재료의 기계적 거동 (Mechanical Behavior of Materials)

Defects, Dislocations

Myoung-Gyu Lee (이명규)

Department of Materials Science & Engineering Seoul National University Seoul 151-744, Korea email : myounglee@snu.ac.kr

> TA: Chanmi Moon (문찬미) 30-521 (Office) chanmi0705@snu.ac.kr (E-mail)

Why study defects in materials?

- Defects are present in all materials.
- It is defects that make materials much more interesting !
- Defects affect microstructures and properties of materials.
- Processing controls the presence and concentration of defects.

Microstructure

Types of Defect

0-dimensional	Point defects	Vacancy atoms Interstitial atoms Substitutional atoms
1-dimensional	Line defects	Dislocations
2-dimensional	Planar (Area) defects	Surface Grain boundary Stacking fault

3

2021-04-11

Point Defects

vacancy

interstitial atom

small substitutional atom

large substitutional atom

Point Defects

Vacancies : vacant atomic sites in a structure

 Self-Interstitials : "extra" atoms positioned between atomic sites

distortion of planes

Line defects (one dimension)

Edge dislocation line moves parallel to applied stress

2021-04-11

Line defects (one dimension)

Screw dislocation line moves perpendicular to applied stress

2021-04-11

Dislocation

Dislocations are visible in electron micrographs

Adapted from Fig. 4.6, Callister 7e.

Planar defects (two dimension)

Grain boundaries
Twin boundaries
Stacking faults
Phase boundaries

Stacking Fault

Grain Boundary

Observation of Grain Boundary

≻Chemical etching ≻Thermal etching → groove

Twin Boundary

Bulk defects (three dimension)

VoidsCracksInclusions

Theoretical strength of a perfect crystal

Theoretical Strength & Experimental Strength

NAMATARA SA							
Material	$\tau_{\rm th} (= G/30) (10^9 { m N/m^2})$	$\tau_{exp} (10^6 \text{ N/m}^2)$	τ_{exp}/τ_{th}	$\tau_f (10^6 \text{ N/m}^2)^*$			
Ag	0.1	0.37	0.00037	20			
Al	0.9	0.78	0.00087	30			
Cu	1.4	0.49	0.00035	51			
Ni	2.6	3.2	0.0070	121			
α-Fe	2.6	27.5	0.011	150			

There is much difference between theoretical and experimental strength.

The reasons are:

1. Defects are present in all perfect crystals.

2. One type of defects, called dislocation, moves during plastic deformation and makes plastic deformation easier than predicted by the Frenkel calculation.

* Whisker is close to the theoretical strength.

Analogy between caterpillar and dislocation motion

Dislocation

Dislocations:

- are line defects,
- cause slip between crystal plane when they move,
- produce permanent (plastic) deformation.

Schematic of a Zinc (HCP):

before deformation

after tensile elongation

slip steps

2021-04-11

Burgers circuit & Burgers vector

- Burgers circuit: any close loop contains dislocations by an atom to atom path
- Burgers vectors: the vector required to complete the circuit in a perfect crystal; the direction of atom displacement

(a)

(a) Burgers circuit round an edge dislocation (b) the same circuit in a perfect crystal

Edge Dislocation

The Burgers vectors for given dislocations never change!

Burgers circuit & Burgers vector

closure failure of Burgers circuit. drawn from Start(S) to Finish(F) RH / SF convention. (circuit must be drawn around dislocation line.)

Character of Dislocation based on vector Description

Geometry of dislocation: edge dislocation

- Slip plane: where slip occurs.
- Dislocation line: boundary between the slipped and unslipped part of a crystal
- Slip plane contains both Burgers vectors and dislocation line
- Edge dislocation: dislocation line is perpendicular to Burgers vector

Model of an edge dislocation

Geometry of dislocation: screw dislocation

 Screw dislocation: the dislocation line is parallel to Burgers vector

Screw dislocation

Atoms below slip plane

• Atoms above slip plane

2021-04-11

Burgers circuit & Burgers vector

Screw Dislocation

 $\vec{\xi} \cdot \vec{b}$ = positive for RHS.

Neither $\vec{\xi}$ nor \vec{b} unique.

$$\vec{\xi} \cdot \vec{b}$$
 = negative for LHS.

Characteristics of dislocations

	Type of Dislocation			
Dislocation Characteristic	Edge	Screw	Mixed	
Slip direction	// to b	// to b	Not // to b	
Relation between dislocation line and b	\perp	//	Not // or	
			\perp	
Direction of line movement relative to b	11	\perp	// and \perp	

Mixed dislocation

g=110 002 0.2.am

Dislocations imaged in NiAl-0.5Zr single crystals deformed at elevated temperatures.

Most dislocations are curved.

2021-04-11

Motion of Mixed Dislocations

Schematic representation of a *dislocation loop*

Movement of Dislocations

Glide--conservative motion: dislocation moves in the surface which contains both its line and Burgers vector

Movement of Dislocations (glide)

Movement of Dislocations (glide)

- Edge, screw, and mixed segments move.
- Final shear of crystal is produced by edge and screw dislocations.

Movement of Dislocations

Climb-- non-conservative motion: dislocation moves out of the glide surface normal to the Burgers vector

Movement of Dislocations (climb)

Direction of climb

Direction of climb

Vacancies or Atoms diffuse to bottom of dislocation line.

Acting slip system in FCC

□ A {111}<110> slip system in Fcc unit cell

Jogs: steps on the dislocation which move it from one atomic slip plane to another

Jogs

Jogs on edge dislocations do not impede glide
 Jogs on screw dislocations have edge character and impede glide

The jogs in (c) edge and (d) screw dislocations

Kink

- Kinks: steps on the dislocation which displace it on the same slip plane
- Kinks in edge and screw dislocations do not impede glide of the dislocation

The kinks in edge (a) and screw (b) dislocations

Cross slip

2021-04-11

Screw dislocations can cross-slip Edge dislocations cannot

Twinning

- Twinning unassisted by dislocation motion requires cooperative and simultaneous motion of a number of atoms
- : theoretical twinning stress is high
- : believed associated with dislocation motion
- : requires cooperative dislocation displacements

