Nucleophilic reactions II: Kinetics

S_N2: Relative nucleophilicity

- Study of nucleophilic substitution of methyl halides for various nucleophiles:
 - Methyl halides (CH₃X) have similar relative reactivity toward different nucleophiles
 - Swain & Scott (1953):

$$log\left(\frac{k_{Nu}}{k_{H_2O}}\right) = s \cdot n_{Nu,CH_3Br}$$

 k_{Nu} = 2nd-order rate const. for a nucleophile of interest k_{H_2O} = 2nd order rate const. for H₂O

 n_{Nu,CH_3Br} = a measure of the nucleophilicity of the nucleophile of interest

s = sensitivity of the organic molecule to nucleophilic attack

n_{Nu,CH3}Br---?

- Set CH₃Br as a reference compound to measure the nucleophilicity
- Set H₂O as a reference nucleophile
- By observing a nucleophilic substitution reaction between CH₃Br and Nu, n_{Nu,CH₃Br} can be determined:

$$n_{Nu,CH_{3}Br} = log \left[\frac{(k_{Nu})_{CH_{3}Br}}{(k_{H_{2}O})_{CH_{3}Br}} \right] * so, \ n_{H_{2}O,CH_{3}Br} = 0$$

• We saw:

$$log\left(\frac{k_{Nu}}{k_{H_2O}}\right) \approx log\left[\frac{(k_{Nu})_{CH_3Br}}{(k_{H_2O})_{CH_3Br}}\right] = n_{Nu,CH_3Br}$$

• But there is some error, so use "s" for modification

* *s* is not substantially different from 1

Table 13.3 Relative Nucleophilicities of Some Important Environmental Nucleophiles: n-Values Determined from the Reaction with Methyl Bromide or n-Hexyl Bromide in Water (Eq. 13-3, s = 1)

Nucleophile	$n_{_{Nu,CH_3Br}}a$
CIO ₄	<0
H_2O	0
NO ₃	1.0
F	2.0
SO ₄ ²⁻	2.5
CH ₃ COO ⁻	2.7
Cl-	3.0
HCO_3 , HPO_4^2	3.8
Br	3.9
OH-	4.2
I ⁻	5.0
CN ⁻ , HS ⁻	5.1
$S_2O_3^{2-}$	6.1 ^b
PhS ⁻	6.8 ^b
S ₄ ²⁻	7.2 ^b

^{*a*} Data from Hine (1962). ^{*b*} Data from Haag and Mill (1988a).

S_N2: Competition of nucleophiles

• Competition with hydrolysis:

Reaction rate of Nu depends on k & [Nu]

$$\frac{d[R_1R_2R_3C - L]}{dt} = -k[Nu][R_1R_2R_3C - L]$$

- H₂O is abundant ([H₂O] \uparrow), so a nucleophile should compete with hydrolysis
- Define [Nu]_{50%} as the nucleophile concentration that satisfies:

 $[Nu]_{50\%}k_{Nu} = [H_2O]k_{H_2O}$ 1st order rate of Nu reaction 1st order rate of hydrolysis

assuming s=1, $k_{Nu} = k_{H_20} \times 10^{n_{Nu,CH_3Br}}$

 $[Nu]_{50\%} = 55.3 \times 10^{-n_{Nu,CH_3Br}}$

55.3 = molar concentration of water (M) @ 25 °C

S_N2: Determining significance

- Use [Nu]_{50%} to determine whether a nucleophile is significant
- Freshwater vs. saline water
 - Freshwater [Cl⁻] ~ 10⁻⁴ M → Cl⁻ not a significant nucleophile
 - Seawater [Cl⁻] ~ 0.5 M → Cl⁻ a significant nucleophile
- pH sensitivity of hydrolysis reaction
 - Low & neutral pH → OH⁻ not a significant nucleophile
 - High pH (e.g., pH>11) → OH⁻ a significant nucleophile

Table 13.5 CalculatedConcentration of NucleophileRequired to Compete with Waterin an $S_N 2$ Reaction with AlkylHalides Assuming an s Value of 1

Nucleophile	$[Nu]_{50\%}^{a}(M)$
NO3	~6
F ⁻	$\sim 6 \times 10^{-1}$
SO4 ²⁻	$\sim 2 \times 10^{-1}$
Cl-	$\sim 6 \times 10^{-2}$
HCO ₃	$\sim 9 \times 10^{-3}$
HPO ₄	$\sim 9 \times 10^{-3}$
Br ⁻	$\sim 7 \times 10^{-3}$
OH-	$\sim 4 \times 10^{-3}$
I_	$\sim 6 \times 10^{-4}$
HS ⁻	~4 × 10 ⁻⁴
CN ⁻	~4 × 10 ⁻⁴
$S_2O_3^{2-}$	$\sim 4 \times 10^{-5}$
S4 ²⁻	$\sim 4 \times 10^{-6}$

^{*a*} Eq. 13-5 using the $n_{\text{Nu,CH}_3\text{Br}}$ values given in Table 13.3.

S_N1 & S_N2: Leaving groups

•

• Reaction rates for methyl halides: $CH_3Br \sim CH_3I > CH_3CI > CH_3F$

6

S_N1 & S_N2: Effect of EDGs & resonance

Table 13.6 Hydrolysis Half-Lives and Postulated Reaction Mechanisms at 25°C of Some Monohalogenated Hydrocarbons at Neutral pH^{*a*}

	Type of Carbon	$t_{1/2}$ (Hydrolysis)			Dominant Mechanism(s)	
Compound	to Which L is Attached	L = F	Cl	Br	I	tution Reactions
R-CH2-L	primary	≈30 yr ^b	340 d ^b	20–40 d °	50–110 d ^d	S _N 2
н₃с сн-∟ н₃с	secondary		38 đ	2 d	3 d	S _N 2 S _N 1
СН ₃ H ₃ CL CH ₃	tertiary	50 d	23 s			S _N 1
CH2=CH-CH2-L	allyl		69 d	0.5 d	2 d	$S_N 2 \dots S_N 1$
CH2-L	benzyl		15 h	0.4 h		$S_N 2 S_N 1$

^{*a*} Data taken from Robertson (1969) and Mabey and Mill (1978). ^{*b*} R = H. ^{*c*} R = H, C₁ to C₅-*n*-alkyl. ^{*d*} R = H, CH₃.

Nucleophilic reactions I: Overview

Nucleophiles & nucleophilic substitution

• Nucleophiles: species that like nucleus

- Can donate a pair of electrons to form a new covalent bond
- Electron-rich (e.g., negatively charged ions)
- Large abundance of nucleophiles in the environment (water itself is a nucleophile)

• Nucleophilic substitution

- Nucleophiles may form a bond with the electron-deficient atom in an organic molecule
- As a consequence of a new bond formation, another bond has to be broken

 $Nu: +R - L \implies R - Nu + L:$

- S_N2 & S_N1 mechanisms

Nucleophiles & hydrolysis

- Important nucleophiles in the environment
 - High abundance of water (and OH⁻ for high pH)
 - Water is usually the most significant among the environmental nucleophiles

Hydrolysis

 A reaction in which a water molecule (or OHion) substitutes for another atom or group of atoms present in an organic molecule Table 13.1 Examples of Important Environmenal Nucleophiles

	C104
	H_2O
for	NO ₃
city carl	F
hiliá ted	SO ²⁻ , CH ₃ COO ⁻
leop atura	CI ⁻
nuc a s:	HCO ₃ ,HPO ₃ ²⁻
sing on at	NO ₂
actic	PhO ^{-a} , Br ⁻ , OH ⁻
inc.	I ⁻ , CN ⁻
	$HS^{-}, R_2 NH^{b}$
	$S_2O_3^{2^-}, SO_3^{2^-}, PhS^-$
^a Ph = C ₄	H _s (phenyl)

^a Ph = C₆H₅ (phenyl) ^b R = CH₃, C₂H₅

Nucleophiles and/or bases						
Reactants		Products	Reaction Number			
Nucleophi	ilic Substitutions at	Saturated Carbon Atoms				
CH ₃ Br + H ₂ O	_	CH₃OH + H ⁺ + Br [−]	(1)			
Methyl bromide		Methanol				
CH ₃ Cl + HS ⁻		CH₃SH + CI [−]	(2)			
Methyl chloride		Methane thiol (Methyl mercaptan)				
О II CH ₃ O—Р(ОСН ₃) ₂ + Н ₂ О		О II CH ₃ OH + ⁻ O—Р(ОСН ₃) ₂ + H ⁺	(3)			
Trimethylphosphate		Methanol Dimethylphosphate				
	β -Eliminat	ion				
$Cl_2HC-CHCl_2 + HO^-$		$CI_2C=CHCI + CI^+ H_2O$	(4)			
1,1,2,2-Tetrachloroethane		Trichloroethene				

Table 13.2 Examples of Environmentally Relevant Chemical Reactions Involving Nucleophiles and/or Bases

• S_N2 mechanism

• S_N2 mechanism

- Substitution, nucleophilic, bimolecular
- The standard free energy of activation $\Delta^{\dagger}G^{0}$ (which controls the reaction rate) depends strongly on both <u>the capability of the nucleophile to initiate a</u> <u>substitution reaction</u> and <u>the willingness of the organic molecule to undergo</u> <u>that reaction</u>
- Follows a second-order kinetic rate law:

$$\frac{d[R_1R_2R_3C - L]}{dt} = -k[Nu^-][R_1R_2R_3C - L]$$

 $k = 2^{nd}$ order rate constant (L/mole-s)

• S_N1 mechanism

extent of reaction (reaction coordinate)

• S_N1 mechanism

- Substitution, nucleophilic, unimolecular
- The reaction rate depends solely on <u>how easily the leaving group dissociates</u> from the parent molecule
- The structure of the activated complex is assumed to be similar to the carboncation complex
- $\Delta^{\dagger}G^{0}$ depends on the stability of the cation
- Follows a first-order kinetic rate law:

$$\frac{d[R_1 R_2 R_3 C - L]}{dt} = -k[R_1 R_2 R_3 C - L]$$

 $k = 1^{st}$ order rate constant (s⁻¹)