고성능 콘크리트 공학 High Performance Concrete Engineering

⟨Hardened Properties⟩

문주혁 조교수 Assistant Prof. Juhyuk Moon

Response of Concrete to Stress & Testing of Hardened Concrete

- Typical σ ϵ relationships of cement paste, aggregate, and concrete
- Interfacial transition zone
- Modulus of elasticity
- Tension
- Compression
- Cyclic loading
- Multi-axial states of stress
- Factors affecting strength
 - Characteristics and proportions of materials
 - Curing conditions

Response of Concrete to Stress

- Concrete a complex heterogeneous material
- Response of concrete to stress depends on
 - Individual components
 - Interaction between the components
- Typical σ ε curves for aggregate, cement paste, mortar and concrete
 - Coarse aggregate linear elastic brittle material
 - Cement paste lower E, higher strength than mortar or concrete

Macroscopic level
Microscopic level
Interface transition zone

Interfacial Transition Zone

- Microstructure of HCP is highly modified in the vicinity of embedded materials: aggregates, fibers, and reinforcing steel
- The modified volume is called interfacial transition zone (ITZ)
- Common features of ITZ
 - Higher w/c due to the wall effect and localized bleeding
 - Increased porosity
 - Less unhydrated cement
 - Less C-S-H
 - Large, oriented crystals of CH
 - Greater concentration of ettringite
- Thickness of ITZ: ~20-40 μm

(Mehta & Monteiro 1993)

 vary depends on the size, shape, and volume of aggregate, w/c, mixing and placing procedures

Interfacial Transition Zone (ITZ)

- ITZ makes up 20-40% of total volume of cementitious matrix
- Microcracks may exist in ITZ before concrete is subjected external load
- ITZ plays an important role in mechanical properties and permeability
- In ordinary concrete
 - Fracture occurs preferentially in the ITZ
 - ITZ is "weak link"

Mindess et al. 2003

Effect of ITZ on Mechanical Properties

 As the paste-aggregate bond strength ↑, the concrete strength in tension, flexure, or compression also ↑

- For high strength concrete (>70 MPa)
 - ↓ w/c has much greater effect on matrix than ITZ
 - Most effective way of improving ITZ add silica fume
 - Eliminate large pores
 - Eliminate the growth of CH, transform the CH to C-S-H by pozzolanic reaction
 - Filler effect to reduce bleeding

Modulus of Elasticity

Concrete is a nonlinear inelastic material both in tension and compression

- Initial tangent modulus
 - Not used in structure design
 - Correspond to small σ and ϵ
 - Generally 20 30 % higher than static E
- Secant modulus
 - Often used in design
 - Difficult to measure, involve error due to
 - Seating
 - Close up of pre-existing cracks under loading
- Chord modulus

CALCULATING THE ELASTIC MODULI

$$\sigma_{\text{ULT}} = 3600 \text{ psi}$$

40% $\sigma_{\text{ULT}} = 1440 \text{ psi} = \text{SO}$

Secant Modulus: Slope of the line corresponding to stress SO = $1440/400 \times 10^{-6} = 3.6 \times 10^{6}$ psi

Chord Modulus: Slope of the line corresponding to stress SC = $(1440-200)/(400-50) \times 10^{-6} = 3.5 \times 10^{6}$ psi

Tangent Modulus: Slope of the line TT^1 drawn tangent to any point on the σ - ε curve = 2.5 \times 10⁶ psi

Dynamic Modulus (Initial Tangent Modulus): Slope of the OD from the origin = $1000/200 \times 10^{-6} = 5 \times 10^{6}$ psi

Chord modulus = $(\sigma_s - \sigma_c) / (\epsilon_s - \epsilon_c)$

ASTM C 469: $\epsilon_c = 50 \mu\epsilon$, $\sigma_s = 40\%$ fc

BS 1881, Part 121: $\sigma_c = 0.5$ MPa, $\sigma_s = 33\%$ fc

Response as a Composite Material

Concrete is often modeled as

 Two-phase composite with aggregate embedded in cement paste (or coarse aggregate in mortar matrix)

Three-phase composite in which a 3rd phase represents

ITZ

Two extreme cases

 Neither models is correct since the components of concrete are subjected to neither uniform stress nor uniform strain under load

Other models

(Mindess et al 2003)

Response as a Composite Material

- Parallel (Voigt) system
 - Uniform strain, upper bound solution

$$E_c = V_p E_p + V_a E_a$$

- Series (Reuss) system
 - Uniform stress, lower bound solution

$$\frac{1}{E_c} = \frac{V_p}{E_p} + \frac{V_a}{E_a}$$

 Underestimate Ec by ~10% for concrete with natural aggregates

Practical Prediction of E Modulus

ACI Building Code 318

$$E_c = 0.043 \text{ w}^{1.5} (f'_c)^{0.5}$$
 MPa
Where E_c – secant E (at ~45% of the ultimate strength)
w – unit weight of the concrete
 f'_c – compressive strength of 150x300 mm cylinder
(1440 < w < 2480 kg/m³, f'_c < 41 MPa)

Effect of the type of aggregate

	TABLE 4-1 EFFECT OF TYPE OF AGGREGATE ON MODULUS OF ELASTICITY		
Ī	Aggregate type		α,
	Basalt, dense limestone		α. 1.2
→	Quartizitic		1.0
	Limestone		0.9
	Sandstone		0.7

(Mehta & Monteiro 1993)

Factors Affecting the Modulus of Elasticity

Aggregate

- porosity or stiffness of aggregate
- volume of aggregate
- max size, shape, surface texture, composition

Cement paste matrix

- porosity
 - w/c
 - · air content
 - mineral admixtures
 - degree of cement hydration

TABLE 13.3 Moduli of Elasticity for Concrete and Its Components, GPa (lb/in.²)

	Normal-Weight	Lightweight
Aggregate Cement paste	$70-140 (10-20 \times 10^6)$	$14-35 (2-5 \times 10^6)$
Concrete	$7-28 (1-4 \times 10^6)$ $14-42 (2-6 \times 10^6)$	7-28 $(1-4 \times 10^6)$ 10-18 $(1.5-2.5 \times 10^6)$

(Mindess et al 2003)

Factors Affecting the Modulus of Elasticity

- Interface transition zone
 - High porosity, microcracks, oriented Ca(OH)₂ crystals
- Moisture condition of specimens
 - Saturated specimens show ~15% higher E than those tested in dry conditions; this is opposite to the effect on compressive strength
- Testing parameter
 - Loading rate ↑, E ↑ or no significant change
 - Ordinary lab testing condition (2 – 10 min.), effect of loading rate is small

Tensile Strength

- Design assumption
 - Concrete would resist the compressive but not tensile stresses.
- Tensile stress can not be ignored because
 - cracking of concrete is often the outcome of a tensile failure, e.g. restrained shrinkage
 - when concrete is subject to bending loads, e.g. highway pavement
- As a tensile crack propagates through concrete
 - Leading edge consists of multiple branching microcracks
 - Eventually becomes a single macrocrack
- Appearance of failure surface
 - Weak aggregate relative to ITZ:
 - · relatively smooth
 - Strong aggregate relative to ITZ:
 - more uneven, rough

Tensile Strength Test (1)

Flexure tensile strength test

(Mehta & Monteiro 1993)

Tensile Strength Test (2)

Splitting tensile strength test

(Mehta & Monteiro 1993)

Relationship between the compressive and tensile strengths

- Compressive and tensile strengths are closely related, however, there is no direct proportionality.
- As the age and compressive strength \uparrow , f_t / f_c \downarrow
- Ratio of tensile to compressive strength
 - Splitting tensile strength / f_c
 0.08 0.14
 - Flexural tensile strength / f_c
 0.11 0.23

Compression

- Compressive strength is considered to be the most important property of concrete
 - In concrete design and quality control, compressive strength is the property generally specified
 - The 28-day compressive strength of concrete determined by a standard uni-axial compression test is accepted universally as a general index of concrete strength.
- Failure modes under stresses
 - are complex
 - vary with the type of stress

Behaviour of Concrete under Uniaxial Short-Term Compression

- Microcracks exist in ITZ before the application of external load
- Crack propagation
 - Up to ~30% of the ultimate load, microcracks remain stable, σ/ε curve straight;
 - Above 30-40% of ultimate load, microcracks begin to increase in length, width, and numbers, σ/ε curve deviate from a straight line;
 - At ~70%, cracks begin to form through the mortar; bridging bond cracks, σ/ε curve bend toward the horizontal

(ACI Committee 224, 1972)

Concrete

Cement paste

(Jason Weiss)

Distributions of Strain and Stress in Mortar and Aggregate

- Heterogeneous nature of concrete
- Stress concentration
 - The localized strains may be as much as 4.5 times the average strain
 - The localized stresses may be more than twice as high as the average stresses
 - The largest strains occur at the ITZ

(Dantu 1958)

Behaviour of Concrete under Uniaxial Compression

 Order of failure under short-term loading in cases where aggregate is stiffer than matrix

- Tensile bond failure
- Shear bond failure
- Tensile matrix failure
- Occasional aggregate failure
- It has also been suggested that failure is controlled not by limiting the tensile stress, but by a limiting tensile strain, in the order of 1 to 2 x 10⁻⁴.

(Vile 1968)

Stress-Strain Curves of Concrete under Compression

- -The beginning of mortar microcracking corresponds to an apparent ↑ in Poisson ratio above σ_A
- At the onset of mortar microcracking, the volume of concrete also begins to increase

- E ↑ with increasing strength
- With increasing strength, strain corresponding to the peak compressive stress ↑, while the descending portion becomes steeper

(K. Newman & J.B. Newman 1971)

Cyclic Loading

- Repeated or cyclic loading conditions
 - has adverse effect on concrete strength at stress level > 50% f_c
 - Stress level = 50-75% f_c, gradual degradation on strength and elastic modulus
 - As the number of loading cycles ↑,
 - Shape of σ ϵ curve changes
 - Modulus of elasticity reduces
 - Strain increases with cyclic loading

Peak stress = 67.5% of compressive strength

(Bennett & Razu 1971)

(Linger & Gillespie 1966)

→ Increase microcracking

(Maher & Darwin 1980)

- Strain accumulated under cyclic compression > strain for similar specimens subjected to sustained loading equivalent to the mean stress of the cycles
- Cyclic loading causes both damage & viscous flow in concrete

Biaxial Loading

- Stress-strain curves for concrete under biaxial compression
 - Strain corresponding to the peak stress ↑
 - Strength is higher than the uniaxial strength
 - Principal failure mode is tensile, with cracking parallel to the plane in which biaxial stresses are applied

(Kupfer et al 1969)

Biaxial Loading

- Stress-strain curves for concrete under biaxial compression-tension
 - Strength and strain corresponding to the peak compressive and tensile stresses ↓ as the ratio of tensile to compressive stress ↑
 - Cracks form \perp to the direction of principal tensile stress

(Kupfer et al 1969)

Biaxial Loading

- Stress-strain curves for concrete under biaxial tension
 - Strength of concrete is approximately equal to the uniaxial tensile strength
 - Cracks form \(\perp \) to the principal tensile stress, with no orientation of preference when the biaxial stresses are equal

Triaxial Loading

- Concrete confined by reinforcement is under triaxial restraint
- Concrete under tri-axial compression
 - Strength and strain corresponding to the peak compressive stress ↑ as the confining stress is increased
 - Descending portion of σ ε curves reach a nearly constant stress – residual strength

For confining stress up to ~15% fc, the principle failure mode is

longitudinal splitting

 For very high confining stress, failure by crushing

(Xie et al 1995)

- Water/cement ratio (w/c)
 - In low- to medium-strength concrete with normal-weight aggregate
 - the transition zone and the matrix porosity determine the strength
 - a relationship between strength and w/c holds
 - In high-strength concrete
 - Before reaching the limit of aggregate, disproportionately high increase in compressive strength can be achieved for small reduction in w/c; can be attributed to the improvement of transition zone
 - Aggregate often determines the strength

(Mindess et al 2003)

Figure A.3.6.2 Honeycomb

(ACI Committee 201)

Age

- At a given w/c, moist curing period ↑, strength ↑
- As a general rule, $f_{c,28-d}$ / $f_{c,7-d}$ = 1.3 1.7, usually <1.5

Curing conditions

- Temperature
 - In general, temperature ↑, rate of hydration ↑
 - However, it has been observed that the higher the casting and curing temperature, the lower the ultimate strength

- Concrete cured in tropical climate can be expected to have a higher early strength but a lower ultimate strength than the same concrete cured in colder climate.
- Concrete cast in cold climate must be maintained above a certain minimum temperature for a sufficient length of time.

Humidity

- If water is lost by evaporation, strength will not increase.
 - If humidity in capillaries < 80% RH, cement hydration will cease. This can happen in sealed concrete or concrete with low w/c.
- The rate of water loss from concrete depends on
 - surface/volume ratio
 - temperature
 - relative humidity of environment
 - · wind velocity
- General recommendation for curing
 - Ordinary Portland cement concrete: moist cure for 7 days
 - Concrete with blended cements: longer curing is desired
- Moist curing
 - wet burlap or cotton mats
 - · curing membrane

The curing age would not have any beneficial effect on the concrete strength unless curing is carried out in the presence of moisture.

Cement

- Porosity of a hydrated cement paste is determined by w/c and degree of hydration
- The degree of hydration for different cements at 90 days and beyond is usually similar; therefore, the influence of cement composition and fineness on strength is limited to early ages
- Hydration rate at normal temperature
 - ASTM Type III > I > II > V > IV
 - ASTM Type I > IS (IP)

- Mineral admixtures (pozzolanic and cementitious byproducts)
 - Fly ash or slag: usually retards the rate of strength gain, improve long-term strength
 - Silica fume: ↑ strength even at the same w/c as OPC concrete (filler effect, pozzolanic reaction, improve ITZ)

Chemical admixtures

- Air-entraining admixtures
 - ↑ porosity and ↓ strength
- Water-reducing admixtures
- Retarding admixtures
- Accelerating admixtures

(Cordon 1979)

Aggregate

- Aggregate strength is usually not a factor except for LWC or HSC
- Concrete strength is affected by
 - Surface texture
 - Affect f_t, f_r, & E, but has little effect on f_c
 - Has more effect on concrete with low w/c
 - Size
 - ↑ size, ↓ water requirement, ↑ f_c
 - – ↑ size, cause greater stress concentration, ↓ f_c
 - Has more effect on concrete with low w/c
 - · Quality and content

(Cordon & Gillespie 1963)

EN 12390 Testing hardened concrete

- Part 1: Shape, dimensions and other requirements for specimens and moulds
- Part 2: Making and curing specimens for strength tests
- > Part 3: Compressive strength of test specimens
- Part 4: Compressive strength Specification for testing machines
- Part 5: Flexural strength of test specimens
- Part 6: Tensile splitting strength of test specimens
- Part 7: Density of hardened concrete
- Part 8: Depth of penetration of water under pressure
- Part 9: Freeze-thaw resistance Scaling (draft 2006)
- Part 10: Determination of the relative carbonation resistance of concrete (draft 2007)