (i.e., f € a)
= o IS a superkey for R

= Each attribute A in f— o is contained in a candidate key for R.
(NOTE: each attribute may be in a different candidate key)

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee

Chap 8 - 29

Example

St (Zp)| C
R = (Street, City, Zip) s
F ={ Street City — Zip; Zip — City }
S, | 41| Cs
. . . . S3 Z; | €
= Two candidate keys: Street City and Street Zip
null 23 C2
= Risin 3NF
Street City — Zip : Street City is a superkey
Zip — City : City is contained in a candidate key

= But not in BCNF (nontrivial & zip is not key)

= There is some redundancy in this schema
= repetition of information (e.g., the relationship z,, c,)

= need to use null values (e.g., to represent the relationship z;, ¢, where there is no corresponding
value for St)

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 30

Comparison of BCNF and 3NF

= [t is always possible to decompose a relation into relations in 3NF and
= the decomposition is lossless

= the dependencies are preserved

= [t is always possible to decompose a relation into relations in BCNF and
= the decomposition is lossless

[m}

Original Slides:

Intro to DB
© Silberschatz, Korth and Sudarshan

Copyright © by S.-g. Lee Chap 8-31

Design Goals

= When we decompose a relation schema R with a set of functional dependencies F into Ry,
R,,.., R, we want
1. Lossless decomposition
2. No redundancy
3. Dependency preservation

= First, try to achieve
= BCNF
= Lossless join
= Dependency preservation

= |If we cannot achieve this, we accept one of

u]

u]

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 32

Algorithms

Testing for BCNF
BCNF Decomposition

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 33

Closure of Attribute Sets

= Definition: Given a set of attributes «, the closure of o under F (denoted by o*) Is
the set of attributes that are functionally determined by « under F:

= Algorithm to compute o*

result .= ¢;
while (changes to result) do
for each f— yin Fdo

begin
If < resultthen result:=result v y
end
Original Slides: Intro to DB

© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 34

Example

- R=(A,B,C,G,H,I
= F={A—>B; A—>C; CG—-oH, CG—->Il;, B—H}

= (AG)

1. result =

2. result =

3. result =

4. result =

= |s AG a candidate key?
= |Is AG a super key?
Does AG —» R?
= |s any subset of AG a superkey?
Does A* —» R?
Does G* —» R?

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 35

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:
= Testing for superkey: “is «a a superkey?”

u]

= Testing functional dependencies: “does a — £ hold?”
= Qr, in other words, is ¢ —> gin F*
= Just check if fc o'.
= |s a very useful simple test

= Computing the closure of F: F*
= For each yc R, we find the closure »*, and

= for each S c y*, we output a functional dependency y— S.

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee

Chap 8 - 36

Testing for BCNF

= Checkif a —>pf cause aviolation of BCNF
1. compute o' (the attribute closure of «), and
2. verify that it includes all attributes of R (i.e., it is a superkey of R)

= Check if Ris in BCNF (w.r.t. F)

= |t can be shown that if none of the dependencies in F causes a violation of BCNF, then none of the
dependencies in F* will cause a violation of BCNF either

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 37

Testing for BCNF (cont.)

= However, using only F is incorrect
when testing a relation in a decomposition of R

= Example

ConsiderR (A, B, C,D) with F={A—->B, B—>C}
= Decompose into R;(A, B) and R,(A, C, D)

= Neither of the dependencies in F contain only attributes from (A, C, D) so we might be
mislead into thinking R, satisfies BCNF.

= |n fact, dependency A — C in F* shows R, is not in BCNF.

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 38

BCNF Decomposition Algorithm

R = (bname, bcity, assets, cname, loan#, amount)

result .= {R}; done :=false
F = { bname—assets bcity;

compute F*

_ loan# — amount bname }
while (not done) do _

Key={loan#, cname}

If (there is a schema R; in result that is not in

BCNF) | Decomposition

then begin R, = (bname, bcity, assets),

eta —f (anf =9) R, = (bname, cname, loan#, amount)
be a nontrivial FD 3
R; = (bname, loan#, amount)

that holds on R;, and

a—R;is notin F* R, = (cname, loan#)

result := (result — R;) U _ Final decomposition result:
Ri-P v (o, B); R, R., R

end b

else done :=true;

* Each R; in result is in BCNF, and decomposition
is lossless-join.

Original Slides: Intro to DB

© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 39

Overall Database Design Process

= We have assumed schema R is given

R could have been

= a single relation containing all attributes that are of interest
o called universal relation
= Normalization breaks R into smaller relations.

= the result of some ad hoc design of relations, which we then test/convert to normal form.

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 40

Denormalization for Performance

= May want to use non-normalized schema for performance

= E.g. displaying customer-name along with account-number and balance requires join of account
with depositor

= Alternative 1: Use denormalized relation containing attributes of account as well as
depositor with all above attributes

= faster lookup
o extra space and extra execution time for updates
= extra coding work for programmer and possibility of error in extra code

= Alternative 2: use a materialized view defined as
account > depositor

o pbenefits and drawbacks same as above

u]

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 41

Other Design Issues

= Some aspects of database design are not caught by normalization

Instead of earnings(company-id, year, amount), use

= earnings-2000, earnings-2001, earnings-2002, ...
= all on the schema (company-id, earnings).
= above are in BCNF
= but make querying across years difficult and
= needs new table each year

= company-year(comp-id, earnings2000, earnings2001, earnings2002)
= Also in BCNF
= makes querying across years difficult and
= requires new attribute each year.

= |s an example of a crosstab, where values for one attribute become column names => used in
spreadsheets and data analysis tools

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 42

= Need to check only FDs in F (not F*)

= For each dependency a — S,
= Check if ais a superkey (attribute closure check)

= If ais not a superkey
= we have to verify if each attribute in fis contained in a candidate key
= this test is rather more expensive, since it involves finding candidate keys

= Testing for

= Interestingly, decomposition into third normal form can be done in polynomial time

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 43

= Sets of functional dependencies may have redundant dependencies that can be inferred from
the others

= A— Cisredundantin. {A—>B, B—>C, A—>C}

= Parts of a functional dependency may be redundant

- E.g.onRHS: {A—>B, B—>C, A— CD} can be simplified to
{A—>B, B>C, A->D}

- E.g.onLHS: {A—>B, B—>C, AC—> D} can be simplified to
{A—>B, B>C, A->D}

= AFDg e Fisredundant if (F—{g})*=F* or g e (F-{g})*

= F’ is a nonredundant (minimal) cover of F if
= F*=F*and
= F’contains no redundant FD

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 44

= Leta— pinF.
= Ae aisextraneous if F = (F—{a—f}) U {(a—A)—/p }
= A e fisextraneous if F < (F—-{a—f}) v { a—(F—-A) }

= Note: implication in the opposite direction is trivial, since a “stronger” functional dependency
always implies a weaker one

= Example
= GivenF={A—>C,AB—>C}
o B is extraneous in AB — C because

= Example
= Given F={A > C, AB — CD}
o C is extraneous in AB — CD since

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 45

a—>pf € F
= To test if attribute A € «is extraneous in «

1. compute ({a} — A)* using the dependencies in F
2. Alis extraneous if ({a} — A)* contains

= Totestif attribute B € S is extraneous in S

1. compute o using only the dependencies in

2. B is extraneous if " contains B,

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee

Chap 8 - 46

Canonical Cover

= Definition:
A canonical cover for F is a set of dependencies F_ such that
- FC+ = F+
= No FD in F, contains an extraneous attribute
= Each left side of a FD in F, is unique

= Intuitively, F_is
= a “minimal” set equivalent to F

u]

u]

Original Slides: Intro to DB
© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 47

repeat
replace any o —» £, and oy = f;
with o — B, £, (union rule)

Find a — S with extraneous attribute either in «
or S and delete the extraneous attribute from «

- f

until F does not change

= Union rule may become applicable after
some extraneous attributes have been
deleted, so it has to be re-applied

= O(n?)

Original Slides:

R=(A B, QC) F={A—> BC
B—->C
A—>B
AB > C}

= Combhine A—->BCand A— Binto A— BC

= Ais extraneous in AB —» C
= B — C logically implies AB — C.

= Cis extraneousin A - BC
= A — BC s logically implied by
A—-> Band B — C.

= The canonical cover:

Intro to DB

© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee

Chap 8 - 48

F. (canonical cover for F) Banker = (branch, cname, banker, office#)

1:=0 F={ banker — branch office#
foreach FD o — ginF_do cname branch — banker }
IfnoR;, 1<) <icontains o g Key= {cname, branch}
then{i:=1 +1
R ‘=ap} Follow the algorithm
If no R;, 1 <J <icontains a candidate key for Bl =
R then
o B2 =
{1:=1+1,;
R. := any candidate key Since B2 contains a candidate key, we are
for R } done.

return (R, R,, ..., R)

Original Slides: Intro to DB

© Silberschatz, Korth and Sudarshan Copyright © by S.-g. Lee Chap 8 - 49

END OF CHAPTER 8

