
Trees

Introduction to Data Structures
Kyuseok Shim

ECE, SNU.

Terminology

 Tree : A finite set of one or more nodes such that
 There is a specially designated node called the root
 The remaining nodes are partitioned into n≥0 disjoint

sets T1, ..., Tn, where each of these sets is a tree. T1,
..., Tn are called the subtrees of the root.

 Degree of a node : the number of subtrees of a node
 Leaf (terminal node) : a node that has degree zero
 Internal node (nonterminal node) : the other nodes
 Children, parent, siblings

2

Terminology

 Degree of a tree : the maximum of degree of the
nodes in the tree

 Ancestors of a node : all the nodes along the path
from the root to that node

 Level of a node : the distance from the root+1
 Height (or depth) of a tree : the maximum level of

any node in the tree

3

Dusty

Honey
Bear

Brungilde

Gill Tansey

Terry

Tweed Zoe

Brandy

Coyote

Crocus Primrose

Nugget

Nous Belle

Terminology

Proto Indo-European

Italic

Osco-
Umbrian

Oscan Umbrian

Latin

Spanish French Italian

Hellenic

Greek

Germanic

North

Iceland Norwegian Swedish

West

Low High Yiddish

(a) Pedigree

(b) Lineal 4

Terminology

A

B

E F

D

H J

K L

level

1

2

3

4

C

G I

M

Figure 5.2 : A sample tree

5

(A(B(E(K,L),F),C(G),D(H(M),I,J)))

Representation of Trees

 List representation
 The tree of Figure 5.2

 (A(B(E(K,L),F),C(G),D(H(M),I,J)))

 The degree of each node may be
different
 Possible to use memory nodes with a

varying number of pointer fields
 Easier to write algorithms when the node

size is fixed

6

Representation of Trees
 List representation

 nodes of a fixed size
 for a tree of degree k

 Lemma 5.1: If T is a k-ary tree with n nodes, each
having a fixed size, then n(k-1)+1 of the nk child fields
are 0, n≥1.

 Proof: Since each non-zero child field points to a
node and there is exactly one pointer to each node
other than the root, the number of child fields in a
k-ary tree with n nodes is nk. Hence, the number of
zero fields is nk – (n-1) = n(k-1)+1

DATA CHILD1 CHILD2 ⋯ CHILDk

7

Representation of Trees

 Left child-right sibling representation
 Node structure

 The left child field of each node points to its leftmost child (if
any), and the right sibling field points to its closest right
sibling (if any)

data

left child right sibling

Figure 5.6 : Left child-right sibling representation of the tree of Figure 5.2

8

A

B

E F

D

H J

K L

level

1

2

3

4

C

G I

M

Representation of Trees

 Representation as a degree-two tree
 Rotate the right-sibling pointers clockwise

by 45 degrees
 The two children of a node are referred to

as the left and right children

9

Representation of Trees

Figure 5.7 : Left child-right child tree representation 10

Representation of Trees

 Additional examples

 Left child-right child tree : binary tree
 Any tree can be represented as a binary tree

Figure 5.8 : Tree representations

11

Binary Trees

 A binary tree
 A finite set of nodes that either is empty or consists of

a root and two disjoint binary trees called the
left subtree and the right subtree

 Differences between a binary tree and a tree
 There is an empty binary tree
 The order of the children is distinguished in a binary

tree

Figure 5.9 : Two different binary trees 12

Binary Trees
template <class T>
class BinaryTree
{ // objects: A finite set of nodes either empty or consisting of a
// root node, left BinaryTree and right BinaryTree.

public:
BinaryTree();
// creates an empty binary tree

bool IsEmpty();
// return true if the binary tree is empty

BinaryTree(BinaryTree<T>& bt1, T& item, BinaryTree<T>& bt2);
// creates a binary tree whose left subtree is bt 1, whose right
// subtree is bt 2, and whose root node contains item

BinaryTree<T> LeftSubtree();
// return the left subtree of *this

BinaryTree<T> RightSubtree();
// return the right subtree of *this

T RootData();
// return the data in root node of *this

};

ADT 5.1 : Abstract data type BinaryTree 13

Binary Trees

A

B

D E

C

F G

H I

A

B

C

D

E

level

1

2

3

4

5

(a) (b)

Figure 5.10 : Skewed and complete binary trees
14

Properties of Binary Trees

 Lemma 5.2 [Maximum number of nodes]:
(1) The max number of nodes on level i of

a binary tree is 2i-1, i≥1
(2) The max number of nodes in a binary tree of

depth k is 2k-1, k≥1

15

Properties of Binary Trees

 Proof:
 (1) The proof is by induction on i.

 Induction Base : The root is the only node on level i = 1.
Hence, the maximum number of nodes on level i = 1 is 2i-1=20=1

 Induction Hypothesis : Let i be an arbitrary positive integer greater than 1.
Assume that the maximum number of nodes on level i-1 is 2i-2

 Induction Step : The maximum number of nodes on level i-1 is 2i-2

by the induction hypothesis. Since each node in a binary tree has a maximum
degree of 2, the maximum number of nodes on level i is two times the maximum
number of nodes on level i-1, or 2i-1

 (2) The maximum number of nodes in a binary tree of depth k is

122)(max
1 1

1  
 

 k
k

i

k

i

iilevelonnodesofnumberimum

16

Properties of Binary Trees
 Lemma 5.3 [Relation between number of leaf nodes

and degree-2 nodes]:
 For any non-empty binary tree, T,

if n0 is the number of leaf nodes and n2 the number
of nodes of degree 2, then n0=n2+1

17

Properties of Binary Trees
 Proof : Let n1 be the number of nodes of degree one

and n the total number of nodes. Since all nodes in T
are at most of degree two, we have n=n0+n1+n2
If we count the number of branches in a binary tree,
we see that every node except the root has a branch
leading into it. If B is the number of branches, then
n=B+1. All branches stem from a node of degree one
or two. Thus, B=n1+2n2. Hence,
we obtain n = B+1 = n1+2n2+1. We get n0 = n2 + 1

 Def : A full binary tree of depth k
 A binary tree of depth k having 2k-1 nodes, k≥0

18

Properties of Binary Trees

 A binary tree with n nodes and depth k is complete
 Its nodes correspond to the nodes numbered from 1 to n in the full

binary tree of depth k

 The height of a complete binary tree with n nodes is

Figure 5.11 : Full binary tree of depth 4 with sequential node numbers

 )1(log2 n
19

Binary Tree Representation: Array Re
presentations

 Lemma 5.4 : If a complete binary tree
with n nodes is represented sequentially,
then for any node with index i, 1≤i≤n,
we have
(1) parent(i) is at i/2 if i≠1. If i=1, i is at the

root and has no parent
(2) leftChild(i) is at 2i if 2i≤n. If 2i>n, then i has

no left child
(3) rightChild(i) is at 2i+1 if 2i+1≤n. If 2i+1>n,

then i has no right child
20

Binary Tree Representation: Array
Representations

 Proof : We prove (2). (3) is an immediate consequence of
(2) and the numbering of nodes on the same level from left
to right. (1) follows from (2) and (3). We prove (2) by
induction on i.
For i=1, clearly the left child is at 2 unless 2>n, in which
chase i has no left child. Now assume that for all j, 1≤j≤i,
leftChild(j) is at 2j.
Then the two nodes immediately preceding leftChild(i+1)
are the right and left children of i. The left child is at 2i.
Hence, the left child of i+1 is at 2i+2=2(i+1) unless
2(i+1)>n, in which case i+1 has no left child

21

Array Representations

Figure 5.12 : Array representation of the binary trees of Figure 5.10
22

data

LeftChild RightChild

LeftChild data RightChild

Linked representation
 Classes to define a tree

class Tree; //forward declaration
class TreeNode {

friend class Tree;
private:

TreeNode *LeftChild;
char data;
TreeNode *RightChild;

};
class Tree {

public:
// Tree operations
...

private:
TreeNode *root;

};

Figure 5.13 : Node representations

23

Linked representation
A

B

D E

C

F G

H I

A

B

C

D

E

(a) (b)

A 0

B 0

C 0

D 0

0 E 0

root

A

root

B

E 0D

0 H 0 0 I 0

C

0 G 00 F 0

Figure 5.14 : Linked representation for the binary trees of Figure 5.10 24

0

Binary Tree Traversal and Tree Iterators

 Tree traversal
 Visiting each node in the tree exactly once
 A full traversal produces a linear order for the nodes

 Order of node visit
L : move left
V : visit node
R : move right

 Possible combinations : LVR, LRV, VLR,
VRL, RVL, RLV

 Traverse left before right

 LVR : Inorder
 LRV : Postorder
 VLR : Preorder 25

Introduction

+



/

B

C

A

D

E



Figure 5.16 : Binary tree with arithmetic expression

26

Inorder Traversal
 LVR

template<class T>
void Tree::inorder()
{ // Driver call workhorse for traversal of entire tree. The driver is

// declared as a public member function of Tree.
inorder(root);

}
template<class T>
void Tree<T>::inorder(TreeNode<T> *CurrentNode)
{ // Workhorse traverses the subtree rooted at CurrentNode

// The workhorse is declared as a private member function of Tree.
if (CurrentNode) {

inorder(CurrentNode->leftChild);
Visit(currentNode);
inorder(CurrentNode->rightChild);

}
}

Program 5.1 : Inorder traversal of a binary tree

※ Visit(TreeNode<T> *CurrentNode) {
cout << currentNode->data

}

27

Inorder Traversal
Call of
inorder

Value in
CurrentNode Action

Call of
inorder

Value in
CurrentNode Action

Driver + 10 C

1 * 11 0

2 * 10 C cout<<'C'

3 / 12 0

4 A 1 * cout<<'*'

5 0 13 D

4 A cout<<'A' 14 0

6 0 13 D cout<<'D'

3 / cout<<'/' 15 0

7 B Driver + cout<<'+'

8 0 16 E

7 B cout<<'B' 17 0

9 0 16 E cout<<'E'

2 * cout<<'*' 18 0

Figure 5.17 : Trace of Program 5.1

 Output : A/B*C*D+E
 Infix form of the expression 28

Preorder Traversal
 VLR template <class T>

void Tree<T>::preorder()
{ // Driver

preorder(root);
}
template <class T>
void Tree<T>::preorder(TreeNode<T> *CurrentNode)
{ // Workhorse

if (CurrentNode) {
Visit(CurrentNode);
preorder(CurrentNode->leftChild);
preorder(CurrentNode->rightChild);

}
}

Program 5.2 : Preorder traversal of a binary tree

∙ Output : +**/ABCDE
- Prefix form of the expression 29

Postorder Traversal
 LRV

template <class T>
void Tree<T>::Postorder()
{ // Driver

postorder(root);
}
template <class T>
void Tree::postorder(TreeNode *CurrentNode)
{ // Workhorse

if (CurrentNode) {
postorder(CurrentNode->LeftChild);
postorder(CurrentNode->RightChild);
Visit(currentNode);

}
}

Program 5.3 : Postorder traversal of a binary tree

∙ Output : AB/C*D*E+
- Postfix form of the expression 30

Binary Search Trees: Definition

 Binary tree which may be empty

 If not empty

 (1) every element has a distinct key

 (2) keys in left subtree < root key

 (3) keys in right subtree > root key

 (4) left and right subtrees are also binary search trees

20

15

12 10

25

30

5 40

2

60

(a) (b) (c)

22

70

65 80

Figure 5.28 : Binary trees
1

Dictionary

template <class K, class E>
Class Dictionary {
public:

virtual bool IsEmpty() const = 0;
// return true iff the dictionary is empty

virtual pair<K, E> *Get(const K&) const =0;
// return pointer to the pair with specified key; return 0 if no such pair

virtual void Insert(const pari<K, E> &) = 0;
// insert the given pair; if key is a duplicate update associated element

virtual void Delete(const K&) = 0;
// delete pair with specified key

}
--
ADT 5.3 : A dictionary

Tree Structure

template <class T> class Tree; // forward declaration

template <class T>
class TreeNode {
friend class Tree<T>;
private:

T data;
TreeNode<T> *leftChild;
TreeNode<T> *rightChild;

};
template <class T>
class Tree{
public:

// Tree operation
private:

TreeNode<T> *root;

};

Searching Binary Search Tree

 Recursive search by key value

 definition of binary search tree is recursive

 key(element) = x

 x=root key : element=root

 x<root key : search left subtree

 x>root key : search right subtree

4

Searching Binary Search Tree

template <class K, class E> // Driver
pair<K, E>* BST<K, E>::Get(const K& k)
{ // Search the binary search tree (*this) for a pair with key k

// If such a pair is found, return a pointer to this pair; otherwise, return 0
return Get(root, k);

}

template <class K, class E> // Workhorse
pair<K, E>* BST<K, E>::Get(TreeNode<pair<K, E> >* p, const K& k)
{

if(!p) return 0;
if(k<p->data.first) return Get(p->leftChild, k);
if(k>p->data.first) return Get(p->rightChild, k);
return &p->data;

}
--
Program 5.18 : Recursive search of a binary search tree

5

Searching Binary Search Tree

template <class K, class E> // Driver
pair<K, E>* BST<K, E>::Get(const K& k)
{

TreeNode<pair<K,E> > *currentNode = root;
while(currentNode)
{

if (k<currentNode->data.first)
currentNode = currentNode->leftChild;

else if (k>currentNode->data.first)
currentNode = currentNode->rightChild;

else return ¤tNode->data;
}
//no matching pair
return 0;

}
--
Program 5.19 : Iterative search of a binary search tree

6

Searching Binary Search Tree

 Search by rank

 node needs LeftSize field

 LeftSize=1 + #elements in left subtree

30

5 40

2

3

2

1

1

7

Searching Binary Search Tree

template <class K, class E> // search by rank
pair<K,E>* BST<K,E>::RankGet(int r)
{ // Search the binary search tree for the rth smallest pair

TreeNode<pair<K,E> > *currentNode = root;
while (currentNode)

if(r<currentNode->leftSize)
currentNode = currentNode->leftChild;

else if (r>currentNode->leftSize)
{

r -= currentNode->leftSize;
currentNode = currentNode->rightChild;

}
else return ¤tNode->data;

return 0;
}

Program 5.20 : Searching a binary search tree by rank

8

Insertion into Binary Search Tree

 New element x

 Search x in the tree

 success : x is in the tree

 fail : insert x at the point the search terminated

30

5

2

40

(a) Insert 80 (b) Insert 35

80

30

5

2

40

8035

Figure 5.29 : Inserting into a binary search tree
9

Insertion into Binary Search Tree

template <class K, class E>
void BST<K, E>::Insert(const pair<K, E>& thePair)
{ // Insert thePair into the binary search tree.

// search for thePair.first, pp is parent of p
TreeNode<pair<K, E> > *p = root, *pp = 0;
while(p) {

pp = p;
if (thePair.first < p->data.first) p = p->leftChild;
else if(thePair.first > p->data.first) p = p->rightChild;
else // duplicate, update associated element

{ p->data.second = thePair.second; return; }
}
//perform insertion
p = new TreeNode<pair<K, E> >(thePair);
if(root) // tree not empty

if (thePair.first<pp->data.first) pp->leftChild=p;
else pp->rightChild = p;

else root = p;
}

Program 5.21 : Insertion into a binary search tree 10

Deletion from Binary Search Tree

 Leaf node

 Corresponding child field of its parent is set to 0

 The node is disposed

 Nonleaf node with one child

 The node is disposed

 Child takes the place of the node

 Nonleaf node with two children

 Node is replaced by either

 The largest node in its left subtree

 The smallest node in its right subtree

 Delete the replacing node from the subtree

11

Deletion from Binary Search Tree

5

5

2

40

(a) (b)

80

5

2 40

80

Figure 5.30 : Deletion from a binary search tree

12

Height of Binary Search Tree

 Height of BST with n nodes

 Worst-case : n

 Average : O(log n)

 Balanced search trees

 Worst-case height : O(log n)

 Some perform search, insert, delete in O(h)

13

	7-1_Trees(1)
	7-2_Trees(2)

