"Phase Transformation in Materials"

10.13.2021

Eun Soo Park

Office: 33-313
Telephone: 880-7221
Email: espark@snu.ac.kr
Office hours: by an appointment

Contents for today's class

- Atomic Mobility
$D_{B}=M_{B} R T F$
$F=\left(1+\frac{d \ln \gamma_{B}}{d \ln X_{B}}\right)$
- Tracer Diffusion in Binary Alloys $D=X_{B} D_{A}+X_{A} D_{B}=F\left(X_{B} D_{A}+X_{A} D_{B}\right)$
$D^{*} A u$ gives the rate at which Au^{*} (or Au) atoms diffuse in a chemically homogeneous alloy, whereas $D_{A u}$ gives the diffusion rate of $A u$ when concentration gradient is present.
- High-Diffusivity Paths $\quad \mathrm{D}_{\mathrm{s}}>\mathrm{D}_{\mathrm{b}}>\mathrm{D}_{1} \longmapsto A_{t}>A_{b}>A_{s}$

1. Diffusion along Grain Boundaries and Free Surface

Grain boundary diffusion makes a significant contribution

$$
\text { only when } \mathrm{D}_{\mathrm{b}} \delta>\mathrm{D}_{\mathrm{l}} \mathrm{~d} . \quad\left(T<0.75 \sim 0.8 T_{\mathrm{m}}\right)
$$

$$
D_{\text {app }}=D_{l}+D_{b} \frac{\delta}{d}
$$

2. Diffusion Along Dislocation

At low temperatures, ($T<\sim 0.5 T_{m}$)
$g D_{p} / D_{1}$ can become so large that the apparent diffusivity is entirely
due to diffusion along dislocation.

- Diffusion in Multiphase Binary Systems

$$
v=\frac{d x}{d t}=\frac{1}{\left(C_{B}^{\beta}-C_{B}^{\alpha}\right)}\left\{\tilde{D}(\alpha) \frac{\partial C_{B}^{\alpha}}{\partial x}-\tilde{D}(\beta) \frac{\partial C_{B}^{\beta}}{\partial x}\right\} \quad \text { (velocity of the } \alpha / \beta \text { interface) }
$$

* Homework 4 : Exercises 2 (pages 111-114)

until $1^{\text {st }}$ exam

$1^{\text {st }}$ exam : October 17, 20216 pm - 8 pm
33-1 dong 228, 327, 328, 330, 331 ho
Good Luck!!

Contents in Phase Transformation

Representative Phase transformation
(Ch4) Solidification: Liquid \rightarrow Solid
(Ch5) Diffusional Transformations in Solid: Solid \rightarrow Solid
(Ch6) Diffusionless Transformations: Solid \rightarrow Solid

Contents for today's class
Chapter 3 Crystal Interfaces and Microstructure

1) Interfacial Free Energy
2) Solid/Vapor Interfaces
3) Boundaries in Single-Phase Solids
4) Interphase Interfaces in Solid (α / β)
5) Interface migration

Q: Types of interface in metallic system?

- Types of Interface

Basically three different types of interface are important in metallic system:

1. Free surface (solid/vapor interface)

vapor	: Important in vaporization and
solid	condensation transformations

2. Grain boundary (α / α interfaces)
> same composition, same crystal structure
i.e. the transformation of a
highly deformed grain structure into new undeformed grains, and following grain coarsening and grain growth
3. inter-phase boundary (α / β interfaces) : "Important role in determining the kinetics
> different composition \&
crystal structure

\rightarrow First, consider simple interfaces, (1) and (2) in this chapter

Q: Interfacial free energy, $\boldsymbol{\gamma}$ vs Surface tension, \mathbf{F} ?

3.1. Interfacial free energy

Interfacial energy ($\gamma: \mathbf{J} / \mathbf{m}^{2}$)
\rightarrow Gibbs free energy of a system containing an interface of area A
G vapor (excess free E arising from the fact
$\rightarrow \mathbf{G}_{\text {bulk }}+\mathbf{G}_{\text {interface }} \quad \rightarrow \mathbf{G}=\mathbf{G}_{\mathbf{0}}+\gamma \mathbf{A}$ that some material lies in or close

Melting and Crystallization are Thermodynamic Transitions

Solidification: Liquid \longrightarrow Solid

<Thermodynamic>

- Interfacial energy $\square \Delta T_{N}$

Liquid
T_{m} Undercooled Liquid
No superheating required!

- Interfacial energy \Rightarrow No ΔT_{N}
$\gamma_{S L}+\gamma_{L V}<\gamma_{S V}$
Melting: Liquid \longleftarrow Solid

Solid
vapor

3.1. Interfacial free energy

Interfacial energy ($\gamma: \mathbf{J} / \mathbf{m}^{2}$)
\rightarrow Gibbs free energy of a system containing an interface of area A

Interfacial energy (γ) vs. surface tensioń (F : a force per unit length)

1) work done : F dA = dG
2) $d G=\gamma d A+A d \gamma$
$\rightarrow \mathbf{F}=\gamma+\mathbf{A} \mathbf{d} \gamma / \mathbf{d A}$
In case of a liq. film, $\mathbf{d} \boldsymbol{\gamma} / \mathbf{d A}=\mathbf{0 , F}=\boldsymbol{\gamma}$
Ex) liq. : d $\boldsymbol{\gamma} / \mathbf{d A}=\mathbf{0}$ Why? Maintain a constatnt surface structure by rearrangement (independent of A)

sol. : $\mathbf{d} \gamma / \mathrm{dA} \neq 0$, but, very small value
At near melting temperature $\mathrm{d} \gamma / \mathrm{dA}=\mathbf{0} \rightarrow \mathrm{F}=\gamma \quad\left(\mathrm{N} / \mathrm{m}=\mathrm{J} / \mathrm{m}^{2}\right)$
(high enough atomic mobility)

Q: Free surface (solid/vapor interface)?

(a) $\mathrm{E}_{\text {sv }}$ vs γ ?

Extra energy per atom on surface: 표면 에너지

- The measured γ values for pure metals near the melting temperature

$$
\mathrm{E}_{\mathrm{Sv}}=3 \varepsilon / 2=0.25 \mathrm{~L}_{\mathrm{s}} / \mathrm{N}_{\mathrm{a}} \underset{(\because \text { surface free E averaged over many surface plane, S effect at high } \mathrm{T})}{\square} \gamma_{\mathrm{SV}}=0.15 \mathrm{~L}_{\mathrm{S}} / \mathrm{N}_{\mathrm{a}} \mathrm{~J} / \text { surface atom }
$$

(b) Equilibrium shape: Wulff surface

: Polyhedron with the largest facets having the lowest interfacial free energy

3.2 Solid / Vapor Interfaces

* Assumption: S/V interface \rightarrow Hard sphere model/ uncontaminated surface
(In real systems surfaces will reduce their free energies by the adsorption of impurities.)
- Fcc: density of atoms in these planes decreases as $\left(h^{2}+\mathbf{k}^{2}+1^{2}\right)$ increases

111

200

220

Fig. 3.2 Atomic configurations on the three closest-packed planes in fcc crystals; (111), (200), and (220).
(notation $\{200\}$ and $\{220\}$ plane has been used instead of $\{100\}$ and $\{110\}$ because the spacing of equivalent atom planes is than given by $a /\left(h^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}\right)^{1 / 2}$ where a is the lattice parameter.)

For (111) plane $\quad \mathrm{CN}=12$
[111]

\# of Broken Bonds per atom at surface? $\rightarrow 3$ per atom

For (111) plane

\# of broken bond at surface : 3 broken bonds
Bond Strength: $\varepsilon \rightarrow$ for each atom : $\varepsilon / 2$
Excess internal energy over that of the atoms in the bulk: $3 \varepsilon / 2 \uparrow$

For (200) plane $\quad \mathrm{CN}=12$

\# of Broken Bonds per atom at surface?
\# of broken bond at surface : 4 broken bonds
Bond Strength: $\varepsilon \rightarrow$ for each atom : $\varepsilon / 2$
Excess internal energy over that of the atoms in the bulk: $\mathbf{4 \varepsilon} / 2 \uparrow 17$
(excess internal energy of $4 \varepsilon / 2$ over that of the atoms in the bulk)

For (111) plane

\# of broken bond at surface : 3 broken bonds
Bond Strength: $\varepsilon \rightarrow$ for each atom : $\varepsilon / 2$
Extra energy per atom on surface: $3 \varepsilon / 2$
$\underset{\text { (Latent heat of melting + vaporization) }}{\text { Hert }}$ (솩) in terms $\varepsilon ? \rightarrow L_{s}=12 N_{\mathrm{a}} \varepsilon / 2$
(Latent heat of melting + vaporization)
(1 mole of solid = $12 \mathrm{~N}_{\mathrm{a}}$)
Energy per atom of a \{111\} Surface?

$$
\mathrm{E}_{\mathrm{SV}}=3 \varepsilon / 2=0.25 \mathrm{~L}_{\mathrm{S}} / \mathrm{N}_{\mathrm{a}}^{\left(1 / 4 \text { of } \mathrm{L}_{\mathrm{s}} / \mathrm{N}_{\mathrm{a}}\right)} \Rightarrow \mathrm{E}_{\mathrm{SV}} \text { vs } \gamma ?
$$

"Approximated value" due to assumptions, 1) $2^{\text {nd }}$ nearest neighbors have been ignored and 2) strengths of the remaining bonds in the surface are unchanged from the bulk values.
γ interfacial energy $=$ surface free energy \leftarrow Gibb's free energy ($\mathrm{J} / \mathrm{m}^{2}$)

$$
\begin{aligned}
& \rightarrow \gamma=\mathrm{G}=\mathrm{H}-\mathrm{TS} \\
& =E+P V-T S \text { (if PV is ignored) } \\
& \text { (} \mathrm{E}_{\mathrm{sv}} \uparrow \rightarrow \gamma \uparrow \text {) } \\
& \rightarrow \gamma=\mathrm{E}_{\mathrm{sv}}-\mathrm{TS}_{\mathrm{sv}}\left(\mathrm{~S}_{\mathrm{sv}}\right. \text { thermal entropy, configurational entropy) } \\
& \text {-........................: surface>bulk Extra configurational entropy due to vacancies } \\
& \rightarrow \partial \gamma / \partial T=-\mathrm{S}: \text { surface free energy decreases with increasing } \mathrm{T} \\
& 0<S<3\left(\mathrm{~mJ} / \mathrm{m}^{-2} \mathrm{~K}^{-1}\right) \text { due to increased contribution of entropy }
\end{aligned}
$$

- The measured γ values for pure metals near the melting temperature $\mathrm{E}_{\mathrm{sV}}=3 \varepsilon / 2=0.25 \mathrm{~L}_{\mathrm{s}} / \mathrm{N}_{\mathrm{a}} \square \gamma_{\mathrm{SV}}=0.15 \mathrm{~L}_{\mathrm{s}} / \mathrm{N}_{\mathrm{a}} \mathrm{J} /$ surface atom (\because surface free E averaged over many surface plane, S effect at high T)
- Average Surface Free Energies of Selected Metals

Crystal	$T_{\mathrm{m}}\left({ }^{\circ} \mathrm{C}\right)$	$\gamma_{\mathrm{sv}}\left(\mathrm{mJ} \mathrm{m}^{-2}\right)$
Sn	232	680
Al	660	1080
Ag	961	1120
Au	1063	1390
Cu	1084	1720
$\delta-\mathrm{Fe}$	1536	2080
Pt	1769	2280
W	3407	2650

γ of $\mathrm{Sn}: 680 \mathrm{~mJ} / \mathrm{m}^{2}\left(T_{\mathrm{m}}: 232^{\circ} \mathrm{C}\right)$
cf) G.B. energy γ_{gb} is about one third of γ_{sv} γ of $\mathrm{Cu}: 1720 \mathrm{~mJ} / \mathrm{m}^{2}\left(T_{\mathrm{m}}: 1083^{\circ} \mathrm{C}\right)$

* Higher $T_{m} \rightarrow$ stronger bond (large L_{s}) \rightarrow larger surface free energy (γ_{sv})

Surface energy for high or irrational \{hkl\} index

Closer surface packing \rightarrow smaller number of broken bond \rightarrow lower surface energy \# of broken bonds will increase through the series $\{111\}\{200\}\{220\} \rightarrow \gamma_{\mathrm{sV}}$ will increase along the same series (if different entropy term is ignored)

A crystal plane at an angle θ to the close-packed plane will contain broken bonds in excess of the close-packed plane due to the atoms at the steps.

Fig. 2.2 The 'broken-bond' model for surface energy.
($\cos \theta / a)(1 / a)$: broken bonds from the atoms on the steps
$(\sin |\theta| / a)(1 / a):$ additional broken bonds from the atoms on the steps

Surface energy for high or irrational \{hkl\} index

$(\cos \theta / a)(1 / a)$: broken bonds from the atoms on the steps
$(\sin |\theta| / a)(1 / a)$: additional broken bonds from the atoms on the steps
Attributing $\varepsilon / 2$ energy to each broken bond,

$$
\begin{aligned}
\mathrm{E}_{S V} & =\frac{1}{1 \times a} \frac{\varepsilon}{2}\left(\frac{\cos \theta}{a}+\frac{\sin |\theta|}{a}\right) \\
& =\frac{\varepsilon(\cos \theta+\sin (|\theta|))}{2 a^{2}}
\end{aligned}
$$

Fig. 3.4 Variation of surface energy as a function of θ

- The close-packed orientation $(\theta=0)$ lies at a cusped minimum in the E plot.
- Similar arguments can be applied to any crystal structure for rotations about any axis from any reasonably close-packed plane.
- All low-index planes should therefore be located at low-energy cusps.
- If γ is plotted versus θ similar cusps are found ($\gamma-\theta$ plot), but as a result of entropy effects they are less prominent than in the E- θ plot, and for the higher index planes they can even disappear.

Q: Free surface (solid/vapor interface)?

(a) $\mathrm{E}_{\text {sv }}$ vs γ ?

Extra energy per atom on surface

- The measured γ values for pure metals near the melting temperature

$$
\mathrm{E}_{\mathrm{SV}}=3 \varepsilon / 2=0.25 \mathrm{~L}_{\mathrm{s}} / \mathrm{N}_{\mathrm{a}} \underset{(\because \text { surface free E averaged over many surface plane, S effect at high } \mathrm{T})}{\square} \gamma_{\mathrm{SV}}=0.15 \mathrm{~L}_{\mathrm{S}} / \mathrm{N}_{\mathrm{a}} \mathrm{~J} / \text { surface atom }
$$

(b) Equilibrium shape: Wulff surface

: Polyhedron with the largest facets having the lowest interfacial free energy

Equilibrium shape: Wulff surface

* A convenient method for plotting the variation of γ with surface orientation in 3 dimensions
* Distance from center : γ_{sv}
\rightarrow Construct the surface using γ_{sv} value as a distance between the surface and the origin when measured along the normal to the plane

Several plane $\mathrm{A}_{1}, \mathrm{~A}_{2}$ etc. with energy γ_{1}, γ_{2}
Total surface energy : $\mathrm{A}_{1} \gamma_{1}+\mathrm{A}_{2} \gamma_{2} \ldots$
$=\sum \mathrm{A}_{\mathrm{i}} \gamma_{\mathrm{i}} \rightarrow$ minimum
\rightarrow equilibrium morphology
: can predict the equilibrium shape of an isolated single crystal

How is the equilibrium shape determined?

Due to entropy effects the plot are less prominent than in the $\mathrm{E}_{\mathrm{sv}}-\theta$ plot, and for the higher index planes they can even disappear

Process of Wulff shape intersection for two cubic Wulff shapes

: Polyhedron with the largest facets having the lowest interfacial free energy

Figure 1: The process of Wulff shape intersection for two cubic Wulff shapes with displaced origins and rotated coordinate systems. Each individual shape has cubic symmetry $m 3 m$ and [100] facets.

Equilibrium shape: Wulff surface

Equilibrium shape can be determined experimentally by annealing small single crystals at high temperatures in an inert atmosphere, or by annealing small voids inside a crystal.
Of course when γ is isotropic, as for liquid droplets, both the γ^{-} plots and equilibrium shapes are spheres.

"Equilibrium shape of FCC crystals"

1) Square faces $\{100\}$ and
2) Hexagonal faces $\{111\}$

The length OA represents the free energy of a surface plane whose normal lies in the direction OA.

Q: Grain boundary (α / α interfaces)
 = Boundaries in Single-Phase Solids

(a) Low-Angle and High-Angle Boundaries
(b) Special High-Angle Grain Boundaries
(c) Equilibrium in Polycrystalline Materials

3.3 Boundaries in Single-Phase Solids: definition

Grain boundary (α / α interfaces)

> same composition, same crystal structure
> different orientation
(hkl)

1) misorientation of the two adjoining grains 두 개 인접한 결정립간 방위차이 cf. 두 조밀면 만남
2) orientation of the boundary plane

3.3 Boundaries in Single-Phase Solids

: The lattices of any two grains can be made to coincide by rotating one of them through a suitable angle about a single axis.

* Relatively simple boundary: relative orientation of the crystals and the boundary

Rotation axis

Boundary
(a)
plane

Axis of rotation: parallel to the plane of the boundary
(b)

$$
\begin{aligned}
& \text { tilt boundary } \\
\theta \rightarrow & \text { misorientation } \\
\rightarrow & \text { tilt angle }
\end{aligned}
$$

[symmetric tilt or twist boundary
L non-symmetric tilt or twist boundary

3.3.1 Low-Angle and High-Angle Boundaries

Low-Angle Boundaries

Symmetrical low-angle tilt boundary

(a)

(b)

Fig. 3.7 (a) Low-angle tilt boundary, (b) low-angle twist boundary: \bigcirc atoms in crystal below, \bigcirc atoms in crystal above boundary. An array of parallel edge dislocation

Cross-grid of two sets of screw dislocations

tilt Boundaries

Figure $2-23^{\circ}$ symmetric tilt boundary about a <001> axis. Δ represent one layer and 0 represent the other layer of the AB..... stacked \{001\} planes. The ledge like character of the boundary is shown by the dashed lines.

Figure $1-23^{\circ}$ symmetric tilt boundary about a <001> axis. The circles with dashed lines represent one layer and the circles with solid lines the other layer of the $A B . .$. stacked $\{001\}$ planes. The atoms labelled A and B denote the structural unit.

Dislocations

twist Boundaries

Figure 2. A screw dislocation; note the screw-like 'slip' of atoms in the upper part of the lattice

Screw dislocation

Growth of Screw dislocation

Non-symmetric Tilt Boundary

Fig. 3.8 An unsymmetrical tilt boundary. Dislocations with two different Burgers vectors are present.
If the boundary is unsymmetrical, dislocations with different burgers vectors are required to accommodate the misfit.

In general boundaries of a mixture of the tilt and twist type, \rightarrow several sets of different edges and screw dislocations.

3.3.1 Low-Angle and High-Angle Boundaries

Low-Angle Tilt Boundaries

\rightarrow around edge dislocation : strain \uparrow but, LATB ~ almost perfect matching

Burgers vector of the dislocations

$$
\begin{aligned}
& \sin \frac{\theta}{2}=\frac{\vec{b} / 2}{D} \\
& \sin \frac{\theta}{2} \approx \frac{\theta}{2}
\end{aligned}
$$

Angular mis-orientation across the boundary
(a)

Energy of LATB ~ Total E of the dislocations within unit area of boundary
~ depends on the spacing of the dislocations (D)
(For brevity, the distinction between internal E and free E will usually not be made from now)

3.3.1 Low-Angle and High-Angle Boundaries

Low-Angle Tilt Boundaries θ

(a)
\rightarrow around edge dislocation : strain \uparrow but, LATB ~ almost perfect matching
\rightarrow g.b. energy : $\gamma_{\text {g.b. }} \rightarrow E /$ unit area (energy induced from dis.)

* Relation between D and γ ? $\operatorname{Sin} \theta=\overrightarrow{b / D}$, at low angle Very small $\theta \rightarrow$
$\rightarrow \mathrm{D}=\overrightarrow{\mathrm{b}} / \theta \rightarrow \gamma_{\text {g.b. }}$ is proportional to 1/D
\rightarrow Density of edge dislocation in low angle tilt boundary $\gamma \propto \theta$
(cf. low angle twist boundary \rightarrow screw dis.)

Energy of LATB ~ total energy of the dislocations within unit area of boundary \sim depends on the spacing of the dislocation (D)

Low-Angle tilt Boundaries
$\gamma \propto \theta$
\Rightarrow 1) As θ increases, $\gamma_{\text {g.b. }} \uparrow$

\rightarrow 2) $\gamma_{\text {g.b. }}$ increases and the increasing rate of $\gamma(=d \gamma / d \boldsymbol{\theta})$ decreases.
$\rightarrow 3$) if θ increases further, it is impossible to physically identify the individual dislocations
\rightarrow 4) When $\theta>10^{\circ}-15^{\circ}$, increasing rate of $\gamma_{\text {g.b. }} \sim 0$
5) When $\theta>10^{\circ}-15^{\circ}$, Grain-boundary energy \sim almost independent of misorientation

Soap Bubble Model Structural difference between low-angle and high angle grain boundary

High Angle Grain Boundary: $\theta>10^{\circ}-15^{\circ}$

Fig. 3.10 Disordered grain boundary structure (schematic).

High angle boundaries contain large areas of poor fit and have a relatively open structure
\rightarrow high energy, high diffusivity, high mobility (cf. gb segregation)

High Angle Grain Boundary

Low angle boundary
\rightarrow almost perfect matching (except dislocation part)
High angle boundary (almost)
\rightarrow open structure, large free volume

* low and high angle boundary
high angle $\gamma_{\text {g.b. }} \approx 1 / 3 \gamma_{\mathrm{s} / \mathrm{v} .} \rightarrow$ Broken Bonds
Measured high-angle grain boundary energies

Crystal	$\boldsymbol{\gamma}\left(\mathbf{m J ~ m}^{-\mathbf{2}}\right)$	$\boldsymbol{T}\left({ }^{\circ} \mathrm{C}\right)$	$\boldsymbol{\gamma}_{\mathbf{b}} / \gamma_{\mathbf{s v}}$
Sn	164	223	0.24
Al	324	450	0.30
Ag	375	950	0.33
Au	378	1000	0.27
Cu	625	925	0.36
$\gamma-\mathrm{Fe}$	756	1350	0.40
$\delta-\mathrm{Fe}$	468	1450	0.23
Pt	660	1300	0.29
W	1080	2000	0.41

As for $\gamma_{\mathrm{S} / \mathrm{v}} \gamma_{\mathrm{b}}$ is temperature dependent decreasing somewhat with increasing temperature.

Q: Grain boundary (α / α interfaces)
 = Boundaries in Single-Phase Solids

(a) Low-Angle and High-Angle Boundaries
(b) Special High-Angle Grain Boundaries
(c) Equilibrium in Polycrystalline Materials

(a) Low-Angle and High-Angle Boundaries

(b) Special High-Angle Grain Boundaries I
: high angle boundary but with low $\gamma_{\text {g.b. }}$.

a) Coherent twin boundary symmetric twin boundary

$$
\rightarrow \operatorname{low} \gamma_{\mathrm{g} . \mathrm{b} .} .
$$

Atoms in the boundary are essentially in undistorted positions

Twin boundary \neq Twinning plane

b) Incoherent twin boundary asymmetric twin boundary
\rightarrow low $\gamma_{\text {g.b. }}$.

Energy of twin boundary~ very sensitive to the orientation φ of the boundary plane

Twin boundary

Twin boundary

Twin boundary

(b) Special High-Angle Grain Boundaries I
c) Twin boundary energy as a function of the grain boundary orientation

Table 3.3 Measured Boundary Free Energies for Crystals in Twin Relationships
(Units mJ/m²)

Crystal	Coherent Twin- Boundary Energy	Incoherent Twin- Boundary Energy	Grain-Boundary Energy
Cu	21	\ll	\ll
Ag	8	126	$<$
$\mathrm{Fe}-\mathrm{Cr}-\mathrm{Ni}$ (stainless steel type 304)	19		377

(b) Special High-Angle Grain Boundaries II

Two grains \sim a rotation about a (100) axis $<$ a rotation about a (110) axis

Fig. 3.13 Measured grain boundary energies for symmetric tilt boundaries in Al (a) When the rotation axis is parallel to (100), (b) when the rotation axis is parallel to (110).

Why are there cusps in Fig. 3.13 (b)?

In FCC metal, several large-angle orientations with significantly lower energies than the random boundaries.
$\varphi=70.5^{\circ} \sim$ coherent twin boundary (next page), others \sim not well understood
symmetrical tilt boundary

- a small group of atoms are repeated regular intervals along the boundary. \sim relatively little free volume

Fig. 3. 14 Special grain boundary: two dimensional example.
<Boundaries in Single-Phase Solids >
(c) Equilibrium in Polycrystalline Materials

1) GB intersection: Balance of 1) boundary E \& 2) surface tension GBs in a polycrystal can adjust themselves during annealing to produce a metastable equilibrium at the GB intersections.
2) Thermally Activated Migration of Grain Boundaries

- Grain coarsening at high T , annealing due to metastable equilibrium of GB

3) Kinetics of Grain Growth

- Grain boundary migration by thermally activated atomic jump
- Mobility of GB ~ GB structures and GB segregations i.e Normal grain growth \Longleftrightarrow Abnormal grain growth

4) Effect of second-phase particle on GB migration: Zener Pinning

$$
\bar{D}_{\text {max }}=\frac{4 r}{3 f_{v}}
$$

"Phase Transformation in Materials"

$12^{\text {th }}$ lecture

Eun Soo Park

Office: 33-313
Telephone: 880-7221
Email: espark@snu.ac.kr
Office hours: by an appointment

Chapter 3 Crystal Interfaces and Microstructure

1) Interfacial Free Energy
2) Solid/Vapor Interfaces
3) Boundaries in Single-Phase Solids
4) Interphase Interfaces in Solid (α / β)
5) Interface migration

Contents for previous class

(a) E_{SV} VS γ ?

Extra energy per atom on surface: 표면 에너지
Interfacial energy ($\gamma: \mathbf{J} / \mathbf{m}^{\mathbf{2}}$)
\rightarrow Gibbs free energy of a system containing an interface of area A

"Approximated value" due to assumptions, 1) $2^{\text {nd }}$ nearest neighbors have been ignored and
2) strengths of the remaining bonds in the surface are unchanged from the bulk values.
γ interfacial energy $=$ surface free energy \leftarrow Gibb's free energy ($\mathbf{J} / \mathrm{m}^{2}$)
$\rightarrow \gamma=\mathrm{E}_{\mathrm{sv}}-\mathrm{TS}_{\mathrm{sv}}\left(\mathrm{S}_{\mathrm{sv}}\right.$ thermal entropy, configurational entropy) $\left(\mathrm{E}_{\mathrm{sv}} \uparrow \rightarrow \gamma \uparrow\right)$
$\rightarrow \partial \gamma / \partial T=-S: \begin{gathered}\text { Surface }>\text { Bulk } \\ \text { Extra confifurational entropy due to vacancies }\end{gathered}$
$0<S<3\left(\mathrm{~mJ} / \mathrm{m}^{-2} \mathrm{~K}^{-1}\right)$ due to increased contribution of entropy

- The measured γ values for pure metals near the melting temperature

$$
\mathrm{E}_{\mathrm{sv}}=3 \varepsilon / 2=0.25 \mathrm{~L}_{\mathrm{s}} / \mathrm{N}_{\mathrm{a}} \quad \square \gamma_{\mathrm{SV}}=0.15 \mathrm{~L}_{\mathrm{s}} / \mathrm{N}_{\mathrm{a}} \mathrm{~J} / \text { surface atom }
$$

(\because surface free E averaged over many surface plane, S effect at high T)

Contents for previous class

Surface energy for high or irrational \{hkl\} index

($\cos \theta / a)(1 / a)$: broken bonds from the atoms on the steps
$(\sin \mid \theta / / a)(1 / a)$: additional broken bonds from the atoms on the steps
Attributing $\varepsilon / 2$ energy to each broken bond,

$$
\begin{aligned}
\mathrm{E}_{S V} & =\frac{1}{1 \times a} \frac{\varepsilon}{2}\left(\frac{\cos \theta}{a}+\frac{\sin |\theta|}{a}\right) \\
& =\frac{\varepsilon(\cos \theta+\sin (|\theta|))}{2 a^{2}}
\end{aligned}
$$

Fig. 3.4 Variation of surface energy as a function of θ

- The close-packed orientation $(\theta=0)$ lies at a cusped minimum in the E plot.
- Similar arguments can be applied to any crystal structure for rotations about any axis from any reasonably close-packed plane.
- All low-index planes should therefore be located at low-energy cusps.
- If γ is plotted versus θ similar cusps are found ($\gamma-\theta$ plot), but as a result of entropy effects they are less prominent than in the E- θ plot, and for the higher index planes they can even disappear.

Equilibrium shape: Wulff surface

* A convenient method for plotting the variation of γ with surface orientation in 3 dimensions
* Distance from center : γ_{sv}
\rightarrow Construct the surface using γ_{sv} value as a distance between the surface and the origin when measured along the normal to the plane

Several plane $\mathrm{A}_{1}, \mathrm{~A}_{2}$ etc. with energy γ_{1}, γ_{2}
Total surface energy : $\mathrm{A}_{1} \gamma_{1}+\mathrm{A}_{2} \gamma_{2} \ldots$
$=\sum \mathrm{A}_{\mathrm{i}} \gamma_{\mathrm{i}} \rightarrow$ minimum
\rightarrow equilibrium morphology
: can predict the equilibrium shape of an isolated single crystal

How is the equilibrium shape determined?

Due to entropy effects the plot are less prominent than in the $\mathrm{E}_{\mathrm{sv}}-\theta$ plot, and for the higher index planes they can even disappear

Contents for previous class

3) Boundaries in Single-Phase Solids

(a) Low-Angle and High-Angle Boundaries
$\Theta<15^{\circ}$: total energy of the dislocations within unit area of boundary
$\Theta>15^{\circ}$: impossible to physically identify the individual dislocations \rightarrow strain field overlap \rightarrow cancel out

Broken Bonds \rightarrow high angle $\gamma_{\text {g.b. }} \approx 1 / 3 \gamma_{S / v}$.

(b) Special High-Angle Grain Boundaries
: high angle boundary but with low $\gamma_{\text {g.b. }}$

\rightarrow twin boundary

Atoms in the boundary are essentially in undistorted positions ~relatively little free volume

Q: Grain boundary (α / α interfaces)
 = Boundaries in Single-Phase Solids

(a) Low-Angle and High-Angle Boundaries
(b) Special High-Angle Grain Boundaries
(c) Equilibrium in Polycrystalline Materials

(a) Low-Angle and High-Angle Boundaries

(b) Special High-Angle Grain Boundaries I
: high angle boundary but with low $\gamma_{\text {g.b. }}$.

a) Coherent twin boundary symmetric twin boundary

$$
\rightarrow \operatorname{low} \gamma_{\text {g.b. }} .
$$

Atoms in the boundary are essentially in undistorted positions

Twin boundary \neq Twinning plane

b) Incoherent twin boundary asymmetric twin boundary
\rightarrow low $\gamma_{\text {g.b. }}$.

Energy of twin boundary~ very sensitive to the orientation φ of the boundary plane

Twin boundary

Twin boundary

Twin boundary

(b) Special High-Angle Grain Boundaries I
c) Twin boundary energy as a function of the grain boundary orientation

Table 3.3 Measured Boundary Free Energies for Crystals in Twin Relationships
(Units mJ/m²)

Crystal	Coherent Twin- Boundary Energy	Incoherent Twin- Boundary Energy	Grain-Boundary Energy
Cu	21	\ll	\ll
Ag	8	126	$<$
$\mathrm{Fe}-\mathrm{Cr}-\mathrm{Ni}$ (stainless steel type 304)	19		377

(b) Special High-Angle Grain Boundaries II

Two grains \sim a rotation about a (100) axis $<$ a rotation about a (110) axis

Fig. 3.13 Measured grain boundary energies for symmetric tilt boundaries in Al (a) When the rotation axis is parallel to (100), (b) when the rotation axis is parallel to (110).

Why are there cusps in Fig. 3.13 (b)?

In FCC metal, several large-angle orientations with significantly lower energies than the random boundaries.
$\varphi=70.5^{\circ} \sim$ coherent twin boundary (next page), others \sim not well understood
symmetrical tilt boundary

- a small group of atoms are repeated regular intervals along the boundary. \sim relatively little free volume

Fig. 3. 14 Special grain boundary: two dimensional example. 입계의 원자구조가 주위의 격자와 폭넓게 잘 일치 됨

Contents for today's class

< Boundaries in Single-Phase Solids >
(c) Equilibrium in Polycrystalline Materials
(1) GB intersection: Balance of 1) boundary E \& 2) surface tension GBs in a polycrystal can adjust themselves during annealing to produce a metastable equilibrium at the GB intersections.
(2) Thermally Activated Migration of Grain Boundaries

- Grain coarsening at high T, annealing due to metastable equilibrium of GB
(3) Kinetics of Grain Growth
- Grain boundary migration by thermally activated atomic jump
- Mobility of GB ~ GB structures and GB segregations i.e Normal grain growth \Longleftrightarrow Abnormal grain growth
(4) Effect of second-phase particle on GB migration: Zener Pinning

$$
\bar{D}_{\max }=\frac{4 r}{3 f_{v}}
$$

Q: Grain boundary (α / α interfaces) = Boundaries in Single-Phase Solids

(a) Low-Angle and High-Angle Boundaries
(b) Special High-Angle Grain Boundaries
(c) Equilibrium in Polycrystalline Materials
(1) GB intersection: Balance of 1) boundary E \& 2) surface tension GBs in a polycrystal can adjust themselves during annealing to produce "a metastable equilibrium at the GB intersections".
(c) Equilibrium in Polycrystalline Materials

Microstructure \rightarrow determined by how the different GBs join together in space
\Rightarrow Examine how the possibility of different GB energies affects the microstructure of a poly crystalline material

Fig. 3.15 Microstructure of an annealed crystal of austenitic stainless steel.
: contains high-/low-angle GBs as well as (in-)coherent twin Bs with different GB energies

Poly grain material: consider the factors that control the grain shapes!
Two grains: a plane (GB), three grains: a line (grain edge), four grains: at a point (grain corner)

1) Why GBs exist at all in annealed materials?

Equilibrium ~ Mater. with no GB
\because G.B. =high-E regions \rightarrow G \uparrow
: never a true equilibrium structure
\rightarrow GBs in a polycrystal can adjust themselves during annealing to produce a metastable equilibrium at the GB intersections.
2) Conditions for equilibrium at a GB junction
by considering the forces that each B exerts on the junction

2) F_{y} ?
P is moved at a small distance (δ_{y})
A. work done by : $\mathrm{F}_{\mathrm{y}} \boldsymbol{\delta}_{\mathrm{y}}$
B. increase boundary energy caused
by the change in orientation $\delta \boldsymbol{\sim} \boldsymbol{l}(\mathrm{d} \gamma / \mathrm{d} \theta) \delta \theta$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{y}} \delta_{\mathrm{y}}=I(\mathrm{~d} \gamma / \mathrm{d} \theta) \delta \theta\left(\because \delta_{\mathrm{y}} \sim I \mathrm{~d} \theta\right) \\
& \rightarrow \mathrm{F}_{\mathrm{y}}=\mathrm{d} \gamma / \mathrm{d} \theta \text { torque force }
\end{aligned}
$$

(1)
\rightarrow There is little effect of orientation

(2)

$$
\mathbf{F}_{\mathbf{y}}=\mathbf{d} \gamma / \mathbf{d} \theta
$$

Minimum $\gamma \sim$ torque $=0$ No rotation!

$$
\mathbf{F}_{\mathbf{y}}=\mathbf{d} \gamma / \mathbf{d} \theta \sim \text { torque }>\mathbf{0}
$$

If the GB E is dependent on the orientation of the B, a force $d \gamma / d \theta(>0)$ must be applied to the ends of the boundary to prevent it rotating into a lower energy orientation.
입계 E 가 입계 방위에 의존한다면, 회전하지 않고 유지하기 위해 입계에 cusp까지 끌어당기는 힘에 대응하는 힘 작용
\Rightarrow How metastable equilibrium? \rightarrow force (torque)

If the boundary E is independent of orientation,

* General high angle boundary : $\mathrm{d} \gamma / \mathrm{d} \theta \approx 0$ (GB behaves like a soap film)
\rightarrow Under these conditions the requirements for metastable equilibrium at junction between three grains is that the boundary tensions $\gamma_{13}, \gamma_{23}, \gamma_{12}$ must balance.

3) The balance of GB tensions for a GB intersection in metastable equilibrium

Ex) If the solid-vapor energy $\left(Y_{S / V}\right)$ is the same for both grains,

$$
2 \gamma_{S V} \cos \frac{\theta}{2}=\gamma_{b}
$$

(Here, presence of any torque terms ~ neglected)
One method of measuring GB energy:
: anneal a specimen at a high temp. and then measure the angle at the intersection of the surface with B.

$$
\begin{equation*}
\frac{\gamma_{23}}{\sin \theta_{1}}=\frac{\gamma_{31}}{\sin \theta_{2}}=\frac{\gamma_{12}}{\sin \theta_{3}} \tag{Eq.3.13}
\end{equation*}
$$

if all GBs have same GB energy independent of boundary orientation

$$
\rightarrow \theta=120^{\circ}
$$

Eq. 3.13 applies to any three boundaries i.e. grain 1~ different phase to grain $2 \& 3$.

Fig. 3. 18 The balance of surface and grain boundary tensions at the intersection of a grain boundary with a free surface.

* Junction between coherent and incoherent twin boundary segments showing the importance of torque effects
: the orientation dependence of twin boundary E, Fig. 3.13b
\rightarrow It is energetically favorable for twin boundaries to align themselves parallel to the twinning plane.

\rightarrow If the boundary is constrained to follow a macroscopic plane that is near but not exactly parallel to the twining plane, the boundary will usually develop a stepped appearance with large coherent low-E facets and small incoherent high-E risers.
\rightarrow does not minimize the total twin boundary E but minimize the total free E

(a) twin boundary in a thin foil specimen as imaged in the TEM
* Junction between coherent and incoherent twin boundary segments showing the importance of torque effects

(c)

(a) twin B in a thin foil specimen as imaged in the TEM, (b) \& (c), the coherent and incoherent segments of the twin B.

At the coherent/incoherent twin junction as shown in (b),
incoherent twin B tension, γ_{i} must
balanced by a torque term

$$
\gamma_{i} \leq \mathbf{d} \gamma_{C} / \mathbf{d} \theta
$$

Likewise, coherent twin B tension, γ_{c} must balanced by a torque term

$$
\gamma_{\mathrm{c}} \geq \mathbf{d} \gamma_{\mathrm{i}} / \mathbf{d} \theta
$$

However, since γ_{c} is usually very small, the incoherent interface need only lie in a rather shallow energy cusp.

From energy consideration, if (metastable) equilibrium exists at P in Fig. (c), then a small displacement such as that shown should either produce no change or an increase in the total free energy of the system, i.e. dG > 0 considering unit depth a small displacement $\delta \gamma$ at P will increase the total free E by an amount

$$
\mathrm{dG}=I\left(\mathrm{~d} \gamma_{\mathrm{c}} / \mathrm{d} \theta\right) \delta \theta-\gamma_{\mathrm{i}} \delta y>0 \quad\left(\because \delta_{\mathrm{y}} \sim I \mathrm{~d} \theta\right) \quad \Rightarrow \quad \gamma_{\mathrm{i}} \leq \mathbf{d} \gamma_{c} / \mathbf{d} \theta
$$

Q: Grain boundary (α / α interfaces)
 = Boundaries in Single-Phase Solids

(a) Low-Angle and High-Angle Boundaries
(b) Special High-Angle Grain Boundaries
(c) Equilibrium in Polycrystalline Materials
(2) Thermally Activated Migration of Grain Boundaries
: Grain coarsening at high T, annealing due to metastable equilibrium of GB

Considering factors of G.B. growth

(a) Pinning particle
(b) $2^{\text {nd }}$ phases
(c) Anisotropic σ, M
(d) Impurity (solute) drag
(e) Strain energy
(f) Free surface

GB intersection: Balance of 1) boundary E \& 2) surface tension
3.3.4. Thermally Activated Migration of Grain Boundaries

If the boundary is curved in the shape of cylinder, Fig. 3.20a, it is acted on by a force of magnitude γ / l towards its center of curvature.

Therefore, the only way the boundary tension forces can balance in three dimensions is if the boundary is planar $(r=\infty)$ or if it is curved with equal radii in opposite directions, Fig. 3.20b and c.

Fig. 3.20 (a) A cylindrical boundary with a radius of curvature r is acted on by a force γ / r.
(b) A planar boundary with no net force. (c) A doubly curved boundary with no net force.

A random grain structure is inherently unstable and, on annealing at high temperatures, the unbalanced forces will cause the boundaries to migrate towards their centers of curvature.
a) Direction of Grain Boundary Migration during Grain Growth

For isotropic grain boundary energy in two dimensions,
Equilibrium angle at each boundary junction? $\rightarrow 120^{\circ} 3$ boundaries intersections
Equilibrium angle at each boundary junction in 3D? $\rightarrow 109^{\circ} 2^{\prime}$ A corner formed by 4 grains
Morphology of metastable equilibrium state \rightarrow Migration during annealing
Effect of different boundary curvatures in two dimensions

Boundaries around Grain < 6 ; grain shrink, disappear

Boundaries around Grain $=6$; equilibrium

Boundaries around Grain > 6 ; grain growth

Fig. 3. 21 Two-dimensional GB configurations, The arrows indicate the directions boundaries will migrate during grain growth.
\neg Reduce the \# of grains, increase the mean grain size, reducing the total G.B. energy called grain growth (or grain coarsening): at high temperature above about $0.5 \mathrm{~T}_{\mathrm{m}}$

Grain Growth (Soap Bubble Model)

Fig. 3.22 Two-dimensional cells of a soap solution illustration the process of grain growth. Numbers are time in minutes.

Example of Grain Growth simulation in 3D

b) Grain Coarsening at High Temp. annealing (above about $0.5 \mathrm{~T}_{\mathrm{m}}$):

The atoms in the shrinking grain detach themselves from the lattice on the high pressure side of the boundary and relocate themselves on a lattice site of the growing grain.

(b)

Fir. 3. 23 (a) The atomic mechanism of boundary migration. The boundary migrates to the left if the jump rate from grain $1 \rightarrow 2$ is greater than $2 \rightarrow 1$. Note that the free volume within the boundary has been exaggerated for clarity.
(b) Step-like structure (돌출맥 구조) where close-packed planes protrude into the boundary.

* Grain coarsening at high T annealing curvature $\sim \Delta P \sim \Delta \mu$

\rightarrow metastable equilibrium state
: \# \downarrow, size \uparrow

> Grain A High energy

Grain B
Low energy

$$
\Delta \mathbf{G}=2 \gamma \mathbf{V}_{\mathrm{m}} / \mathbf{r} \sim \Delta \boldsymbol{\mu} \quad \text { Gibbs-Thomson Eq. }
$$

: effect of pressure difference by curved boundary
\longrightarrow Driving force for grain growth: F
If unit area of GB advances a distance δx, \# of moles of material that enter grain B
Fig. 3.25 A boundary separating grains with different free energies is subjected to a pulling force F.

Work : F dx $=\left(2 \gamma V_{m} / \mathbf{r}\right)\left(\delta x / V_{m}\right)$

$$
F=2 \gamma / r=\Delta G / V_{m} \text { (by curvature) }
$$

1) Pulling force per unit area of boundary: $F=\frac{\Delta G}{V_{m}}\left(\mathrm{~N} \mathrm{~m}^{-2}\right)$
Applies equally to any boundary whose migration causes a decrease in free energy, i.e. during recrystallization,

Free energy difference per unit volume the boundaries btw the new strain-free grains and the original deformed grains

Q: Grain boundary (α / α interfaces)

(a) Low-Angle and High-Angle Boundaries
(b) Special High-Angle Grain Boundaries
(c) Equilibrium in Polycrystalline Materials
(3) Kinetics of grain growth

- Grain boundary migration (v) by thermally activated atomic jump

Boundary velocity $\boldsymbol{v}=\frac{A_{2} n_{1} V_{1} V_{m}^{2}}{N_{a} R T} \exp \left(-\frac{\Delta G^{a}}{R T}\right) \frac{\Delta G}{V_{m}} \boldsymbol{\nu} \sim \Delta \mathrm{G} / \mathrm{V}_{\mathrm{m}}$ driving force
M : mobility = velocity under unit driving force $\sim \exp (-1 / T)$
rate of grain growth $d \underline{D} / d t \sim 1 / \underline{D}$, exponentially increase with T
$\rightarrow \underline{D}=k^{\prime} \mathrm{t}^{\mathrm{n}}$ (Experimental: $\mathrm{n} \ll 1 / 12,1 / 2$ at pure metals or high Temp.)

- Mobility of GB~ affected by both type of boundaries and GB segregation or $2^{\text {nd }}$ phase precipitation

2) How fast boundary moves? : Grain Growth Kinetics

Effect of the driving force on the kinetics of boundary migration
Grain boundary migration by thermally activated atomic jump

* (1) \rightarrow (2) : Flux
(1) atoms in probable site : n_{1}

Vibration frequency : $\boldsymbol{v}_{\mathbf{1}}$
A_{2} : probability of being accommodated in grain (2)

$$
\rightarrow \mathrm{A}_{2} \mathrm{n}_{1} v_{1} \exp \left(-\Delta \mathrm{G}^{\mathrm{a}} / \mathrm{RT}\right) \text { atom } / \mathrm{m}^{2} \mathrm{~s}=J_{1 \rightarrow 2}
$$

* (2) \rightarrow (1) : Flux

$$
\rightarrow \mathrm{A}_{1} \mathrm{n}_{2} v_{2} \exp \left[-\left(\Delta \mathrm{G}^{\mathrm{a}}+\Delta \mathrm{G}\right) / \mathrm{RT}\right]=J_{2 \rightarrow 1}
$$

When $\Delta \mathbf{G}=0$, there is no net boundary movement.

$$
A_{2} n_{1} v_{1} \approx A_{1} n_{2} v_{2}=A n v
$$

When $\Delta G>0$, there will be a net flux from grain 1 to 2 . (For a high-angle $G B, A_{1} \approx A_{2} \approx 1$)

$$
\left(A_{2} n_{1} v_{1} \approx A_{1} n_{2} v_{2}=A n v\right)
$$

$$
J_{\text {net }}=J_{1 \rightarrow 2}-J_{2 \rightarrow 1}=A n v \exp \left(-\Delta G^{a} / R T\right)[1-\exp (-\Delta G / R T)] 32
$$

- If the boundary is moving with a velocity v, the above flux must also be equal to 순표류속도

$$
\underset{\text { Diffusion flux }}{\boldsymbol{J}=\boldsymbol{v}} \cdot \mathbf{C}_{\mathrm{B}} \rightarrow \boldsymbol{v} /\left(\mathbf{V}_{\mathrm{m}} / \mathbf{N}_{\mathrm{a}}\right) \quad\left(\mathrm{V}_{\mathrm{m}} / \mathrm{N}_{\mathrm{a}}: \text { atomic volume }\right)
$$

If $\Delta \mathbf{G}$ is small $[\Delta \mathbf{G} \ll \mathrm{RT}] \longrightarrow$ Apply Tayler expansion to $\exp (-\Delta G / R T)$ term

$$
J_{\text {net }}=A_{2} \mathrm{n}_{1} v_{1} \exp \left(-\Delta \mathrm{G}^{\mathrm{a}} / \mathrm{RT}\right)[\Delta \mathrm{G} / \mathrm{RT}]\left(\mathrm{atom} / \mathrm{m}^{2} \mathrm{~s}\right)=v /\left(\mathrm{V}_{\mathrm{m}} / \mathrm{N}_{\mathrm{a}}\right)
$$

$v \sim \Delta G / V_{m}$ driving force
$\rightarrow \mathrm{F}=\Delta \mathrm{G} / \mathrm{V}_{\mathrm{m}}$
M: mobility of boundary,
i.e., the velocity under unit driving force

$$
\text { where } M=\left\{\frac{A_{2} n_{1} v_{1} V_{m}^{2}}{N_{a} R T} \exp \left(\frac{\Delta S^{a}}{R}\right)\right\} \exp \left(\frac{-\Delta H^{a}}{R T}\right)
$$

M : mobility = velocity under unit driving force $\sim \exp (-1 / T)$
exponentially increase with temp
The boundary migration is a thermally activated process. (입계 이동은 확산처럼 열할성화 과정)

* Kinetic of grain growth

1) driving force $\mathrm{F}=\Delta \mathrm{G} / \mathrm{V}_{\mathrm{m}} \quad \rightarrow \quad v=\mathrm{M}\left(\Delta \mathrm{G} / \mathrm{V}_{\mathrm{m}}\right) \quad$ Boundary velocity

Pulling force $\quad \mathrm{M}$: exponentially increase with temp.
v : relation to grain coarsening

Mean grain size (diameter) : $\underline{\mathrm{D}}$
Mean radius of curvature of boundary : r
if $\underline{D} \propto r$,

Mean velocity : $\underline{\boldsymbol{v}}=\alpha \mathrm{M}\left(\Delta \mathrm{G} / \mathrm{V}_{\mathrm{m}}\right)=\mathrm{d} \underline{\mathrm{D}} / \mathrm{dt} \quad\left(\Delta \mathrm{G}=2 \gamma \mathrm{~V}_{\mathrm{m}} / \mathrm{r}\right)$

$$
=\alpha \mathrm{M}(2 \gamma / \underline{\mathrm{D}})=\mathrm{d} \underline{\mathrm{D}} / \mathrm{dt} \quad(\alpha=\text { proportional constant } \sim 1)
$$

\underline{v} (rate of grain growth) $\sim 1 / \underline{D}$, exponentially increase with T

Mean velocity : $\underline{\boldsymbol{v}}=\alpha \mathrm{M}\left(\Delta \mathrm{G} / \mathrm{V}_{\mathrm{m}}\right)=\mathrm{d} \underline{\mathrm{D}} / \mathrm{dt} \quad\left(\Delta \mathrm{G}=2 \gamma \mathrm{~V}_{\mathrm{m}} / \mathrm{r}\right)$

$$
=\alpha \mathrm{M}(2 \gamma / \underline{\mathrm{D}})=\mathrm{d} \underline{\mathrm{D}} / \mathrm{dt} \quad(\alpha=\text { proportional constant } \sim 1)
$$

Integration of previous eq. from D_{0} to \underline{D},

$$
\begin{aligned}
& \rightarrow \int_{\mathrm{D}_{0}}^{\mathrm{D}} \mathrm{~d} \underline{\mathrm{D}}=\int 2 \alpha \mathrm{M} \gamma \mathrm{dt} \\
& \rightarrow \\
& \rightarrow\left(\underline{\mathrm{D}}^{2}-\mathrm{D}_{0}^{2}\right)=2 \alpha \mathrm{M} \gamma \mathrm{t} \\
& \left.\rightarrow \underline{\mathrm{D}}^{2}-\mathrm{D}_{0}^{2}\right)=4 \alpha \mathrm{M} \gamma \mathrm{t}=\mathrm{kt} \\
& \rightarrow \underline{\mathrm{D}}^{2}=\mathrm{D}_{0}^{2}+\mathrm{kt}
\end{aligned}
$$

$$
\text { if } \mathrm{D}_{0} \approx 0 \rightarrow \underline{\mathrm{D}}=\mathrm{k}^{\prime} \mathrm{t}^{1 / 2}
$$

$r=$ average radius of particles
$f_{v}=$ volume fraction of particles
$\rightarrow \underline{D}=k^{\prime} t^{n} \quad$ (experimental : $\mathrm{n} \ll 1 / 2,1 / 2$ in very pure metals or only high temp.)

Single phase

\because the velocity of GB migration, v is not linear function of $\Delta \mathrm{G}$.
$\rightarrow \mathrm{M}$ is not a const. but varies with $\Delta \mathrm{G}$ and thus also with D .
\rightarrow Variation of M in alloys could arise from solute drag effects. (M in alloy is relatively slower than that of pure metal)

Whose mobility would be high between special and random boundaries?
By considering grain boundary structure,
(Mobility depending on GB structures)
[High energy G.B. \rightarrow relatively open G.B. structure \rightarrow High mobility
L Low energy G.B. \rightarrow closed (or denser) G.B. structure \rightarrow Low mobility

${ }^{\text {But, }}$ Ideal \Longleftrightarrow Real

2) The other special boundaries are usually more mobile than random high-angle boundary. Why?

If the metal were "perfectly" pure the random boundaries would have the higher mobility.
\Rightarrow Due to differences in the interactions of alloy elements or impurities with different boundaries

Migration rate of special and random boundaries at $300{ }^{\circ} \mathrm{C}$ in zone-refined lead alloyed with tin under equal driving forces

<Increasing GB enrichment with decreasing solid solubility in a range of system>
X_{0} : matrix solute concentration/ $\underline{X}_{\mathrm{b}}$: boundary solute concentration ΔG_{b} : free energy reduced when one mole of solute is moved to GB from matrix.
\rightarrow The high mobility of special boundaries can possibly be attributed to a low solute drag on account of the relatively more close-packed structure of the special boundaries.

Normal Grain Growth

- Grain boundary moves to reduce area and total energy
- Large grain grow, small grains shrink
- Average grain size increases
- Little change of size distribution

Ref. Hillert ACTA Mater. 13227 (1965)

Abnormal Grain Growth

(high mobility of special GBs \rightarrow development of recrystallization textures)
\square Discontinuous grain growth of a few selected grains

- Local breaking of pinning by precipitates
- Anisotropy of grain boundary mobility
- Anisotropy of surface \& grain boundary energy
- Selective segregation of impurity atoms
- Inhomogeneity of strain energy

\square Bimodal Size distribution

Abnormal Grain Growth

ex) Si steel \rightarrow improvement of "soft magnetic property" = discontinuous grain growth or secondary recrystallization

Figure 5.87 Optical micrograph showing abnormal grain growth in a fine grain steel containing $0.4 \mathrm{wt} \%$ carbon. The matrix grains are prevented from growing by a fine dispersion of carbide particles that are not revealed. Magnification $\times 135$. (After Gawne and Higgins 1971. Courtesy of the Metals Society.)

Fig. 5.48. Evidence for the preferential formation of (110)[001]-oriented grains by secondary recrystallization in $5 \% \mathrm{Si}-\mathrm{Fe}$ (Graham [1969]).

Q: Grain boundary (α / α interfaces)
 = Boundaries in Single-Phase Solids

(a) Low-Angle and High-Angle Boundaries
(b) Special High-Angle Grain Boundaries
(c) Equilibrium in Polycrystalline Materials
(4) Effect of second-phase particle on GB migration : Zener Pinning

$$
\bar{D}_{\text {max }}=\frac{4 r}{3 f_{v}}
$$

Schematic diagram illustrating the possible interactions of second phase particles and migrating grain boundaries.

pinning by particles

Pinning by particle

제 2 상이 존재할 때 결정립의 성장

Effect of Second-Phase Particles on GB migration

Interaction with particles Zener Pinning

Derive the expression for the pinning effect of grain boundary migration by precipitates.

since $\gamma \sin \{\theta\}=$ force per unit length

$$
F=\gamma \sin \{\theta\} \times \begin{gathered}
2 \pi r \cos \{\theta\} \\
\text { circumference }
\end{gathered}=\mathrm{AB}
$$

so that at $\theta=45^{\circ}$

$$
F_{\max }=\gamma \pi r
$$

Maximum force exerted by a single particle

Interaction with particles Zener Pinning

$f_{v}=$ volume fraction of randomly distributed particles of radius r
$N_{\text {total }}=$ number of particles per unit volume

$$
N=\frac{f_{v}}{4 / 3 \pi r^{3}}
$$

Only particles within one radius (solid circles) can intersect a planar boundary

If the boundary is essentially planar,

$$
N_{\text {interact }}=2 r N_{\text {total }}=3 f_{v} / 2 \pi r^{2}
$$

Mean \# of particles intersecting unit area of a random plane
Given the assumption that
all particles apply the maximum pinning force,
the total pinning pressure

$$
P=\frac{3 f_{v}}{2 \pi r^{2}} \cdot \pi r \gamma=\frac{3 f_{v} \gamma}{2 r}
$$

This force will oppose the driving force for grain growth,

Interaction with particles Zener Pinning

$$
P=\frac{3 f_{v}}{2 \pi r^{2}} \cdot \pi r \gamma=\frac{3 f_{v} \gamma}{2 r}
$$

pinning pressure

0

Driving force for grain growth $\sim \frac{2 \gamma}{\bar{D}}$
$\rightarrow \mathrm{F}=2 \gamma / \mathrm{r}=\Delta \mathrm{G} / \mathrm{V}_{\mathrm{m}}$ (by curvature)

This force will oppose the driving force for grain growth, $2 \gamma / \bar{D}$.

$$
\frac{2 \gamma}{\bar{D}}=\frac{3 f_{v} \gamma}{2 r} \rightarrow \bar{D}_{\max }=\frac{4 r}{3 f_{v}}
$$

Driving force will be insufficient to overcome the drag of the particles and grain growth stagnates.

For fine grain size

\rightarrow a large volume fraction of very small particles

Summary for today's class

Equilibrium in Polycrystalline Materials

- Thermally Activated Migration of Grain Boundaries:

Metastable equilibrium of grain boundary (Balances of 1) boundary $E+2$) surface tension)
\rightarrow real curvature ($\Delta \mathrm{P} \rightarrow \Delta \mathrm{G}$: Gibbs Thomson Eq.) $\rightarrow \mathrm{F}=2 \gamma / r=\Delta G / V_{m}$ (by curvature)
\rightarrow Grain coarsening at high T annealing
(Pulling force per unit area of boundary)

- Kinetics of Grain Growth
- Grain boundary migration (v) by thermally activated atomic jump
 rate of grain growth $d \underline{D} / d t \sim 1 / \underline{D}$, exponentially increase with T
 and GB segregation or $2^{\text {nd }}$ phase precipitation
Ex) Effect of second-phase particle - Zener Pinning

$$
\bar{D}_{\text {max }}=\frac{4 r}{3 f_{v}}
$$

Summary for today's class

- Grain Growth
- Normal grain growth

Abnormal grain growth

(high mobility of special GBs
\rightarrow development of recrystallization textures)

< Bimodal Size distribution >

