
Machine Design: Contact Mechanics 

No materials are rigid, but just more stiff or less stiff; 

->Issue of Stiffness during the contact 

->Contact Mechanics based on Elasticity, that is, 

Contact between Curved Surfaces, or Hertz Stress 

Equivalent Contact System: 

Elastic body 1, 2 contact  

->A rigid sphere contacts elastic plane 

                                

 

 

 

   E1,ν1,R1   E2,ν2,R2              Rigid     Ee,νe,Re 

Equivalent modulus of Elasticity: Ee 

1/Ee=(1-ν1
2)/E1+(1-ν2

2)/E2  

or Ee=E/[2(1-ν2)] if 1,2 are the same material 



Ex)E1, E2 are steel, Es=200GPa 

then Ee=Es/[2(1-0.32)]=0.549Es=109.0GPa 

 

Equivalent Poissons’ ratio:νe 

1/νe=[1/ν1+1/ν2]/2, or νe=ν1=ν2 if 1,2 are the same. 

 

Equivalent radius of system, Re 

1/Re 

=1/R1 major+1/R1 minor+1/R2 major+1/R2 minor 

where 

Convex surface=+ 

Concave surface=- 

Flat surface=∞ 

 

Ex1) R1=R2=R=Radius of Ball, 

1/Re=1/R+1/R+1/R+1/R ∴Re=R/4 



Ex2) R1=R, R2=∞(Plane) 

1/Re=1/R+1/R+1/∞+1/∞=2/R ∴Re=R/2 

 

Radius of equivalent circular contact, a 

a=[3FRe/(2Ee)]1/3 

Ex)R1=25mm, R2=∞(plane), F=10N≒1Kgf  

Re=R/2=0.0125, Ee=109Gpa,  

thus 

a=[3(10)(0.0125)/(2*109E9)]1/3=0.120[mm]=120[um] 

Deflection of the contact system, δ 

δ=0.5(1/Re)1/3(3F/2Ee)2/3  eq(1) 

=0.5(1/0.0125)1/3(3(10)/(2*109E9))2/3 

=0.574[um] 

Stiffness of Contact System, K 

Partially differentiate eq(1) w.r.t F; 

∂δ/∂F=(0.5)(1/Re)1/3(3/2)-1/3Ee-2/3F-1/3 



Thus Stiffness, K=∂F/∂δ=1/[∂δ/∂F] 

∴∂δ/∂F=(0.5)(1/0.0125)1/3(3/2)-1/3(2*109E9)-2/3(10)-1/3 

=2.41E-8 m/N 

Stiffness=1/[∂δ/∂F]=41.49 MN/m=41.49N/um 

 

Contact Stress by Hertz 

q=1/π(1/Re)2/3(3Ee
2F/2)1/3=aEe/(πRe) 

=(120E-6)(109E9)/(3.14*0.0125)=333 [MPa] 

 

 

       Z 

 

σz=q[-1+z3/(a2+z2)3/2] 

σr=σθ=0.5q[-(1+2ν)+(1+ν)z/(a2+z2)1/2-z3/(a2+z2)3/2] 

 

 

 



  σ 

     z* 

σθ                  z 

σZ 

 

Shear stress, τ=(σθ-σz)/2 

=(0.5q)[(1-2ν)/2+(1+ν)z/(a2+z2)1/2-3z3/[2(a2+z2)3/2]] 

Maximum shear stress, τmax, can be obtained from dτ/dz=0, 

∴τmax=0.5q[(1-2ν)/2+(2√2/9)(1+ν)3/2]≒q/3 

At z=z*=a√2(1+ν)/√(7-2ν)=(120E-6)√(2.6/6.4)=76.5[um] 

This result is well matching with the observation that fracture 

practically occurs at the submerged depth location. 

This is also the reason the surface layer coating such as 

anodizing is widely used for the aluminum material. 

 

Yield occurs when τmax=qmax/3=σY/2, where σY=Yield Strength 

Fracture occurs when τmax=qmax/3=σT/2, where σT=Tensile 

Strength 

 



Thus allowable maximum hertz stress, qmax 

qmax=3σT/2 for metal 

qmax=3σT/(1-2ν) for brittle material 

For SUS304, σT=826MPa, σY=595MPa 

Force F such that fracture occurs; 

qT=aTEe/(πRe)=3σT/2  

∴aT=(3σT/2)πRe/Ee 

=(1.5)(826E6)(3.14)(0.0125)/(109E9) 

=446E-6[m]=446[um] 

Depth location at fracture, zT=aT√2(1+ν)/√(7-2ν) 

≒284[um] 

FT=2Ee/(3Re)aT
3=2(109E9)/[3*0.0125]*(446)3E-18 

=515[N] 

δT=0.5(1/Re)1/3(3FT/2Ee)2/3=(0.5)(1/0.0125)1/3(3*515/218E9)2/3 

=7.95[um] 

 

 

 



Line contact between Objects 

(for semi-kinematic design) 

 

 

 

  L                                        x 

    F                F               z 

 

         d1    d2        2b 

Ee is similarly defined, and contact width=2b 

where b=[2Fd1d2/[πLEe(d1+d2)]]1/2 

Maximum contact pressure, q 

q=2F/πbL=(4/π)Pm,  

where Pm=mean pressure=F/2bL 

σz=-q[b2/(b2+z2)]1/2 

σx=-2qη[(1+z2/b2)1/2-z/b], η=friction coeff. 

σy=-q[(2-b2/(b2+z2))(1+z2/b2)1/2-2z/b] 

τyx=(σy-σx)/2                          σ   z* 

τzx=(σz-σx)/2                         σz                 z 



τzy=(σz-σy)/2                          

τzy= (σz-σy)/2 is observed as max. at z* 

 

Max shear stress is τzy≒0.3q at z*/b=0.786 

At fracture, τzy=σT/2  

∴0.3q=σT/2 and q=σT/0.6 

Force F such that fracture occurs 

d1=d2=0.05[m], L=0.05m 

qT=σT/0.6=826/0.6=1376 [MPa]=2F/πbL 

∴b=2F/πqL=[2Fd1d2/πLEe(d1+d2)]1/2, and L=0.05[m] 

∴F=(π/2)q2Ld1d2/Ee(d1+d2) 

= (3.14/2)(1376E6)2(0.05)(0.05)(0.05)/[(0.1)109E9] 

=34089=34.089[KN] 

∴b=2F/πqL=2(34089)/3.14/1376E6/0.05=315.6[um] 

Max shear stress is observed at z*/b=0.786  

∴z*=(0.786)(315.6)=248[um] 

 

 



Tangential stiffness of the contact surface 

 

With No slip 

From Mindlin, under no slip 

δtan= Ftan(2-ν)(1+ν)/(4aE) 

Thus Tangential stiffness, Ktan is 

Ktan=1/[∂δtan/∂Ftan] 

=4aE/[(2-ν)(1+ν)] without slip at interface 

 

With slip  

Assuming a’/a=b’/b=[1-Ftan/μF]1/2  

where a’, b’ are of the semi axis of the inner ellipse, inside of 

which there is no slip, F is the normal force. 

Deresiewicz gives 

δtan=3μF(2-ν)(1+ν)[1-(1-Ftan/μF)2/3]Ф/(8aE) 

where Ф=0.2-2.7 depending on the material constants,  

or Ф=1 for spherical contact (a=b) 

 



Thus the tangential stiffness can be obtained as, 

Ktan=1/[∂δtan/∂Ftan]= 4aE(1-Ftan/μF)1/3/[(2-ν)(1+ν)] 

(If Ftan=0, this is the same as no slip condition between the 

interface) 

 

 

HW) Design Homework (2 weeks) 

Design a Kelvin Clamp plate to support 100N (about 10Kgf) 

central vertical force, choose proper material and dimension 

for the clamp, which is to handle the wafer stage of 12 inch. 

Verify the design values by calculating the stiffness and 

deflections along each DOFs. 


