Chapter 4 # **Expression of Genetic Information** ## **Genetic Code** ■ Information in DNA → amino acid sequence in protein #### **mRNA** #### 5' GCA GCA CUA GGA GAG AAG 3' Codon: triplet of RNA bases 20 amino acids in nature | Codon (nt) | Amino acid | |------------|------------| | 1 | 4 | | 2 | 16 | | 3 | 64 | ## **Genetic Code** ## Genome #### Gene The complete stretch of DNA needed to determine the amino acid sequence of a protein #### Genome - The complete set of genetic material in an organism - Human genome project - 1990-2003 - U.S. department of energy and the National Institute of Health - 3.2 x 10⁹ bp, 19,000~20,000 genes - 98% is noncoding DNA ## **Protein Synthesis** - Transcription - From DNA to mRNA (messenger RNA) - Translation - From mRNA to protein - tRNA (transfer RNA) matches the codon to amino acid - Ribosome (made of Proteins and RNAs) - Protein synthesis ## **Transcription** - RNA synthesis using only one strand as a template - mRNA → encode protein - Ribosomal RNA (rRNA) and tRNA → no translation - RNA polymerase - mRNA synthesis ## **Regulation of Transcription** - Promoter - Binding site of RNA polymerase and regulatory proteins (transcriptional regulator; activator or repressor) - Terminator - The site where transcription stops - Processing of eukaryotic RNA - Splicing : joining of exons ## **Translation** ## **Translation** #### tRNA - Cloverleaves shaped folding - Anticodon: complementary to codon - 3' end: amino acid attachment #### Translation - Assembly of ribosome and mRNA - Binding of tRNA - Peptide bond formation - Release of tRNA ## Signals for Transcription and Translation - Ribosome binding site in mRNA - Shine-Dalgarno Sequence - Initiation codon - AUG for methionine - Stop codon - UGA, UAA, UAG : no corresponding tRNA ## **Cellular Fate of Proteins** Protein Targeting to specific compartment (ER, Nucleus, Mitochondria) is guided by signal peptide (tags) ## **Overview of Protein Sorting Pathway** ## **Protein Targeting to ER** - Proteins with signal peptide - Secretory proteins - Membrane proteins - Proteins in ER, Golgi, and lysosome - Modification during transport from ER to Golgi apparatus - Glycosylation #### Mutation - Any change in a DNA sequence - During normal cellular processes - Error of DNA polymerase - Transposition (Chapter 13) - Environmental factors - DNA damage by UV or chemicals - Source of genetic variation and evolution ## Types of mutation - Silent mutation: mutation with no effect on a protein (the codon encoding the same amino acid) - Mutations having slight effect : mutation in non-functional domain of a protein - Mutations affecting protein function - Promoter or ribosome binding sequence : no protein synthesis - Essential protein sequence - No effect on survival - e.g. hair color - Harmful - e.g. sickle-cell anemia - A to T mutation of hemoglobin - → 6th amino acid change from glu to val - hydrophobic aggregation of hemoglobin A. Normal hemoglobin B. Sickle-cell hemoglobin - Benign erythrocytosis - Elevated levels of RBC - Mutation in erythropoetin receptor - -- 481 TGG to TAG (stop codon) - Deletion of 70 amino acids for repression of signal transduction - → More RBC production from bone marrow stem cells - → Greatly enhanced stamina (Finnish athlete Eero Mantyranta won three gold medals for cross-country skiing in the 1964 Winter Olympics) Hormone Hormone Even when the braking protein is present, the cell is signaled to mature and form RBCs. Braking protein binding site #### A. Normal receptor protein B. Mutant receptor protein Hormone binding site Cell Cell signaling signaling site site -Docking site for No docking site braking protein Hormone (Hormone Hormone Braking protein Cell is signaled to mature No signaling, Cell is signaled to mature and form RBCs. no RBC production and form RBCs.