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General Form of Transfer Function

Y (s) N e _ (5= 25— z) (5 - 2) gy
Gls) == p1)(5—p2) (5 — p)

Poles: Roots of the denominator polynomial D(s)

related to stability, oscillation, speed of response ...
Zeros: Roots of the numerator polynomial N(s)

related to inverse response and overshoot

25+ 1
(s) s2 1 4s 13 P1 y P2 y 21 /
5 14++/3j
G(s) = =
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Quick Analysis

Given a transfer function G(s), what can you say quickly (without
doing a lot of calculation) about the dynamics that the transfer
function represents?

Stability: input returning to the original equilibrium value (after some
excursion) — output eventually returning to the original
equilibrium value?

Gain: output change / input change

Overdamped or underdamped: If underdamped, frequency of
oscillation”?

Any inverse response or overshoot?

General speed of response (e.g., settling time)
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Definition of Stability

.
Stable —
System
t
t
y’ y’
Unstable :
System /\‘ on
t t

For , same as (Bounded-Input/Bounded-

Output) stability
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Stability of Linear (Linearized) Systems

If all poles have ( ) real part, the dynamics is stable

Vi, Re(p;) <0

If any of the poles have positive or zero real part, the dynamics is unstable

Left Half Plane

Re

Pole’s Location
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Yl (S) =

1 1
Ex | i Gi(s) = Ga(s) =
) Unit step input 1(s) s+ 1 2(s) s _ 1
1 1 1 1 1 1 1
s+1 s 8+1+3 2() s—1 s s—1

Impulse response

y(t) = e ya(t) = €'
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Match the transfer functions with impulse responses and determine
their stability

TFs Impulse Response
1
(S o 1)(8 + 5) a + b€_5t Stable
1
s(5 +5) ae~2t 4 pe= 5t Unstable
1
(S _|_ 2)(3 ‘I‘ 5) CL@t —|— b€_5t Can,t te”
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System Gain

, Output Change  3/(00)
Gain = —
Input Change u' (00)

Step change in the input of size M — Ultimate response in y?

s—0 S s—0

y (00) = lim s (G(s)%) — lim G(s)M

Hence, we get
y'(00)  limg_0G(s)M

Gain = (o) 7 = ;1_% G(s)
( ) is the gain; this works only when the dynamics is stable.
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Determine the process gain of the TFs below

1
Gls) = (54 2)(s + 5)
Hs + 2
G) = s+ 7) (752 + 25 1 5)
1
Gls) = (5—2)(s +5)
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Oscillation (Underdamped)

Nonoscillatory input —— Oscillatory response

If the poles are ( ) numbers (w/ nonzero imaginary
parts), the dynamics is underdamped

Im

>Re

Pole’s Location
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1 oscill. 1 oscilll.
G = G =
1(5) s?+2s+2 stable 1(s) s2—2s+2 unstable

p=—1%] p=+lzj

Unit step input

1 —0.2540.255 —0.25-0.255 0.5
Yl(S) = 5 — . + — + —
(s24+2s4+2)-s s—(=147) s—(—=1—17) S

y1(t) = (=0.25 + 0.255)e "1t 4 (—0.25 — 0.25)e 1t 1 0.5
Tt = 7 (cost + jsint) Leonhard Euler (1707-1783)

= 0.5 — 0.5e” “(cost + sint)

1 —0.25—-0.255 —0.254+0.2557 0.5
Ya(s) = — =) 4 U202
(2 —2s+2)-s s — (14 7) s—(1—17) s

y2(t) = 0.5 — 0.5¢"(cos t + sin t)
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Overshoot and Inverse Response

Existence of overshoot or inverse response can be determined
from zeros of the TF

Overshoot: “a” real (negative) zero closer to the
origin than the dominant pole (the pole that’s closest to the origin)

Inverse response: “a” real (positive) zero

The closer the RHP zero to the origin, the more pronounced
the inverse response
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Draw the step response to each TF

(10s + 1)
(3s+1)(2s + 1)

Gl(S) =

Pr=—5,DP2=—75, 21 = ——=

KXX@® Re

LHP zero, ( )
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(2.55 + 1)
(3s+1)(2s+ 1)

GQ(S) =

LHP zero, (
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Draw the step response to each TF

(—2.5s+ 1)

@3(8) = e D@s 1+ 1)

1 1

1
pl——§7 P2——§a Zl_ﬁ

XX ®

Re

RHP zero, Inverse Response
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 (—10s+1)
Gils) = e D@s + 1)
bt
37 P2 = 27 21 = 10
Im
KXK—XK—@
RHP zero, (

Re
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G3
G4

SRS SEOUL
%ﬁ@ NATIONAL @ JM. Lee



e

§B8 SEOUL

T

Inverse Response Example

short

Reboiler level response to an increase

in the steam flow rate

- An increase

in the boiler rate intensifies frothing in the
tray above and causes a larger spill-over,
increasing the level

: More
liquid is boiled-off, decreasing the level
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Some Specific Results

e A real positive zero is a sufficient condition for inverse
response to be exhibited

 An odd number of zeros with positive real part results
In the initial slope of a step response being in the
“wrong” direction (inverse response)

 Only complex (i.e. non-real) zeros with positive real
parts are not sufficient to cause inverse response -
but “may” occur depending on the definition of
inverse response. (cannot generalize)
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Varied Definition of Inverse Response

Textbook Definition

The initial response to a step input is in one direction but the
final steady state is in the opposite direction
dy’

- x 1y (t =00) <0
i xv=

Another Definition (Not Well-Known)

y'(t = o0)|

1 / _
max |y’ (1) — AND  ¥y'(to) = 0 for some ¢
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Multiple RHP Zeros

The system with an odd number of RHP zeros
exhibits true inverse response in the sense
that the initial direction of the step response
will always be opposite to the direction of the
final steady state, regardless of the number of
inversions involved in this response.

On the other hand, the initial portion of the
step response of a system with an even
number of RHP zeros exhibits the same even
number of inversions before heading in the
direction of the final steady state, but the
initial direction is always the same as the
direction of the final steady state.

Gl(S) =

(—3s+1)(—s+1)

(2s+1)(5s+1)(4s+ 1)

G1

0.8 -

0.6

0.2 -

-0.2
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Multiple RHP Zeros

(=3s+1)(—s+1)(—2.5s+1) (=3s+1)(—s+1)(—2.5s+1)(—6s+ 1)

Ga(s) = (25 +1)(5s + 1)(4s + 1)(3.55 + 1)(7s + 1)

Gg(S) =

(2s+1)(5bs+1)(4s+1)(3.5s + 1)
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Complex RHP Zeros; even nhumber

! (s +1)3 i (s +1)3
a4 | | | , G5
- 0 1 2 3 Tii,]e 5 6 7 8 0 1 2 3 Ti:,]e 5 6
Two complex RHPs Two complex RHPs
(No inverse response at all)
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Complex LHP Zeros

2 2
s“+ 25+ 2 s“+2s4+2)(s+3
Gols) = : Gr(s) = | ILas)
(s +5) (s +5)
g x10° | | Gﬁ | | | g x10° | | 9
0 0.5 1 1.5 Tifne 2.5 3 3.5 4 0 0.5 1 1.5 Tifne 2.5 3 3.5 4
Two complex LHP zeros Two “dominant” complex LHP zeros
(overshoot + undershoot) (overshoot + undershoot)
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Complex LHP Zeros

(s +25+2)(3s+1)

Ga(s) = (s +5)*
012 F C?
One “dominant” real LHP zero
| (overshoot + undershoot)
1 Does not show a true overshoot
o! f — cannot generalize

L | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5
Time
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Speed of Response

Speed of response is determined roughly by the dominant pole
(the pole that’s close to the origin), which corresponds to the
slowest time constant.

a )

|

dominant pole
N _J

Settlingtime = 3~5 X
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2nd Order System Plus a Zero

A
1(f) . 1/ 0O &
System
0 t
K(r,s+ 1
V(s)= LSt D)

(18 + 1) (128 + 1)

d? d du
+“—> 7172%:;/ + 2(my +72)d—§ +y=K (ra— +u>

Possible responses

Monotonic response (like the over damped 2nd order system)
Overshoot
Inverse response
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Effect of 7,

3r T, T1 > T9

0
KM

Ta > T1 : Overshoot
To < 71 : Overdamped response with no overshoot

To < 0 :Inverse response (the initial response is the opposite
direction to the final response

$GH® SEOUL
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Example Scenario?

Two first-order effects in parallel:

k1
T15+1
u Y
. ko
1 Tos+1
(k +k ) 72k1-|-71k28_|_ 1
Y(S) L kl _|_ kQ . 1 2 k1-|-l€2
U(s) ms+1 ms+1 (115 4+ 1)(128 + 1)
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Transport Delays

Plug flow
— U<
Ca; Cy
< L >
C’, C’y

C'y(t) = Clyit — 0) 5 Cly(s) = e Clyi(s)

L
0 =

- : dead time or transport delay

© JM. Lee
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FOPTD System

Ca; }4 ; N Cro
.L 4
q >
CA
K —0s
Ch(s) =~ Chols), Chols) = e Cly(s)
K AL
Chls) = -y " Chi(), K =1 7= 0=
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Approximating a High-Order System with a Delay

Cao(, q
L kg [ by [y
06 06 e o 0 o 06
Cai(0), g CA(n_l)(f), q CAH(;), q
/ 1 / 1 /
CA(i—I—l) (S) — 7'8——|—1CA7’( ) = CAn( ) — (7'8 n 1)nCAO(S)
~ (for large n)

Note: e* =14z, 7=V/q
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Approximating High-Order Systems with 1st or
2nd Order Plus Delay

Most chemical processes are of very high-order dynamics due
to imperfect mixing, wall effect, flow dynamics, etc.

G(s =
S) =
(ris+ 1) (mes+1)(m3s+ 1)+ (Ths + 1)
Suppose 11 is a single dominant time constant: 1 >> 7, -, T,
K
Q ~ —0s
(S) 1S + 16 ’

Suppose a case of two dominant time constants:

71,72 > > T3, yTn

K —0s

G~ s T (s 1 D

Y
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Development of Empirical Models from Process Data

* |n some situations, it is not feasible to develop a
theoretical (first-principles) model due to:

- Lack of information
- Model complexity

- Engineering effort required

* An attractive alternative: Develop an empirical
dynamic model from

- Advantage: Less effort is required

- Disadvantage: The model is only valid (at best) for the range of
data used in its development

- Empirical models usually don’t extrapolate very well

.
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Fitting First-Order/Second-Order Model
using Step Tests

e Simple TF models can be obtained graphically from
step response data

* Process reaction curve: a plot of the output response
of a process to a step change input

 |f the process of interest can be approximated by a
first- or second-order linear model, the model
parameters can be obtained by inspection of the
process reaction curve
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First-Order Plus Time Delay Model

Ke—@s
7s + 1

G(s) =

e For this FOPTD model we note the following
characteristics of its step response:

- The response attains 63.2% of its final response at time,t=7+ 6

- The line drawn tangent to the response at maximum slope (t = 6)
intersects the yYKM =1 lineatt=7+6

- The step response is essentially completed at t = 5z. In other
words, the settling time is ts = 57
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