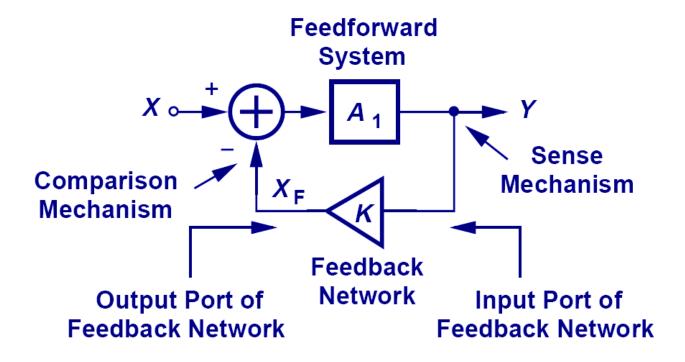
Chapter 12 Feedback

- 12.1 General Considerations
- > 12.2 Types of Amplifiers
- 12.3 Sense and Return Techniques
- > 12.4 Polarity of Feedback
- 12.5 Feedback Topologies
- > 12.6 Effect of Finite I/O Impedances
- 12.7 Stability in Feedback Systems

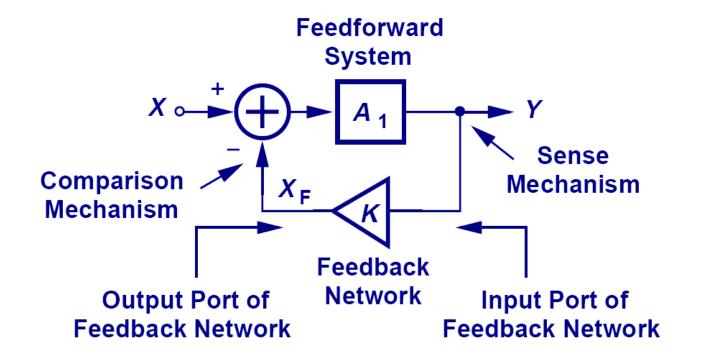
Negative Feedback System



- > A negative feedback system consists of four components:
- 1) feedforward system
- 2) sense mechanism
- 3) feedback network
- 4) comparison mechanism

CH 12 Feedback 2 / 110

Close-loop Transfer Function

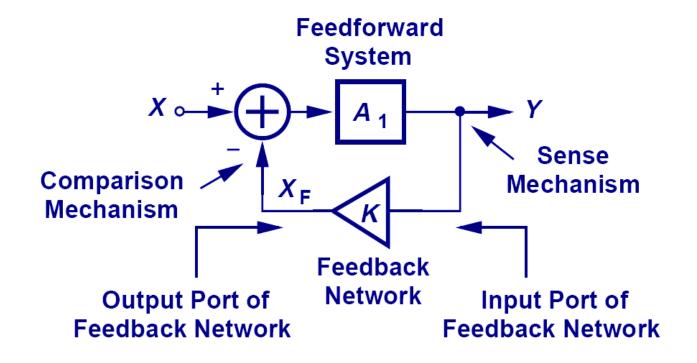


$$X_F = KY$$

$$(Y = A_1(X - X_F))$$

$$= A_1(X - KY)$$

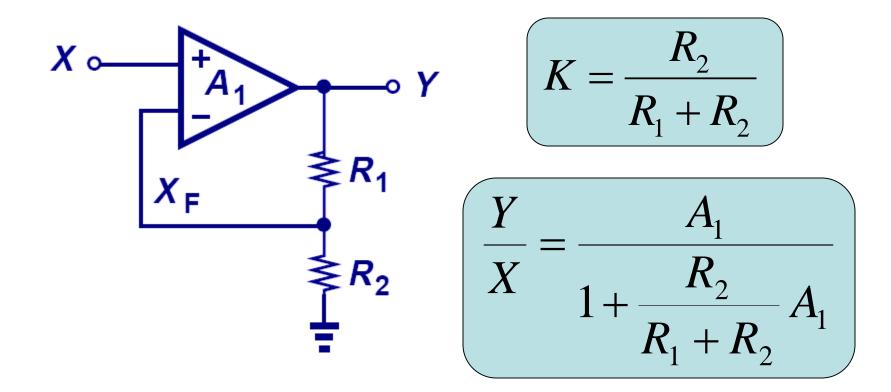
Close-loop Transfer Function



$$\left(\frac{Y}{X} = \frac{A_1}{1 + KA_1}\right)$$

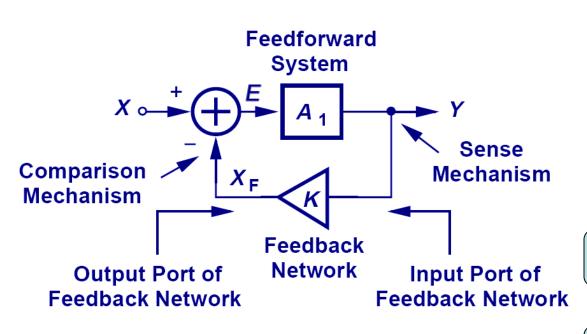
CH 12 Feedback 4 / 110

Example 12.1: Feedback



 $ightharpoonup A_1$ is the feedforward network, R_1 and R_2 provide the sensing and feedback capabilities, and comparison is provided by differential input of A_1 .

Comparison Error



$$E = X - X_F$$

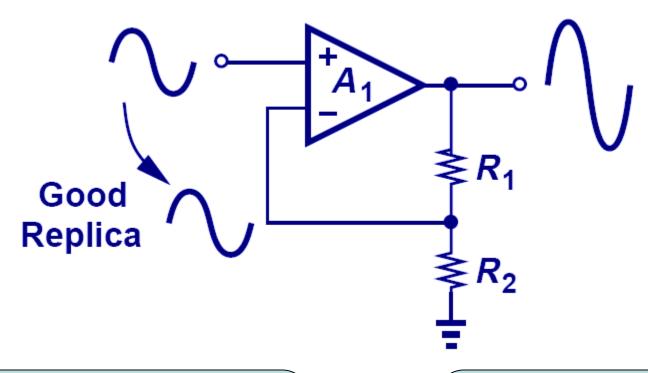
$$= \frac{X}{1 + A_1 K}$$

$$E \approx 0 \quad (:: A_1 K \gg 1)$$

$$(X \approx X_F (:: E = X - X_F))$$

➤ As A₁K increases, the error between the input and fed back signal decreases. Or the fed back signal approaches a good replica of the input.

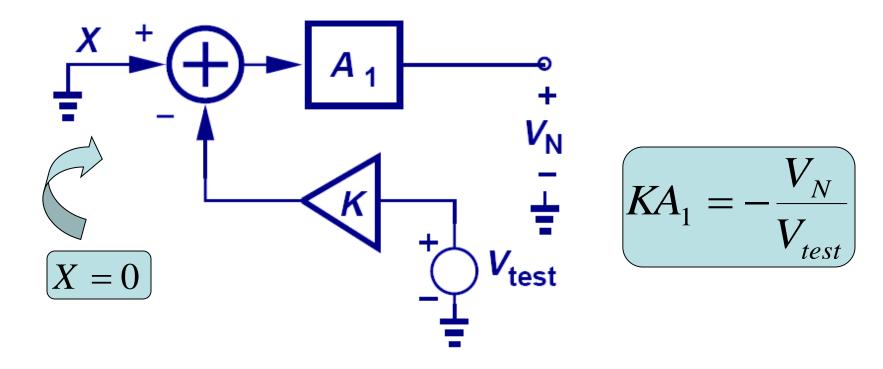
Comparison Error



$$\left(Y\frac{R_2}{R_1+R_2}=X_F\right)$$

$$\frac{Y}{X} \approx 1 + \frac{R_1}{R_2}$$

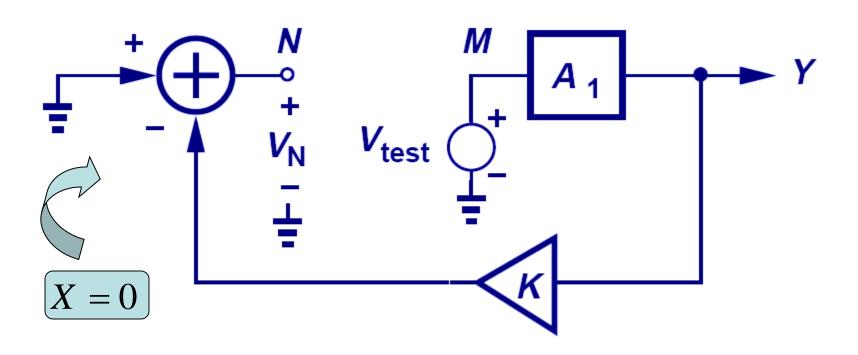
Loop Gain



➤ When the input is grounded, and the loop is broken at an arbitrary location, the loop gain is measured to be KA₁.

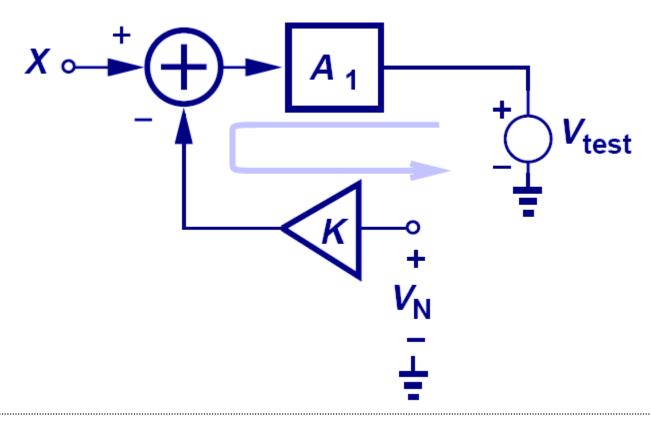
CH 12 Feedback 8 / 110

Example 12.3: Alternative Loop Gain Measurement



$$V_N = -KA_1V_{test}$$

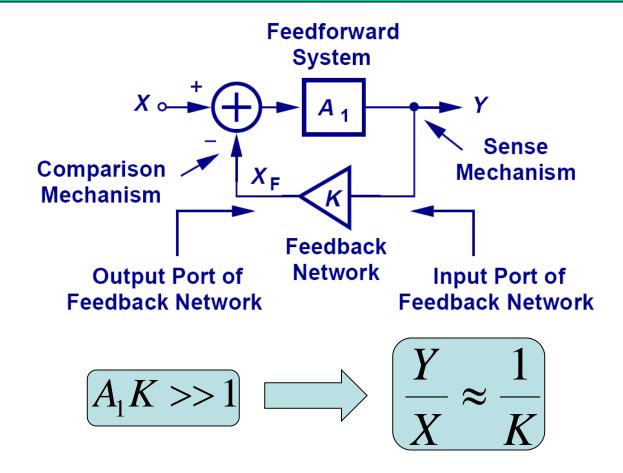
Incorrect Calculation of Loop Gain



Signal naturally flows from the input to the output of a feedforward/feedback system. If we apply the input the other way around, the "output" signal we get is not a result of the loop gain, but due to poor isolation.

CH 12 Feedback 10 / 110

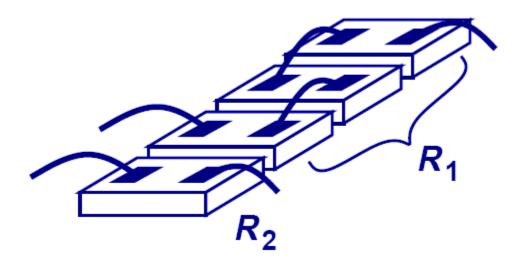
Gain Desensitization



A large loop gain is needed to create a precise gain, one that does not depend on A_1 , which can vary by $\pm 20\%$.

CH 12 Feedback 11 / 110

Ratio of Resistors

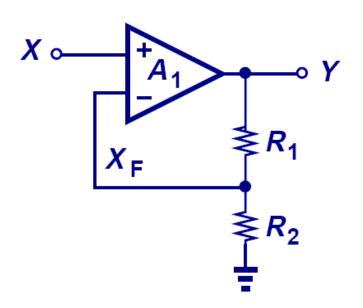


When two resistors are composed of the same unit resistor, their ratio is very accurate. Since when they vary, they will vary together and maintain a constant ratio.

CH 12 Feedback 12 / 110

Example 12.4: Gain Desensitization

▶ Determine the actual gain if A_1 =1000. Determine the percentage change in the gain if A_1 drops to 500.



Nominal gain
$$\frac{1}{K} = 4$$

$$\frac{Y}{X} = \frac{A_1}{1 + A_1 K}$$

$$\left(\frac{Y}{X} = 3.984 \ (A_1 = 1000)\right)$$

$$\frac{Y}{X}$$
 = 3.968 (A_1 = 500)
-0.4% drop

Merits of Negative Feedback

- > 1) Bandwidth enhancement
- > 2) Modification of I/O Impedances
- > 3) Linearization

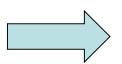
CH 12 Feedback 14 / 110

Bandwidth Enhancement

Open Loop

$$A(s) = \frac{A_0}{1 + \frac{s}{\omega_0}}$$

Negative Feedback

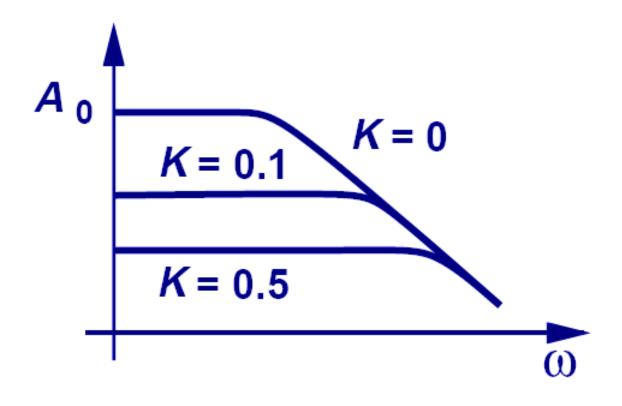


Closed Loop

$$\frac{Y}{X}(s) = \frac{\frac{A_0}{1 + KA_0}}{1 + \frac{S}{(1 + KA_0)\omega_0}}$$

➤ Although negative feedback lowers the gain by (1+KA₀), it also extends the bandwidth by the same amount.

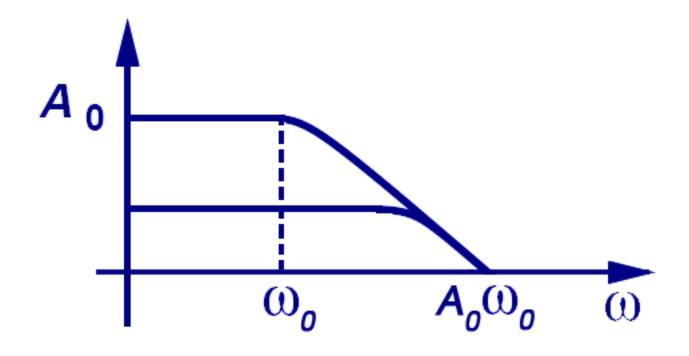
Bandwidth Extension Example



> As the loop gain increases, we can see the decrease of the overall gain and the extension of the bandwidth.

CH 12 Feedback 16 / 110

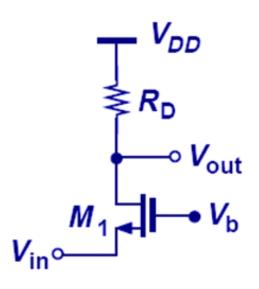
Example 12.6: Unity-gain bandwidth



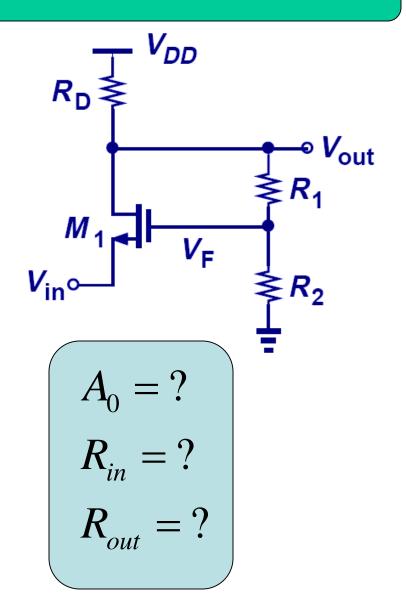
➤ We can see the unity-gain bandwidth remains independent of K, if 1+KA₀ >>1 and K²<<1</p>

CH 12 Feedback 17 / 110

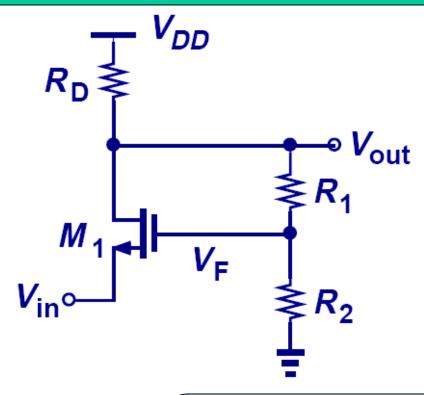
Example12.7: Open Loop Parameters



$$\begin{aligned}
A_0 &\approx g_m R_D \\
R_{in} &= \frac{1}{g_m} \\
R_{out} &= R_D
\end{aligned}$$



Example 12.7: Closed Loop Voltage Gain



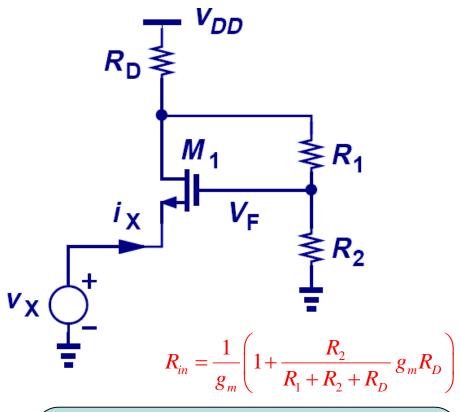
$$\frac{v_{out}}{v_{in}} = \frac{g_m R_D}{1 + \frac{R_2}{R_1 + R_2}} g_m R_D + \frac{R_D}{R_1 + R_2}$$
Assuming $R_1 + R_2 >>> R_D$

$$\frac{v_{out}}{v_{in}} = \frac{g_m R_D}{1 + \frac{R_2}{R_1 + R_2}} g_m R_D$$

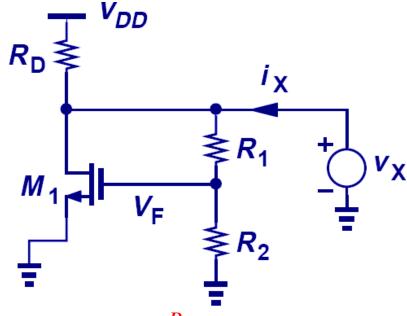
$$\frac{v_{out}}{v_{in}} = \frac{1 + \frac{R_2}{R_2} g_m R_D}{1 + \frac{R_2}{R_1 + R_2}} g_m R_D$$

Assuming
$$R_1 + R_2 >> R_D$$
,
$$\frac{v_{out}}{v_{in}} = \frac{g_m R_D}{1 + \frac{R_2}{R_D} g_m R_D}$$

Example 12.7: Closed Loop I/O Impedance



$$R_{in} = \frac{1}{g_m} \left(1 + \frac{R_2}{R_1 + R_2} g_m R_D \right)$$

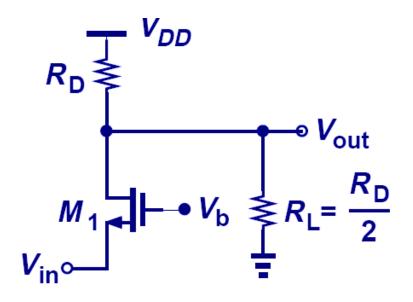


$$R_{out} = \frac{R_{D}}{1 + \frac{R_{2}}{R_{1} + R_{2}}} g_{m}R_{D} + \frac{R_{D}}{R_{1} + R_{2}}$$

$$R_{out} = \frac{R_D}{1 + \frac{R_2}{R_1 + R_2} g_m R_D}$$

CH 12 Feedback 20 / 110

Example: Load Desensitization



W/O Feedback Large Difference

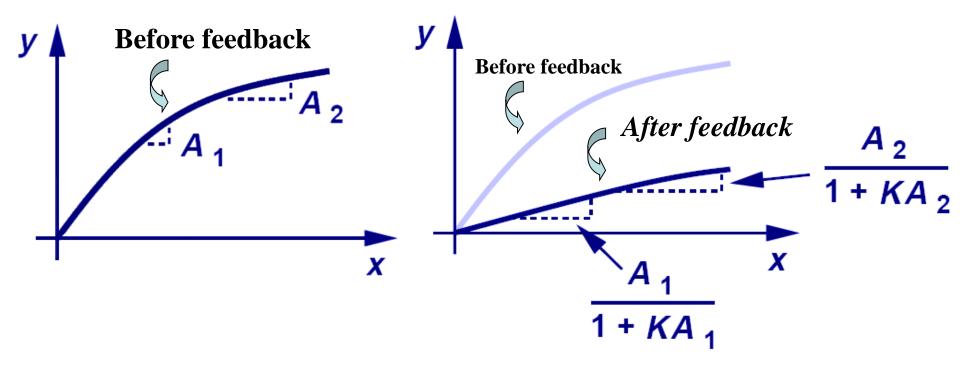
$$g_m R_D \rightarrow g_m R_D / 3$$

With Feedback Small Difference

$$\frac{g_{m}R_{D}}{1 + \frac{R_{2}}{R_{1} + R_{2}}} \xrightarrow{g_{m}R_{D}} \xrightarrow{3 + \frac{R_{2}}{R_{1} + R_{2}}} g_{m}R_{D}$$

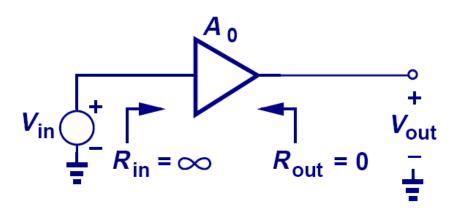
CH 12 Feedback 21 / 110

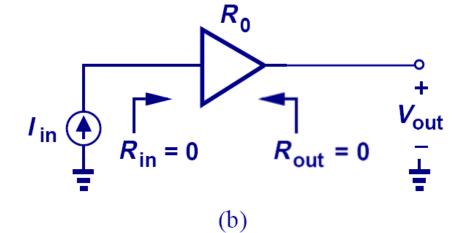
Linearization

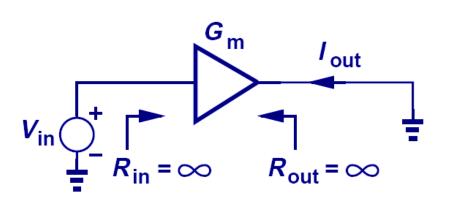


CH 12 Feedback 22 / 110

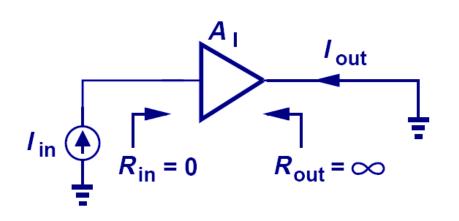
Four Types of Ideal Amplifiers





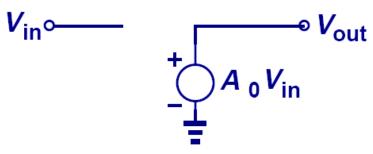


(a)

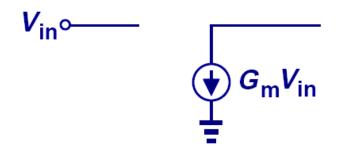


CH 12 Feedback 23 / 110

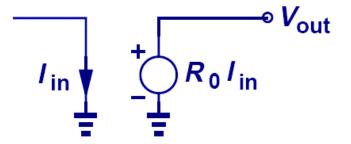
Ideal Models of the Four Amplifier Types



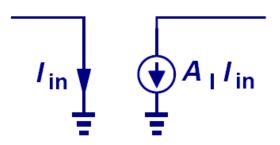
(a) Voltage amplifier



(c) Transconductance amplifier



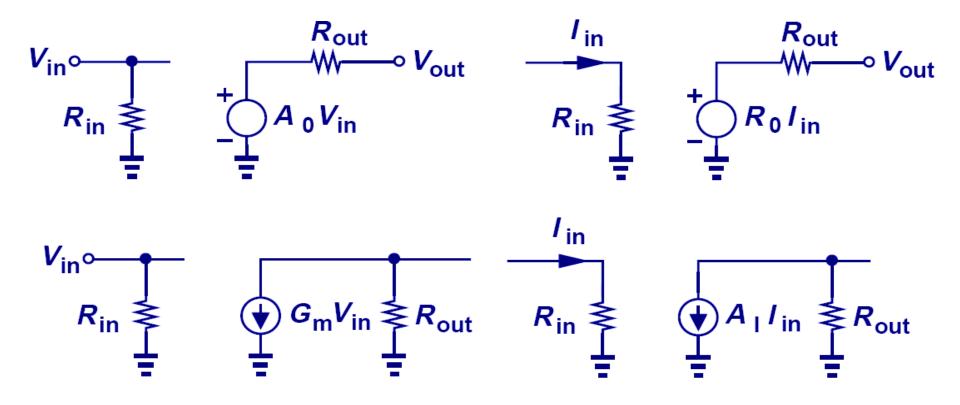
(b) Transresistance amplifier



(d) Current amplifier

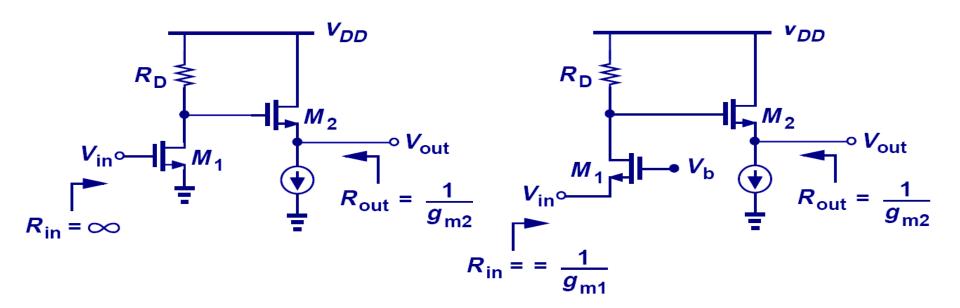
CH 12 Feedback 24 / 110

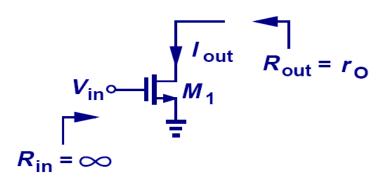
Realistic Models of the Four Amplifier Types

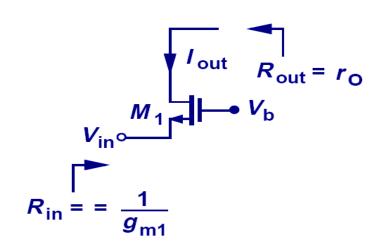


CH 12 Feedback 25 / 110

Examples of the Four Amplifier Types

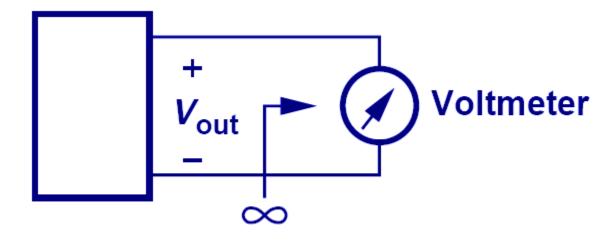






CH 12 Feedback 26 / 110

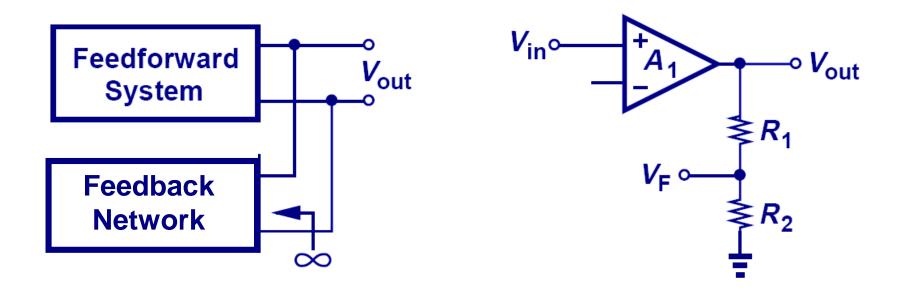
Sensing a Voltage



In order to sense a voltage across two terminals, a voltmeter with ideally infinite impedance is used.

CH 12 Feedback 27 / 110

Sensing and Returning a Voltage

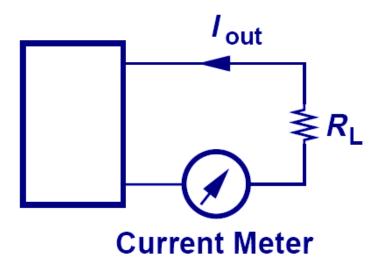


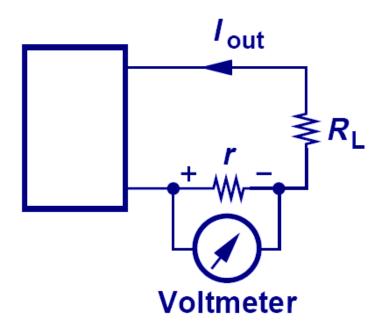
$$(R_1 + R_2 \approx \infty)$$

- Similarly, for a feedback network to correctly sense the output voltage, its input impedance needs to be large.
- \triangleright R₁ and R₂ also provide a means to return the voltage.

CH 12 Feedback 28 / 110

Sensing a Current

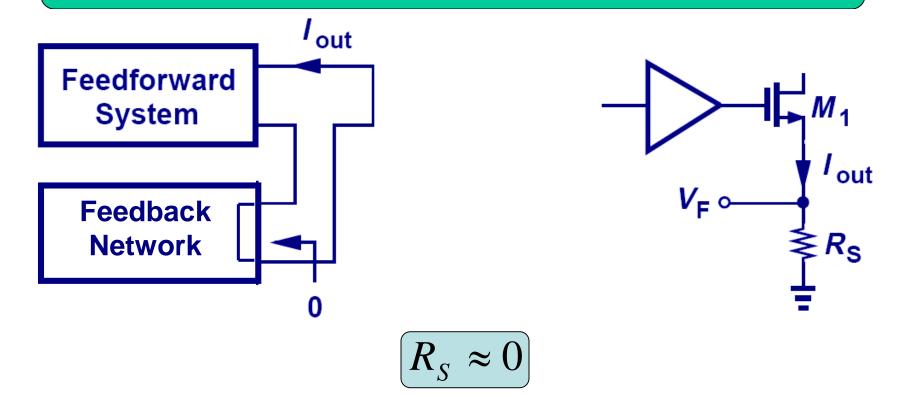




- > A current is measured by inserting a current meter with ideally zero impedance in series with the conduction path.
- The current meter is composed of a small resistance r in parallel with a voltmeter.

CH 12 Feedback 29 / 110

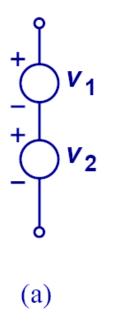
Sensing and Returning a Current

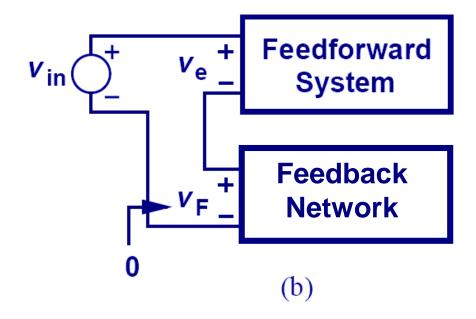


- Similarly for a feedback network to correctly sense the current, its input impedance has to be small.
- R_s has to be small so that its voltage drop will not change I_{out}.

CH 12 Feedback 30 / 110

Addition of Two Voltage Sources

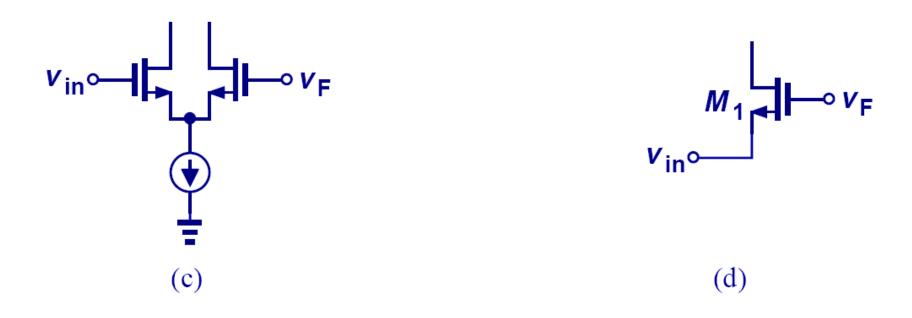




In order to add or substrate two voltage sources, we place them in series. So the feedback network is placed in series with the input source.

CH 12 Feedback 31 / 110

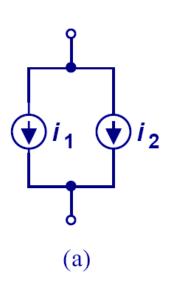
Practical Circuits to Subtract Two Voltage Sources

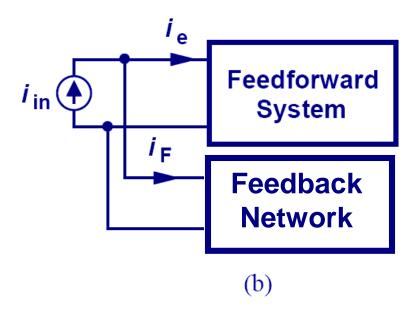


Although not directly in series, V_{in} and V_F are being subtracted since the resultant currents, differential and single-ended, are proportional to the difference of V_{in} and V_F.

CH 12 Feedback 32 / 110

Addition of Two Current Sources

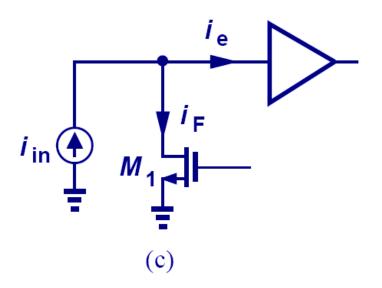


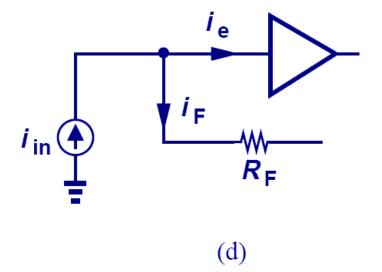


➤ In order to add two current sources, we place them in parallel. So the feedback network is placed in parallel with the input signal.

CH 12 Feedback 33 / 110

Practical Circuits to Subtract Two Current Sources

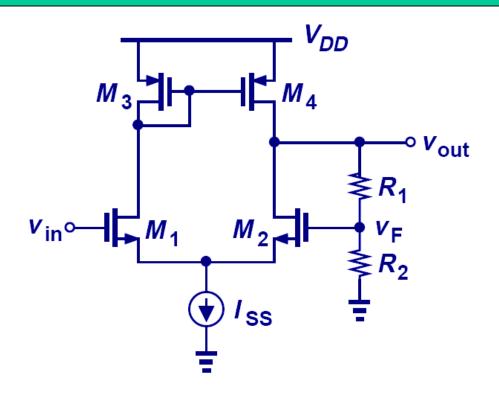




➤ Since M₁ and R_F are in parallel with the input current source, their respective currents are being subtracted. Note, R_F has to be large enough to approximate a current source.

CH 12 Feedback 34 / 110

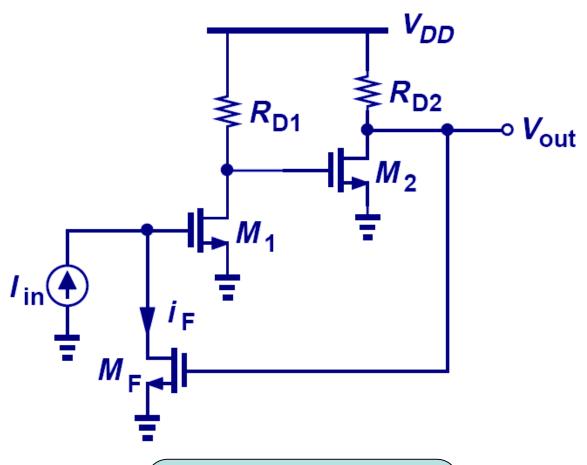
Example 12.10: Sense and Return



- \triangleright R₁ and R₂ sense and serve as the feedback network.
- ► M₁ and M₂ are part of the op-amp and also act as a voltage subtractor.

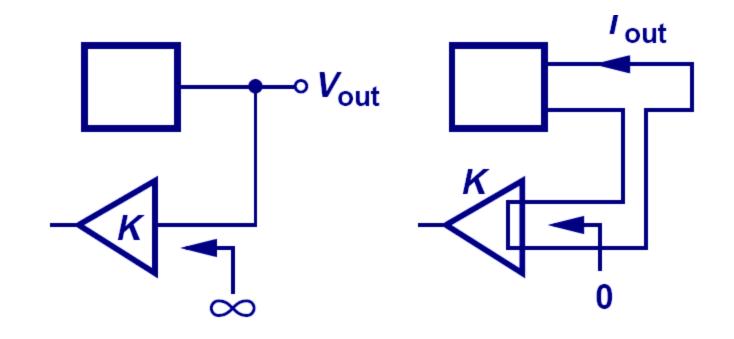
CH 12 Feedback 35 / 110

Example 12.11: Feedback Factor



$$K = \frac{i_F}{v_{out}} = g_{mF}$$

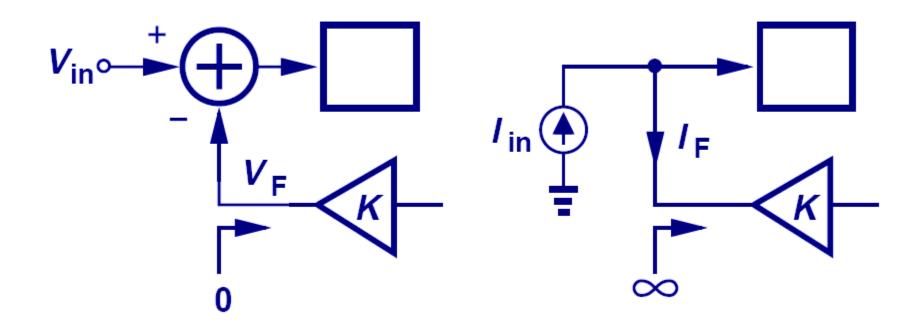
Input Impedance of an Ideal Feedback Network



- ➤ To sense a voltage, the input impedance of an ideal feedback network must be infinite.
- To sense a current, the input impedance of an ideal feedback network must be zero.

CH 12 Feedback 37 / 110

Output Impedance of an Ideal Feedback Network



- ➤ To return a voltage, the output impedance of an ideal feedback network must be zero.
- To return a current, the output impedance of an ideal feedback network must be infinite.

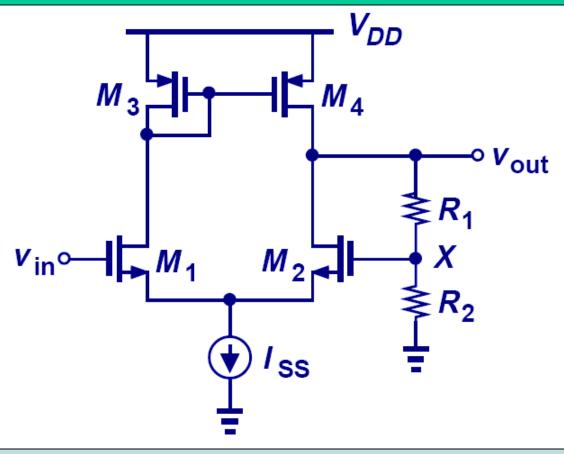
CH 12 Feedback 38 / 110

Determining the Polarity of Feedback

- > 1) Assume the input goes either up or down.
- > 2) Follow the signal through the loop.
- > 3) Determine whether the returned quantity enhances or opposes the original change.

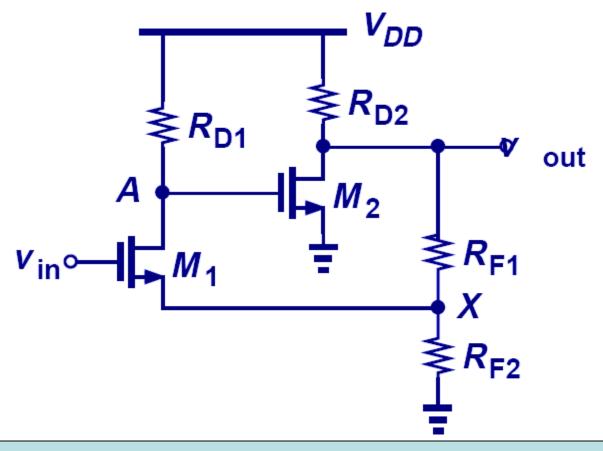
CH 12 Feedback 39 / 110

Example 12.12: Polarity of Feedback



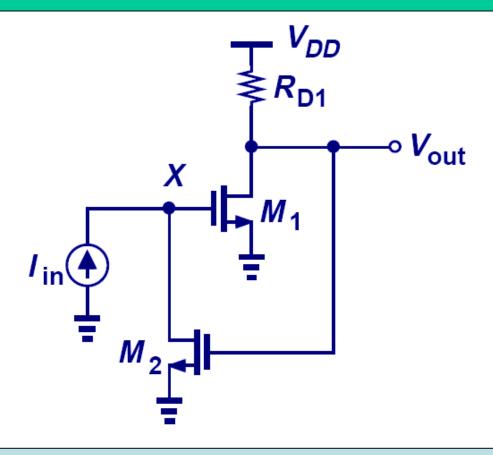
$$V_{in} \uparrow \longrightarrow I_{D1} \uparrow, I_{D2} \downarrow \longrightarrow V_{out} \uparrow, V_{x} \uparrow \longrightarrow I_{D2} \uparrow, I_{D1} \downarrow$$

Example 12.13: Polarity of Feedback



$$V_{in} \uparrow \longrightarrow I_{D1} \uparrow, V_A \downarrow \longrightarrow V_{out} \uparrow, V_x \uparrow \longrightarrow I_{D1} \downarrow, V_A \uparrow$$

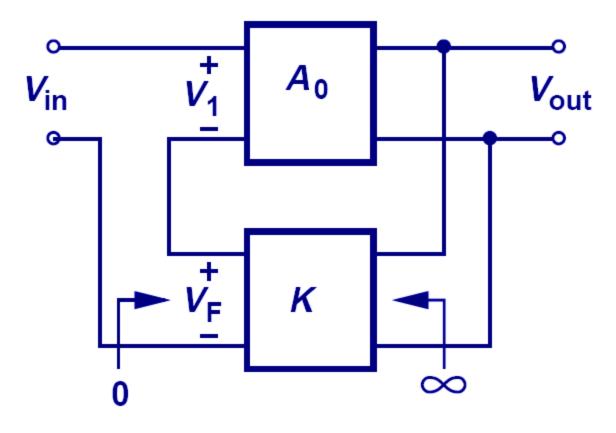
Example 12.14: Polarity of Feedback



$$I_{in} \uparrow \longrightarrow I_{D1} \uparrow, V_X \uparrow \longrightarrow V_{out} \downarrow, I_{D2} \downarrow \longrightarrow I_{D1} \uparrow, V_X \uparrow$$

Positive Feedback

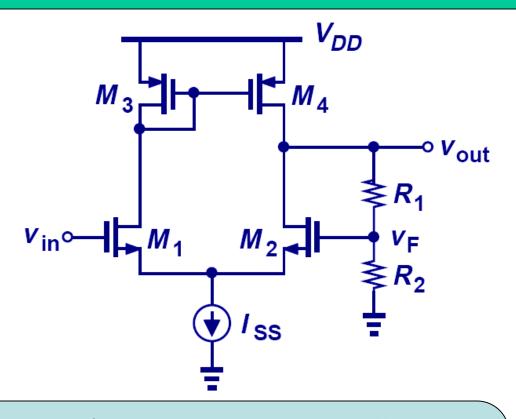
Voltage-Voltage Feedback



$$\left(\frac{V_{out}}{V_{in}} = \frac{A_0}{1 + KA_0}\right)$$

CH 12 Feedback 43 / 110

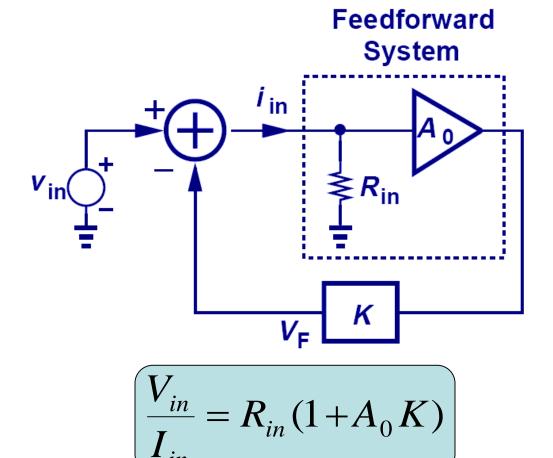
Example 12.15: Voltage-Voltage Feedback



Assuming
$$R_1 + R_2 >> (r_{ON} || r_{OP}),$$

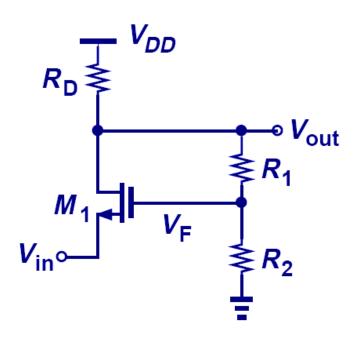
$$\frac{V_{out}}{V_{in}} = \frac{g_{mN}(r_{ON} || r_{OP})}{1 + \frac{R_2}{R_1 + R_2}} g_{mN}(r_{ON} || r_{OP})$$

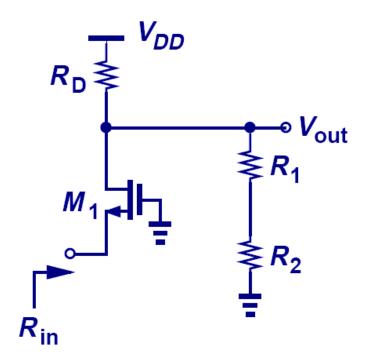
Input Impedance of a V-V Feedback



A better voltage sensor

Example12.16: V-V Feedback Input Impedance

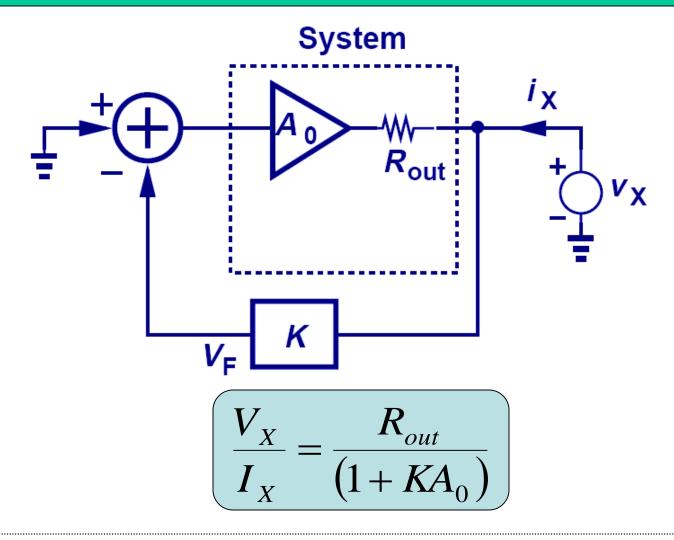




Assuming
$$R_1 + R_2 >> R_D$$
,
 $\frac{V_{in}}{I_{in}} = \frac{1}{g_m} \left(1 + \frac{R_2}{R_1 + R_2} g_m R_D \right)$

CH 12 Feedback 46 / 110

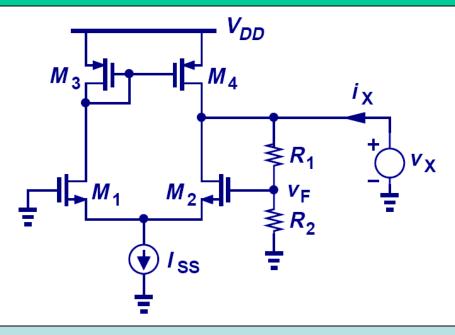
Output Impedance of a V-V Feedback



A better voltage source

CH 12 Feedback

Example 12.17: V-V Feedback Output Impedance



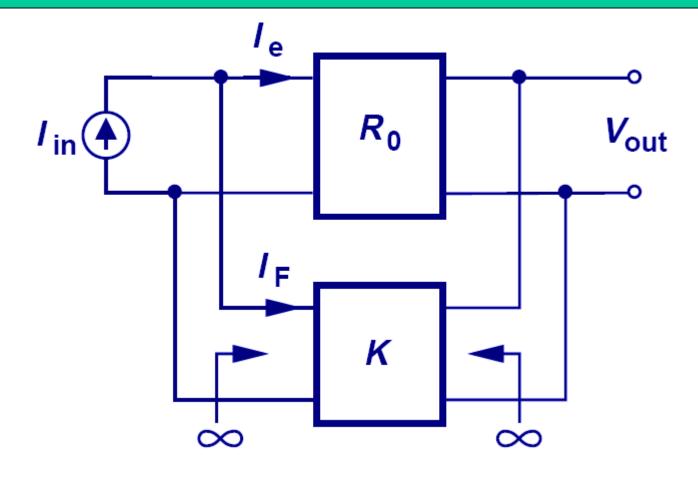
Assuming
$$R_1 + R_2 >> (r_{ON} || r_{OP}),$$

$$R_{out,closed} = \frac{r_{ON} || r_{OP}}{1 + R_2 / (R_1 + R_2) \cdot g_{mN} \cdot (r_{ON} || r_{OP})}$$

$$\approx \left(1 + \frac{R_1}{R_2}\right) \frac{1}{g_{mN}}$$

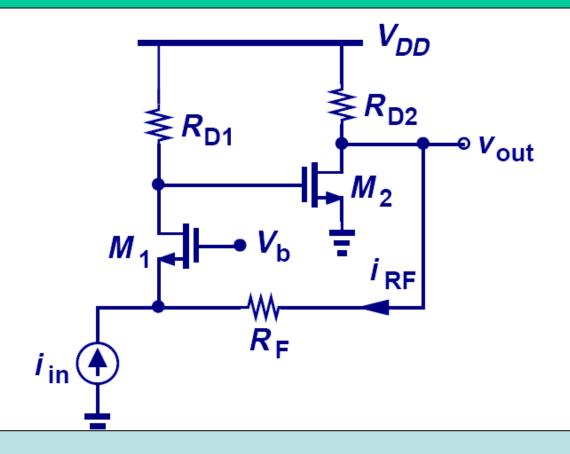
CH 12 Feedback 48 / 110

Voltage-Current Feedback



$$\frac{V_{out}}{I_{in}} = \frac{R_O}{1 + KR_O}$$

Example 12.18: Voltage-Current Feedback

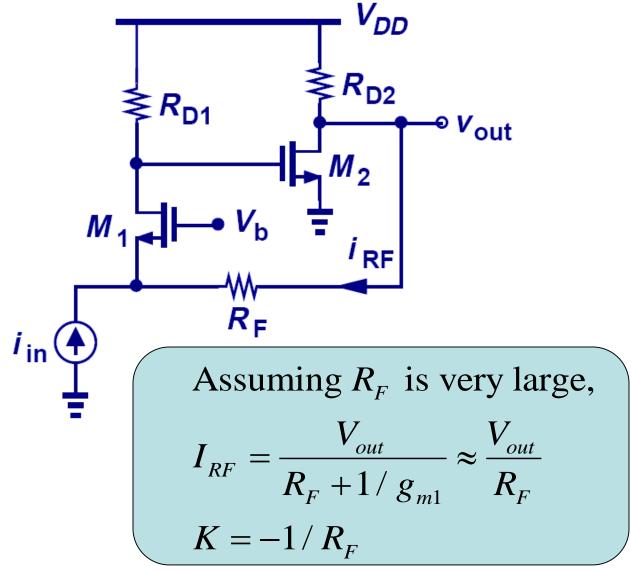


Assuming R_F is very large, open loop gain (V_{out}/I_{in}) :

$$R_0 = R_{D1}(-g_{m2} \cdot R_{D2})$$

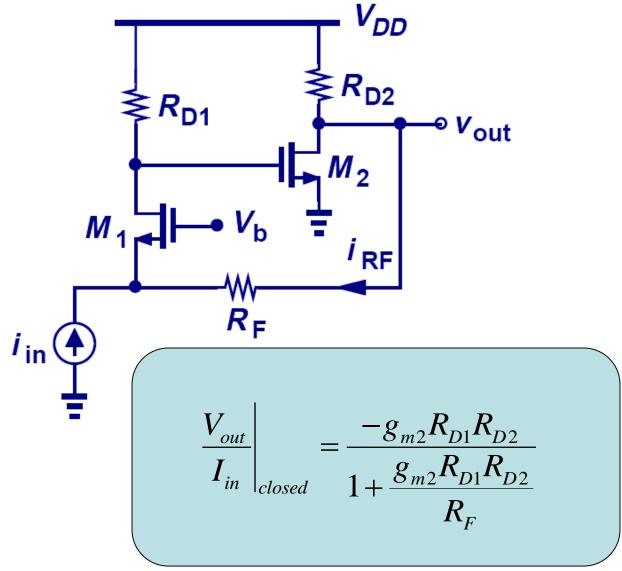
CH 12 Feedback 50 / 110

Example 12.18: Voltage-Current Feedback



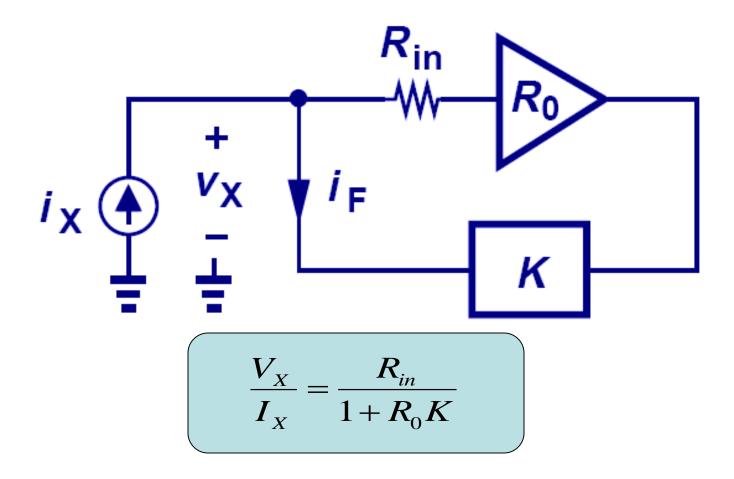
CH 12 Feedback 51 / 110

Example 12.18: Voltage-Current Feedback



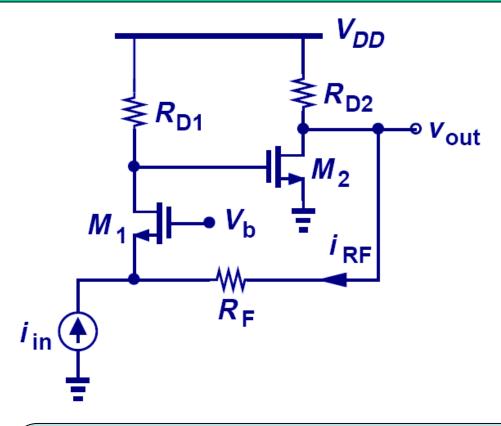
CH 12 Feedback 52 / 110

Input Impedance of a V-I Feedback



A better current sensor.

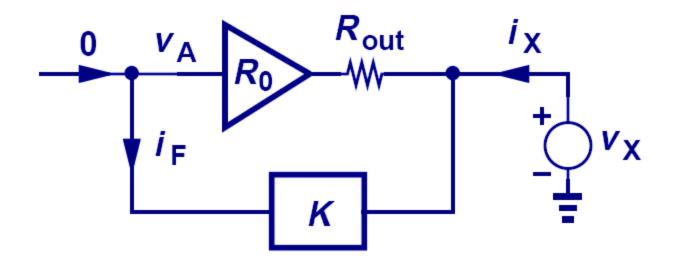
Example 12.19: V-I Feedback Input Impedance



$$R_{in,closed} = \frac{1}{g_{m1}} \cdot \frac{1}{1 + \frac{g_{m2}R_{D1}R_{D2}}{R_F}}$$

CH 12 Feedback 54 / 110

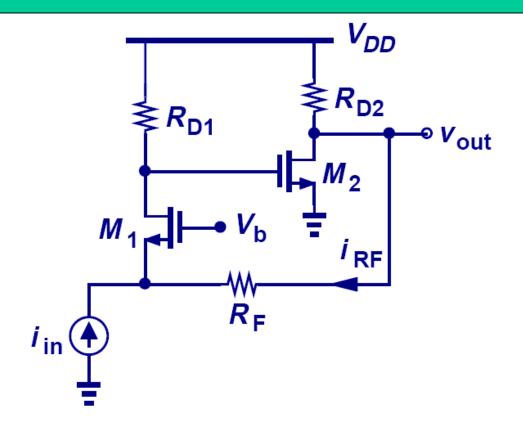
Output Impedance of a V-I Feedback



A better voltage source.

CH 12 Feedback 55 / 110

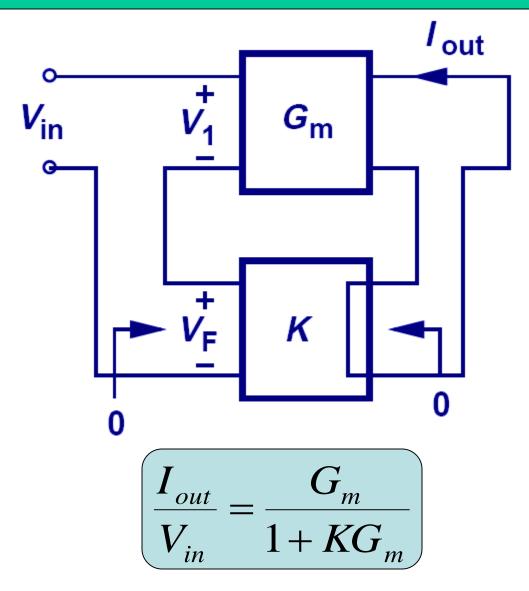
Example12.20: V-I Feedback Output Impedance



$$R_{out,closed} = \frac{R_{D2}}{1 + \frac{g_{m2}R_{D1}R_{D2}}{R_F}}$$

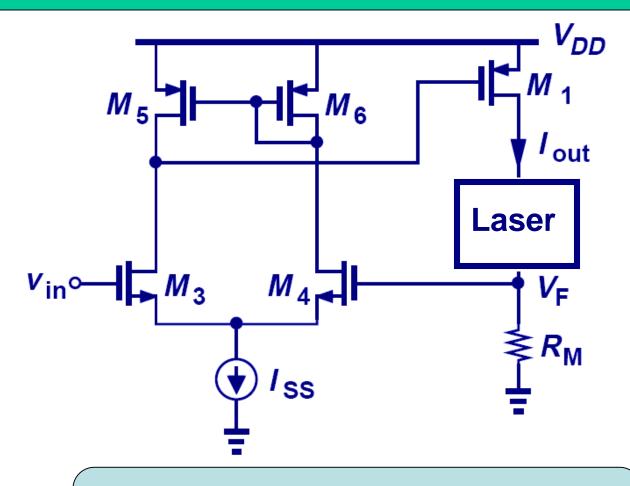
CH 12 Feedback 56 / 110

Current-Voltage Feedback



CH 12 Feedback 57 / 110

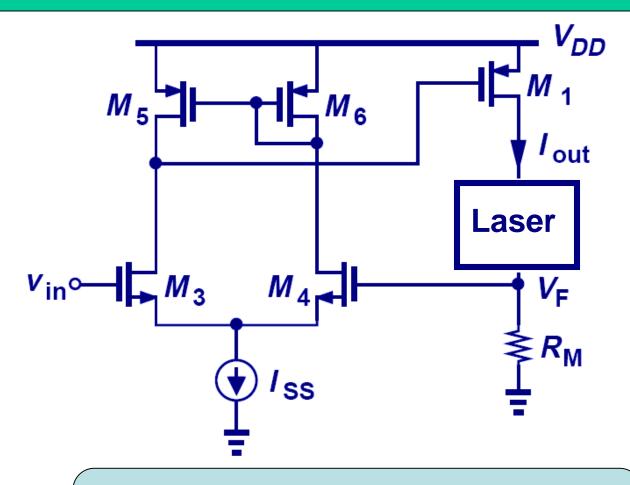
Example12.21: Current-Voltage Feedback



$$G_{m} = \frac{I_{out}}{V_{in}}|_{open} = g_{m3} \cdot (r_{O3} || r_{O5}) \cdot g_{m1}$$

CH 12 Feedback

Example12.21: Current-Voltage Feedback

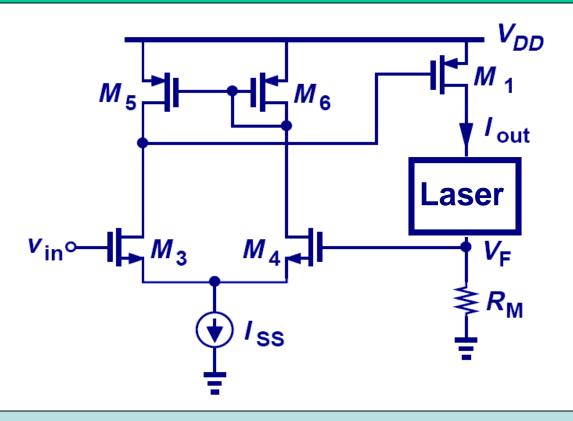


$$K = \frac{V_F}{I_{out}} = R_M$$

59 / 110

CH 12 Feedback

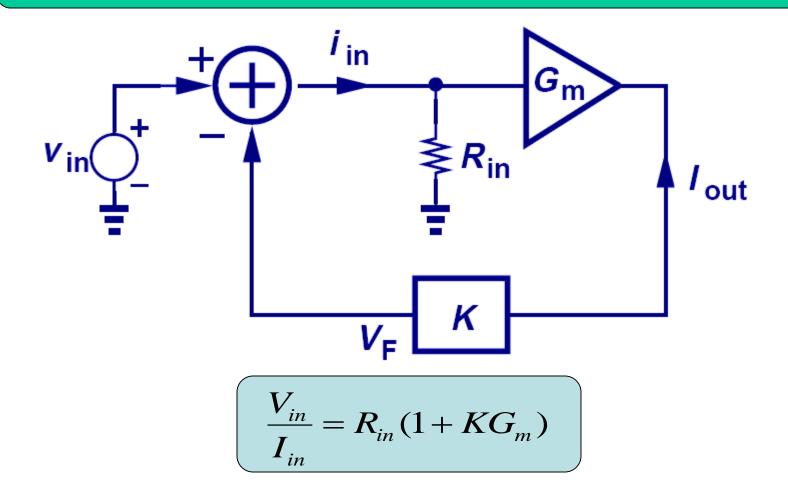
Example12.21: Current-Voltage Feedback



$$\frac{I_{out}}{V_{in}}|_{closed} = \frac{G_m}{1 + K \cdot G_m} = \frac{g_{m1}g_{m3}(r_{O3} \parallel r_{O5})}{1 + g_{m1}g_{m3}(r_{O3} \parallel r_{O5})R_M} \approx \frac{1}{R_M}$$

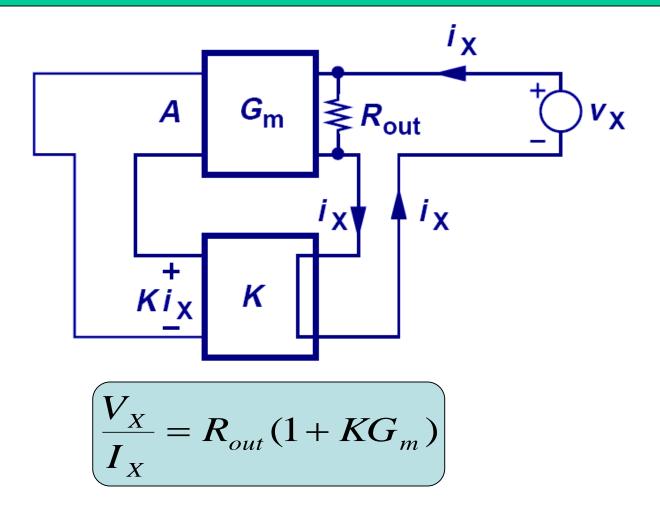
CH 12 Feedback 60 / 110

Input Impedance of a I-V Feedback



A better voltage sensor.

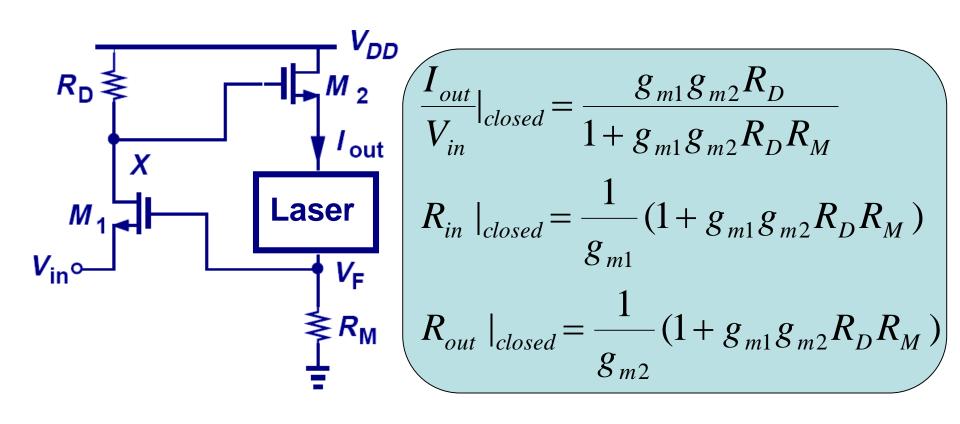
Output Impedance of a I-V Feedback



> A better current source.

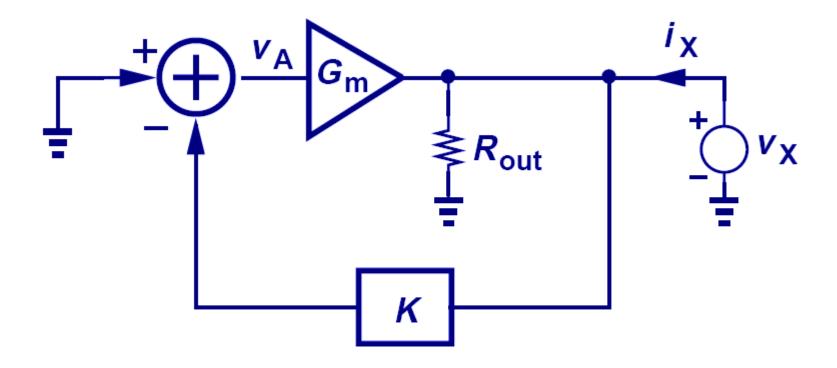
CH 12 Feedback 62 / 110

Example: Current-Voltage Feedback



CH 12 Feedback 63 / 110

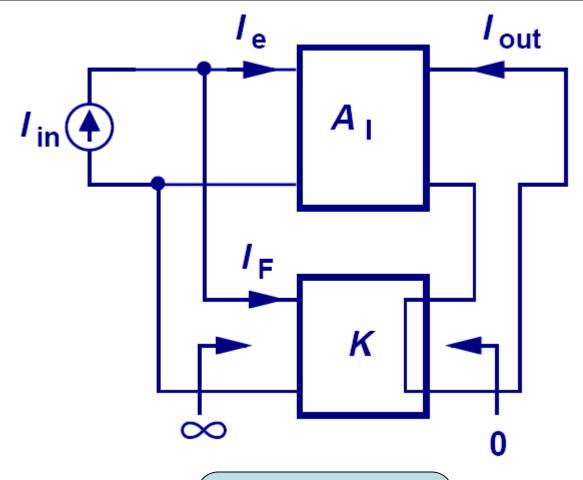
Wrong Technique for Measuring Output Impedance



▶ If we want to measure the output impedance of a C-V closed-loop feedback topology directly, we have to place V_X in series with K and R_{out}. Otherwise, the feedback will be disturbed.

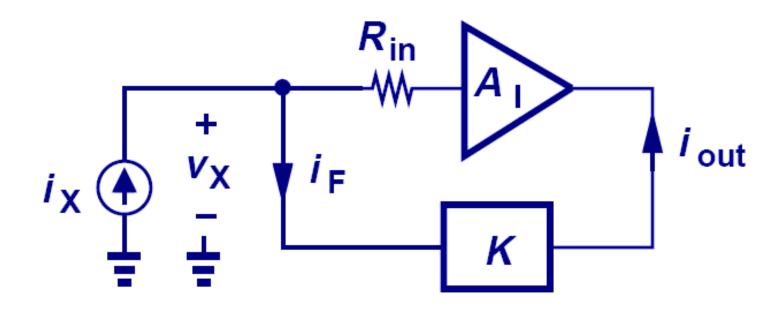
CH 12 Feedback 64 / 110

Current-Current Feedback



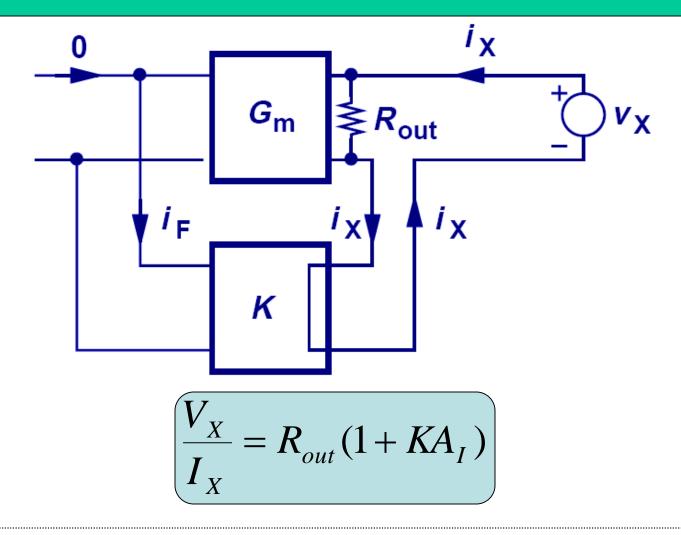
$$\left(\frac{I_{out}}{I_{in}} = \frac{A_I}{1 + KA_I}\right)$$

Input Impedance of I-I Feedback



A better current sensor.

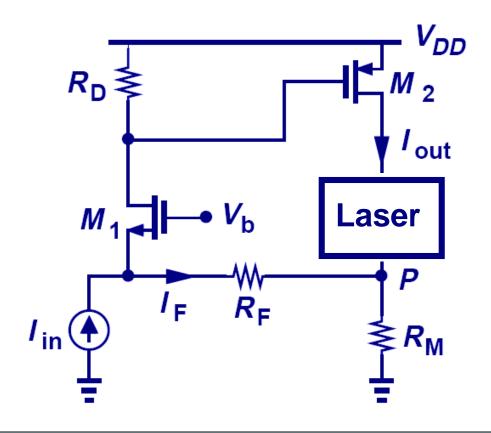
Output Impedance of I-I Feedback



> A better current source.

CH 12 Feedback

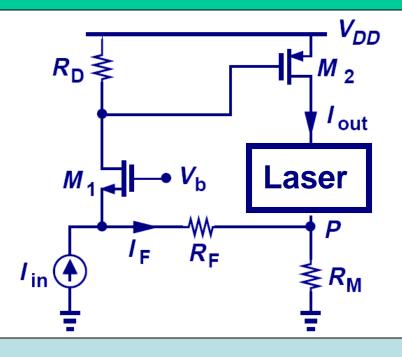
Example 12.24: Test of Negative Feedback



$$I_{in} \uparrow \longrightarrow V_{D1} \uparrow, I_{out} \downarrow \longrightarrow V_{P} \downarrow, I_{F} \uparrow \longrightarrow V_{D1} \downarrow, I_{out} \uparrow$$

Negative Feedback

Example 12.24: I-I Negative Feedback

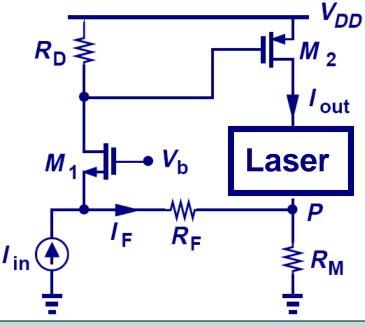


$$A_{I}|_{open} = \frac{I_{out}}{I_{in}} = \frac{-g_{m2}V_{X}}{I_{in}} = \frac{-g_{m2}R_{D}I_{in}}{I_{in}} = -g_{m2}R_{D}$$

$$K = \frac{I_{F}}{I_{out}} = \frac{-V_{P}}{R_{F}} \cdot \frac{1}{I_{out}} = -\frac{R_{M}}{R_{F}}$$

CH 12 Feedback 69 / 110

Example: I-I Negative Feedback



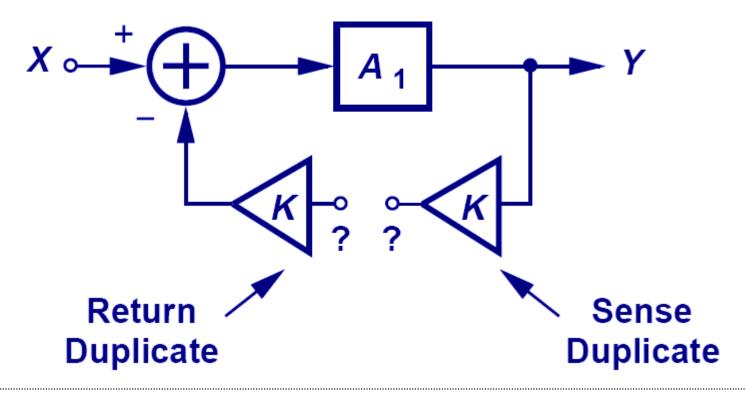
$$A_{I} \mid_{closed} = \frac{-g_{m2}R_{D}}{1 + g_{m2}R_{D}(R_{M}/R_{F})}$$

$$R_{in} \mid_{closed} = \frac{1}{g_{m1}} \cdot \frac{1}{1 + g_{m2}R_{D}(R_{M}/R_{F})}$$

$$R_{out} \mid_{closed} = r_{O2}[1 + g_{m2}R_{D}(R_{M}/R_{F})]$$

CH 12 Feedback

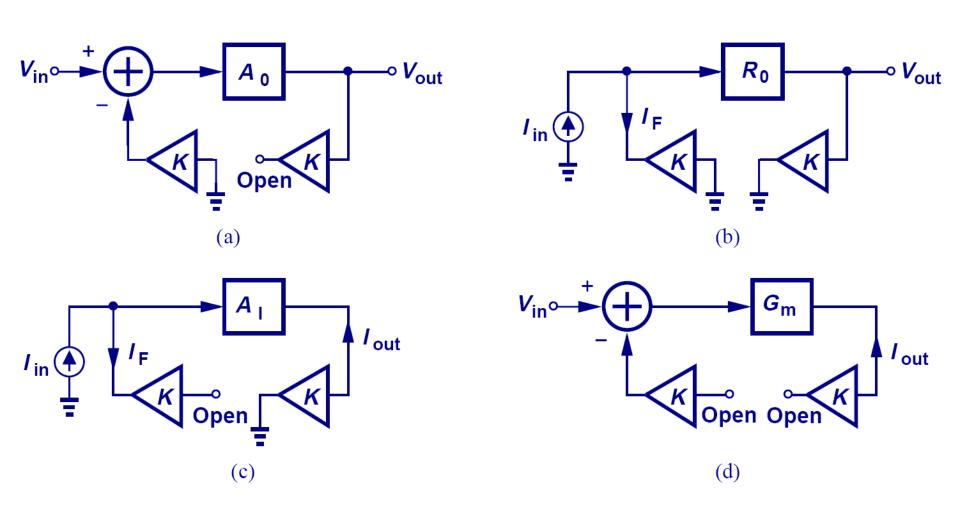
How to Break a Loop



The correct way of breaking a loop is such that the loop does not know it has been broken. Therefore, we need to present the feedback network to both the input and the output of the feedforward amplifier.

CH 12 Feedback 71 / 110

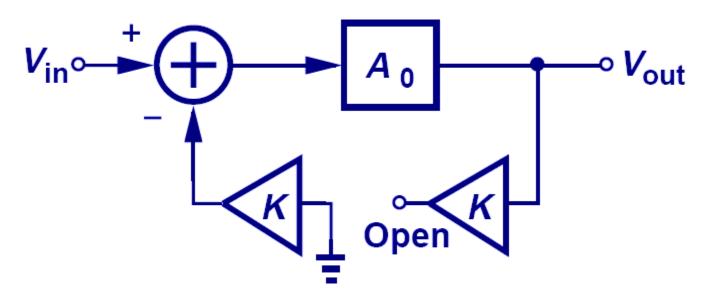
Rules for Breaking the Loop of Amplifier Types



CH 12 Feedback 72 / 110

Intuitive Understanding of these Rules

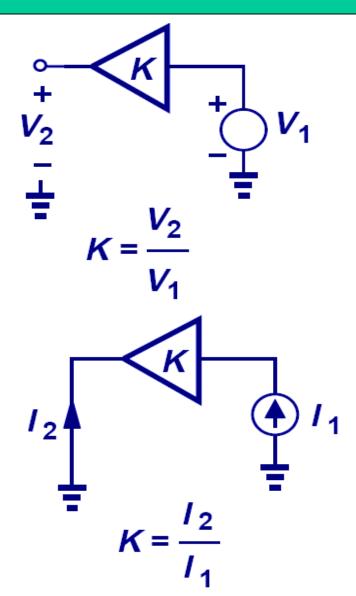
Voltage-Voltage Feedback

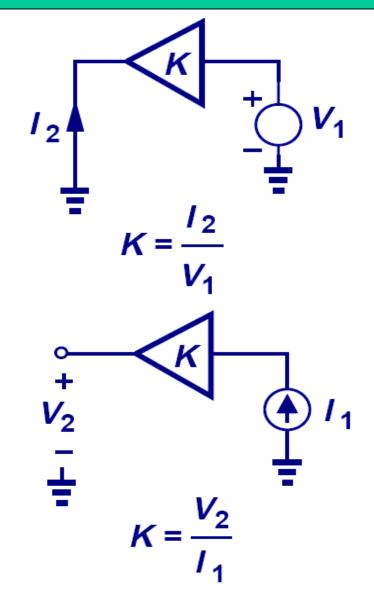


- ➤ Since ideally, the input of the feedback network sees zero impedance (Z_{out} of an ideal voltage source), the return replicate needs to be grounded. Similarly, the output of the feedback network sees an infinite impedance (Z_{in} of an ideal voltage sensor), the sense replicate needs to be open.
- Similar ideas apply to the other types.

CH 12 Feedback 73 / 110

Rules for Calculating Feedback Factor

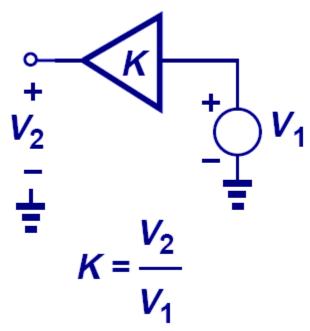




CH 12 Feedback 74 / 110

Intuitive Understanding of these Rules

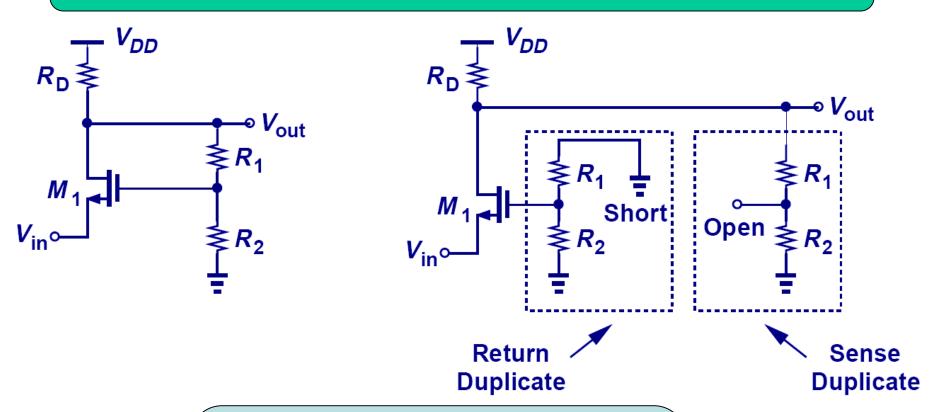
Voltage-Voltage Feedback



- Since the feedback senses voltage, the input of the feedback is a voltage source. Moreover, since the return quantity is also voltage, the output of the feedback is left open (a short means the output is always zero).
- Similar ideas apply to the other types.

CH 12 Feedback 75 / 110

Example 12.26: Breaking the Loop

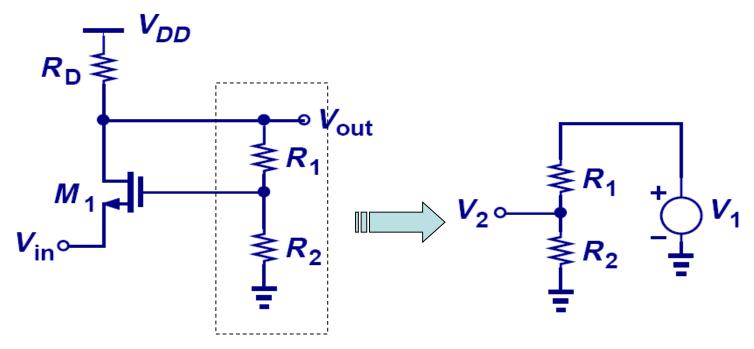


$$A_{v,open} = g_{m1}[R_D \parallel (R_1 + R_2)]$$

$$R_{in,open} = 1/g_{m1}$$

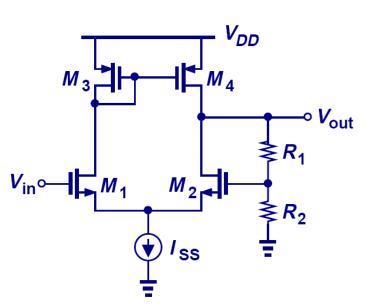
$$R_{out,open} = R_D \parallel (R_1 + R_2)$$

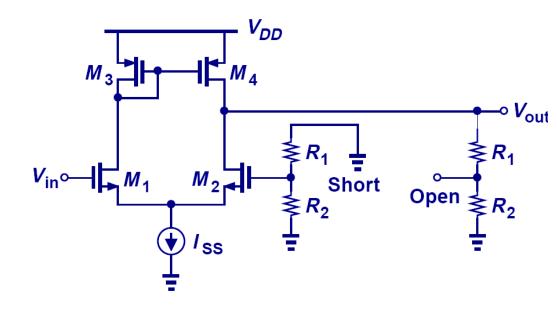
Example 12.26: Feedback Factor



$$K = R_2 / (R_1 + R_2)$$
 $A_{v,closed} = A_{v,open} / (1 + KA_{v,open})$
 $R_{in,closed} = R_{in,open} (1 + KA_{v,open})$
 $R_{out,closed} = R_{out,closed} / (1 + KA_{v,open})$

Example 12.27: Breaking the Loop



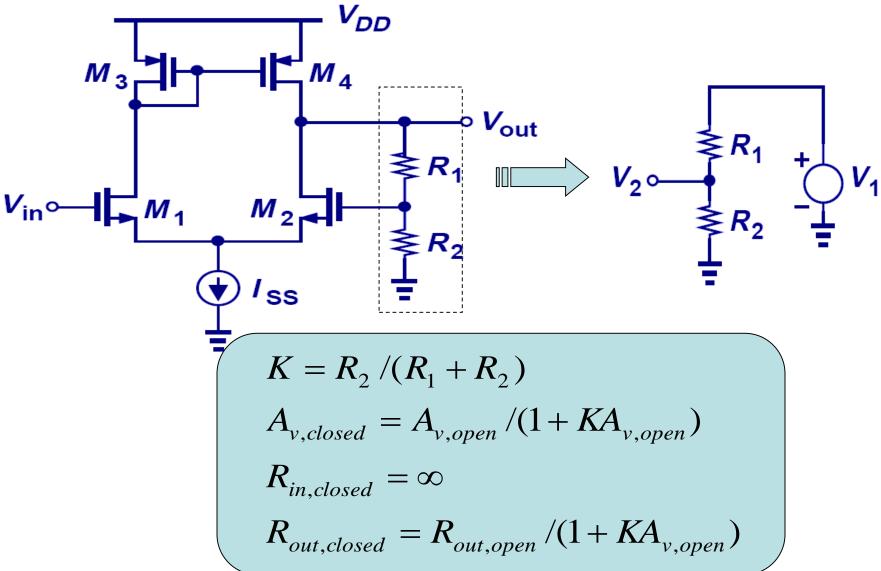


$$A_{v,open} = g_{mN} [r_{ON} \parallel r_{OP} \parallel (R_1 + R_2)]$$

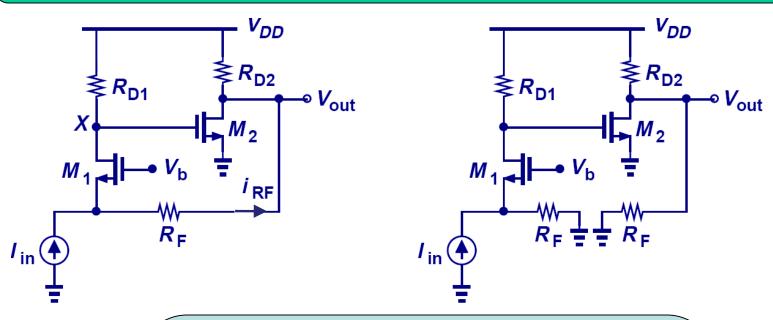
$$R_{in,open} = \infty$$

$$R_{out,open} = r_{ON} \parallel r_{OP} \parallel (R_1 + R_2)$$

Example 12.27: Feedback Factor

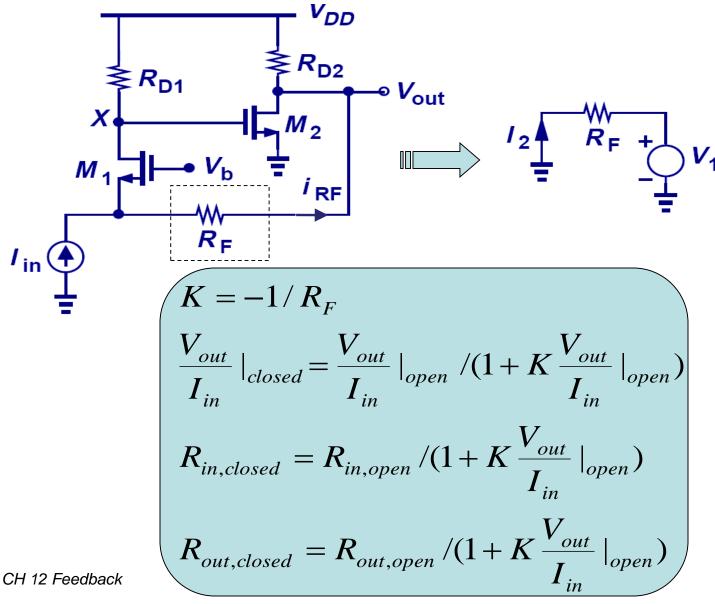


Example 12.29: Breaking the Loop

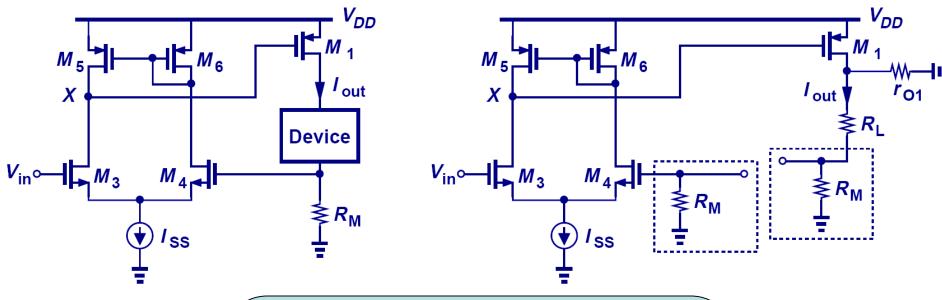


$$\begin{aligned} & \frac{V_{out}}{I_{in}}|_{open} = \frac{R_F R_{D1}}{R_F + \frac{1}{g_{m1}}} . [-g_{m2}(R_{D2} \parallel R_F)] \\ & R_F + \frac{1}{g_{m1}} \\ & R_{in,open} = \frac{1}{g_{m1}} \parallel R_F \\ & R_{out,open} = R_{D2} \parallel R_F \end{aligned}$$

Example 12.29: Feedback Factor

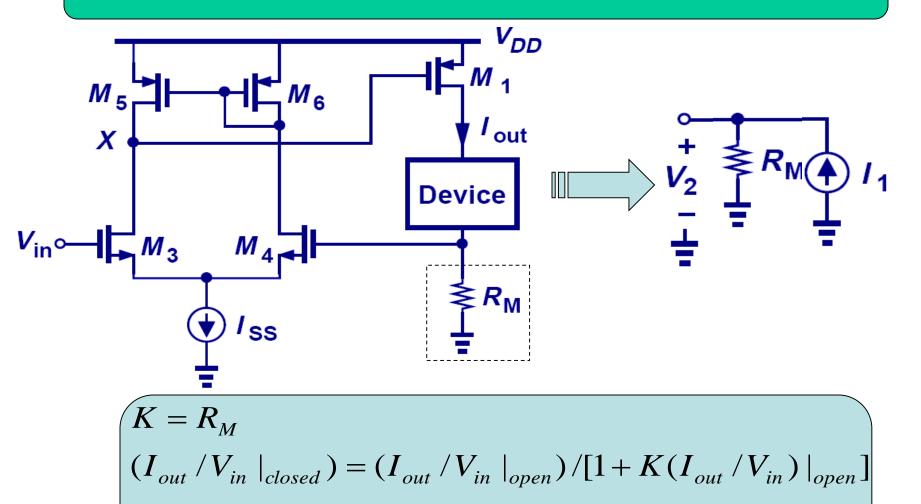


Example 12.30: Breaking the Loop



$$\begin{aligned} \frac{I_{out}}{V_{in}}|_{open} &= \frac{g_{m3}(r_{O3} || r_{O5})g_{m1}r_{O1}}{r_{O1} + R_L + R_M} \\ R_{in,open} &= \infty \\ R_{out,open} &= r_{O1} + R_M \end{aligned}$$

Example 12.30: Feedback Factor

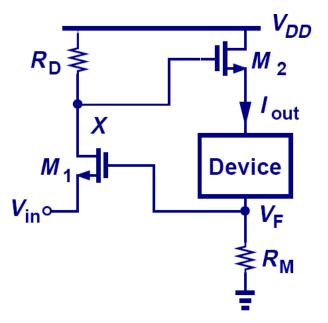


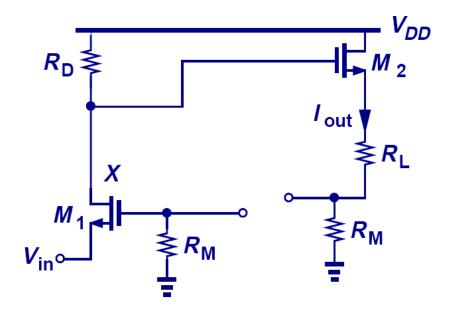
$$R_{out,closed} = R_{out,open} [1 + K(I_{out}/V_{in})|_{open}]$$

 $R_{in,closed} = \infty$

CH 12 Feedback 83 / 110

Example 12.31: Breaking the Loop



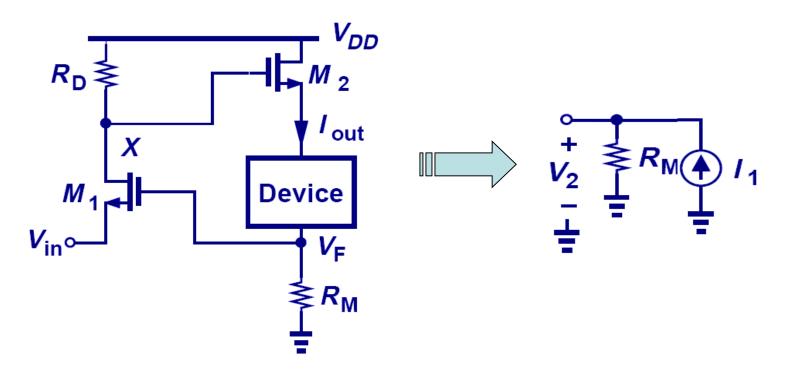


$$\frac{I_{out}}{V_{in}}|_{open} = \frac{g_{m1}R_{D}}{R_{L} + R_{M} + 1/g_{m2}}$$

$$R_{in,open} = 1/g_{m1}$$

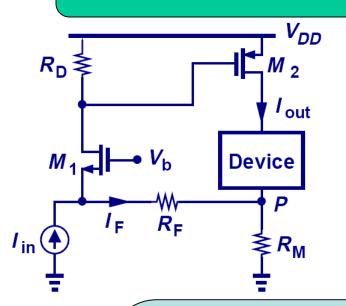
$$R_{out,open} = (1/g_{m2}) + R_{M}$$

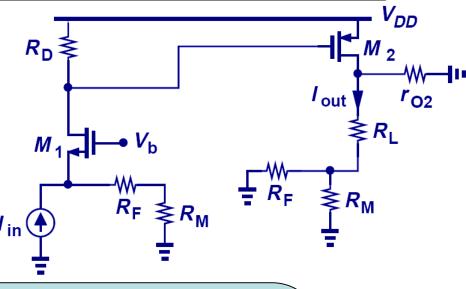
Example 12.31: Feedback Factor



$$\begin{split} \left(K = R_{M} \right. \\ \left(I_{out} / V_{in} \mid_{closed}\right) &= \left(I_{out} / V_{in} \mid_{open}\right) / [1 + K(I_{out} / V_{in}) \mid_{open}] \\ \left.R_{in,closed} = R_{in,open} [1 + K(I_{out} / V_{in}) \mid_{open}] \\ \left.R_{out,closed} = R_{out,open} [1 + K(I_{out} / V_{in}) \mid_{open}] \\ \end{split}$$

Example 12.32: Breaking the Loop



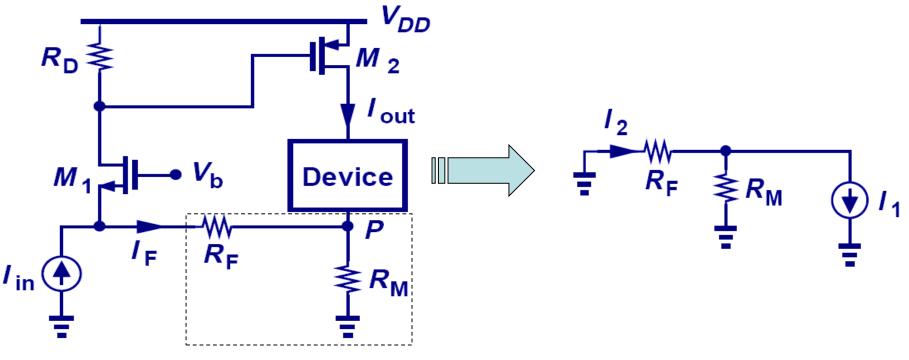


$$A_{I,open} = \frac{(R_F + R_M)R_D}{R_F + R_M + \frac{1}{g_{m1}}} \cdot \frac{-g_{m2}r_{O2}}{r_{O2} + R_L + R_M \parallel R_F}$$

$$R_{in,open} = \frac{1}{g_{m1}} \parallel (R_F + R_M)$$

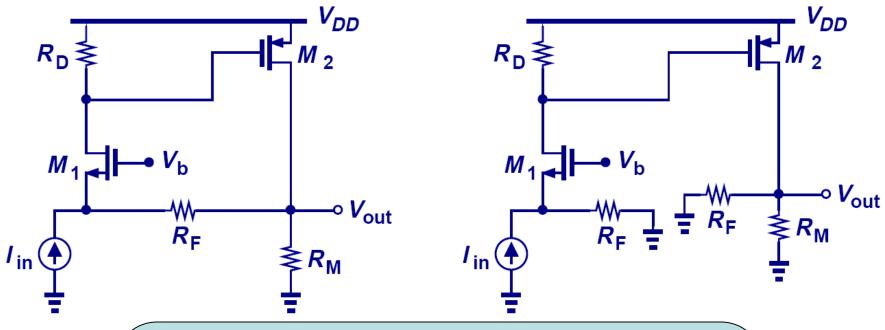
$$R_{out,open} = r_{O2} + R_F \parallel R_M$$

Example 12.32: Feedback Factor



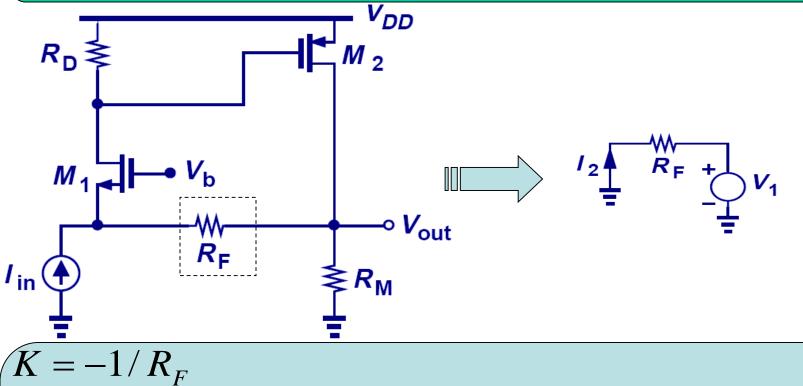
$$K = -R_M / (R_F + R_M)$$
 $A_{I,closed} = A_{I,open} / (1 + KA_{I,open})$
 $R_{in,closed} = R_{in,open} / (1 + KA_{I,open})$
 $R_{out,closed} = R_{out,open} (1 + KA_{I,open})$

Example 12.33: Breaking the Loop



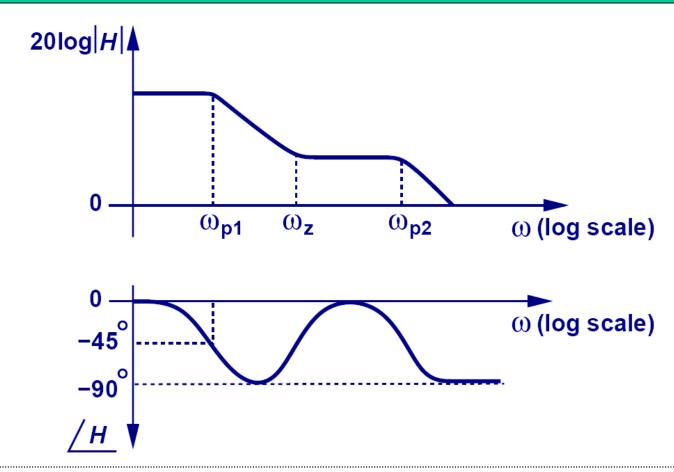
$$\begin{aligned} & \frac{V_{out}}{I_{in}}|_{open} = \frac{R_F R_D}{R_F + 1/g_{m1}} [-g_{m2}(R_F \parallel R_M)] \\ & R_{in,open} = \frac{1}{g_{m1}} \parallel R_F \\ & R_{out,open} = R_F \parallel R_M \end{aligned}$$

Example 12.33: Feedback Factor



$$egin{aligned} (K = -1/R_F) \ (V_{out}/I_{in}) \mid_{closed} &= (V_{out}/I_{in}) \mid_{open} /[1+K(V_{out}/I_{in}) \mid_{open}] \ R_{in,closed} &= R_{in,open} /[1+K(V_{out}/I_{in}) \mid_{open}] \ R_{out,closed} &= R_{out,open} /[1+K(V_{out}/I_{in}) \mid_{open}] \end{aligned}$$

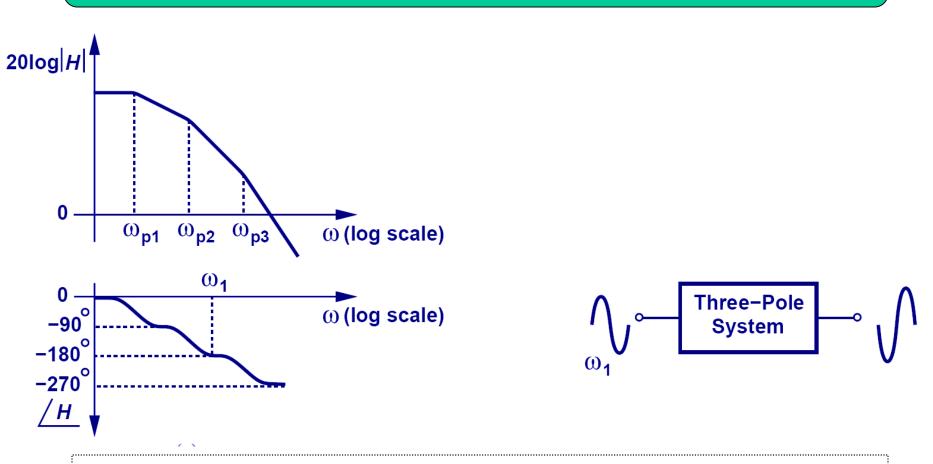
Example 12.34: Phase Response



As it can be seen, the phase of H(jω) starts to drop at 1/10 of the pole, hits -45° at the pole, and approaches -90° at 10 times the pole.

CH 12 Feedback 90 / 110

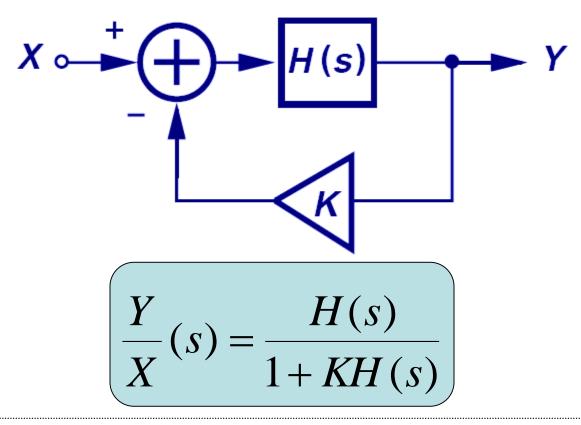
Example 12.35: Three-Pole System



For a three-pole system, a finite frequency produces a phase of -180°, which means an input signal that operates at this frequency will have its output inverted.

CH 12 Feedback 91 / 110

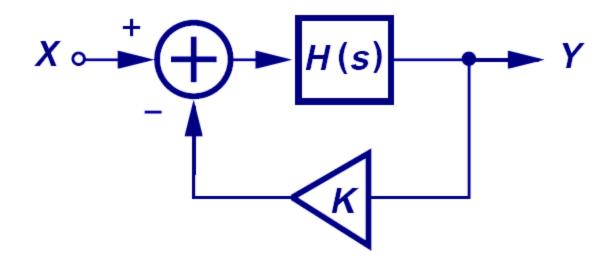
Instability of a Negative Feedback Loop



Substitute j ω for s. If for a certain ω_1 , KH(j ω_1) reaches -1, the closed loop gain becomes infinite. This implies for a very small input signal at ω_1 , the output can be very large. Thus the system becomes unstable.

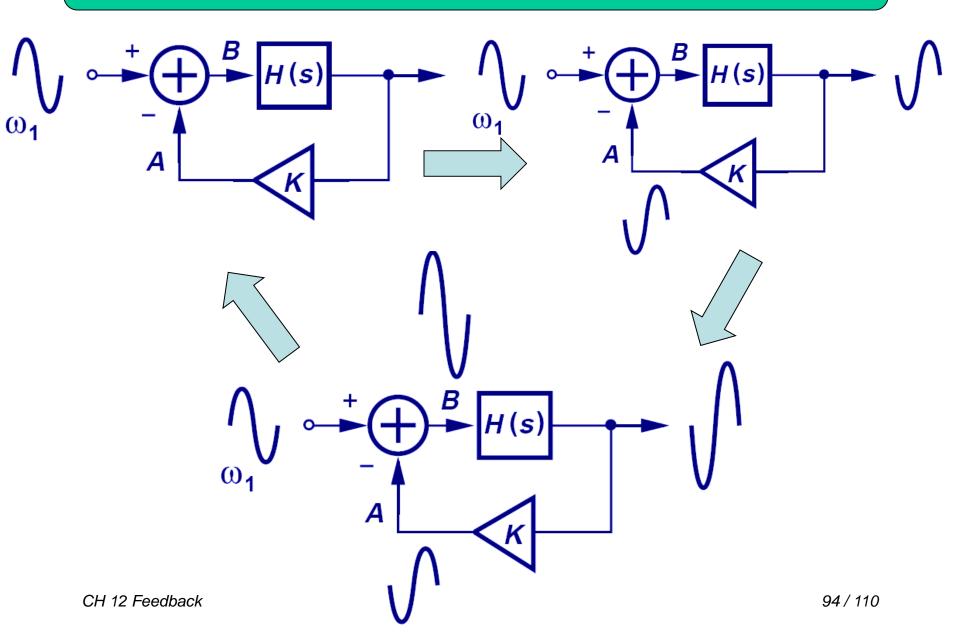
CH 12 Feedback 92 / 110

"Barkhausen's Criteria" for Oscillation

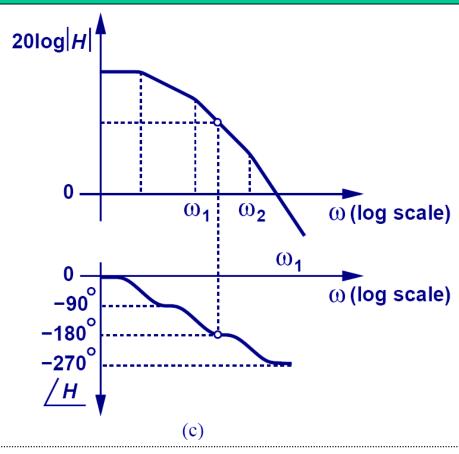


CH 12 Feedback 93 / 110

Time Evolution of Instability



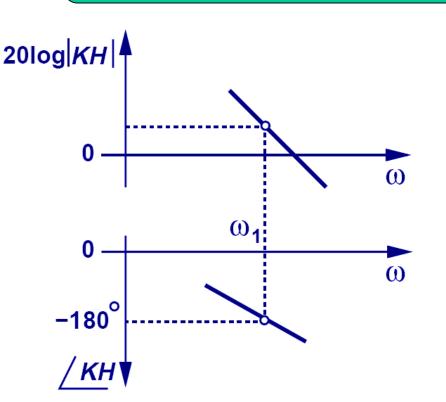
Oscillation Example

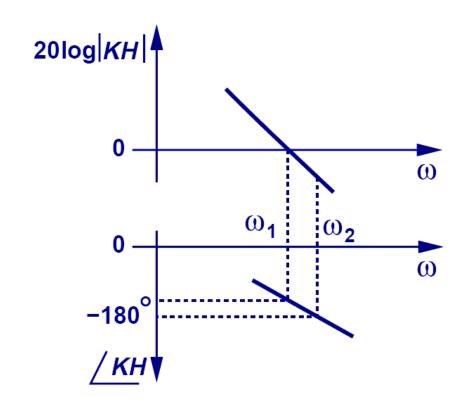


➤ This system oscillates, since there's a finite frequency at which the phase is -180° and the gain is greater than unity. In fact, this system exceeds the minimum oscillation requirement.

CH 12 Feedback 95 / 110

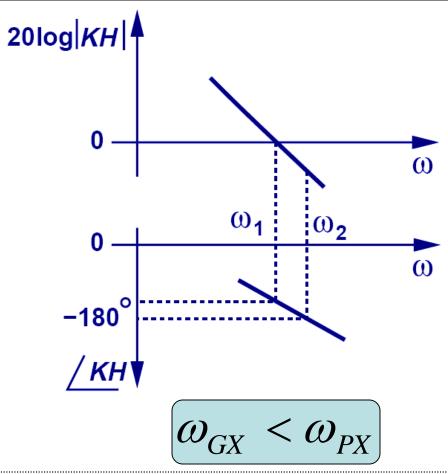
Condition for Oscillation





Although for both systems above, the frequencies at which |KH|=1 and ∠KH=-180° are different, the system on the left is still unstable because at ∠KH=-180°, |KH|>1. Whereas the system on the right is stable because at ∠KH=-180°, |KH|<1.</p>

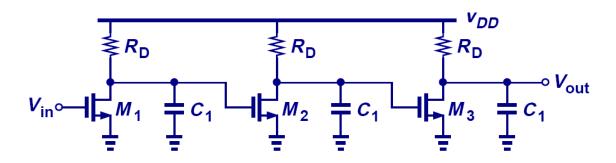
Condition for Stability

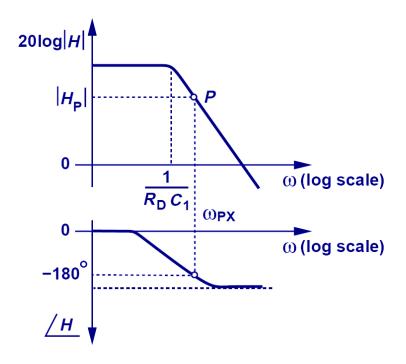


- \succ ω_{PX}, ("phase crossover"), is the frequency at which \angle KH=-180°.
- $\succ \omega_{GX}$, ("gain crossover"), is the frequency at which |KH|=1.

CH 12 Feedback 97 / 110

Example 12.38: Stability



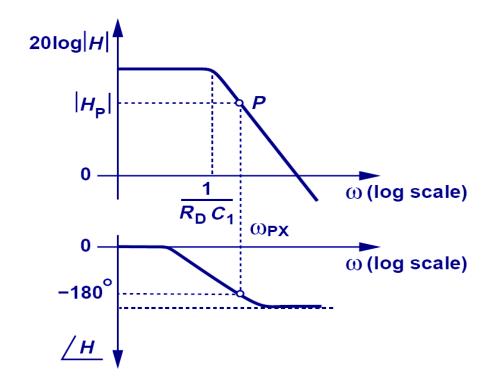


$$A_0 = -(g_m R_D)^3$$

Three poles at $\omega_p = (R_D C_1)^{-1}$

$$H(s) = -\frac{(g_m R_D)^3}{(1 + s / \omega_p)^3}$$

Example 12.38: Stability



For the unity-gain feedback system (K=1) to remain stable, $\mid H_p \mid < 1$

CH 12 Feedback 99 / 110

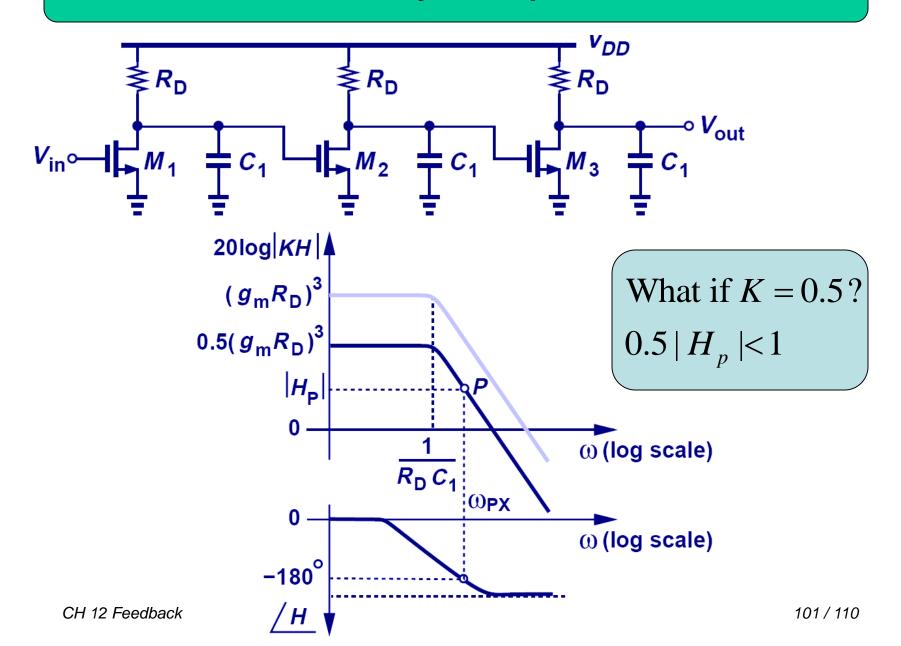
Example 12.38: Stability (Analytical Approach)

$$H(s) = -\frac{(g_m R_D)^3}{(1+s/\omega_p)^3}$$
Hence, $\angle H(j\omega) = -3 \cdot \tan^{-1}(\frac{\omega}{\omega_p})$
Since $\angle H(j\omega_{PX}) = -180^\circ$

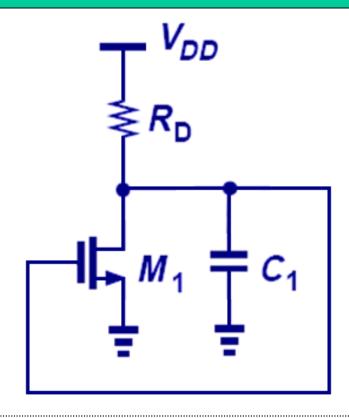
$$\omega_{PX} = \sqrt{3} \cdot \omega_P$$
For $\frac{(g_m R_D)^3}{\left[\sqrt{1+\left(\frac{\omega_{PX}}{\omega_p}\right)^2}\right]^3} < 1$

$$g_m R_D < 2$$

Stability Example II



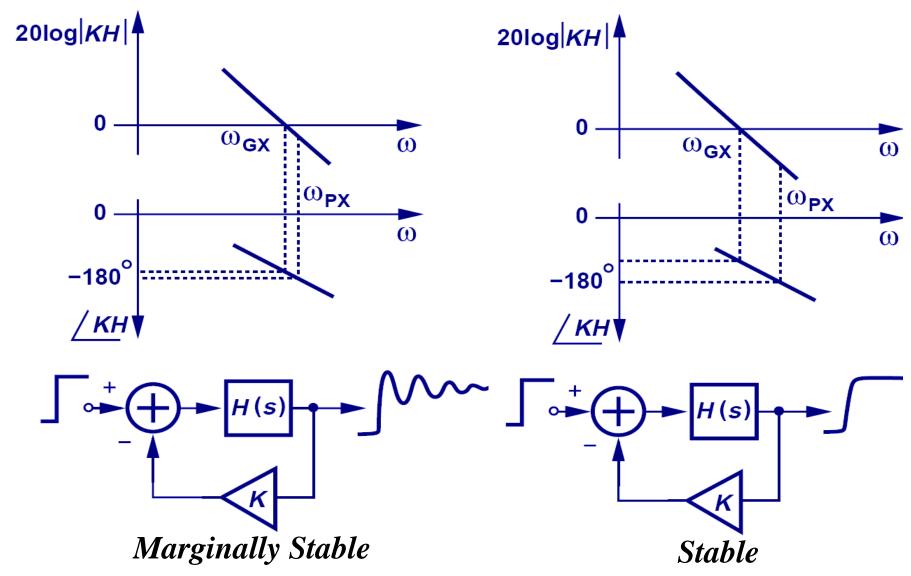
Example 12.39: Single-Stage Amplifier



➤ A common-source stage in a unity-gain feedback loop does not oscillate. Since the circuit contains only one pole, the phase shift cannot reach 180° at any frequency. The circuit is thus stable.

CH 12 Feedback 102 / 110

Marginally Stable vs. Stable



CH 12 Feedback

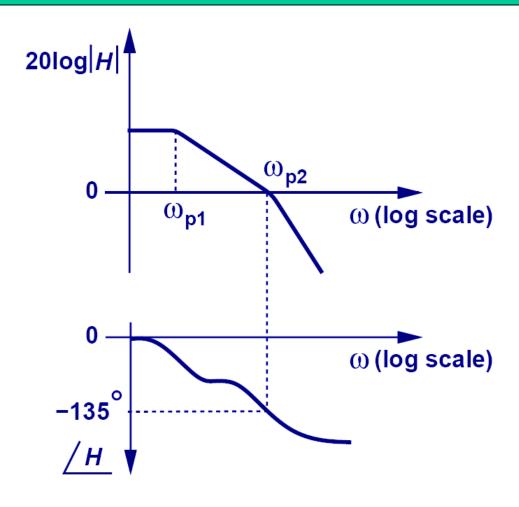
103/110

Phase Margin

- **>** Phase Margin = ∠H($ω_{GX}$)+180
- The larger the phase margin, the more stable the negative feedback becomes

CH 12 Feedback 104 / 110

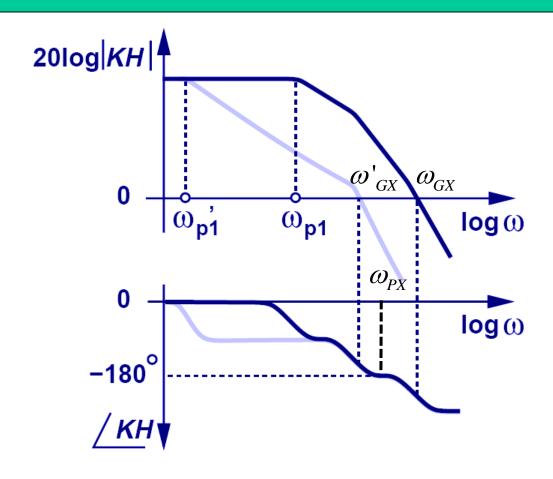
Example 12.41: Phase Margin



$$PM = 45^{\circ}$$

CH 12 Feedback 105 / 110

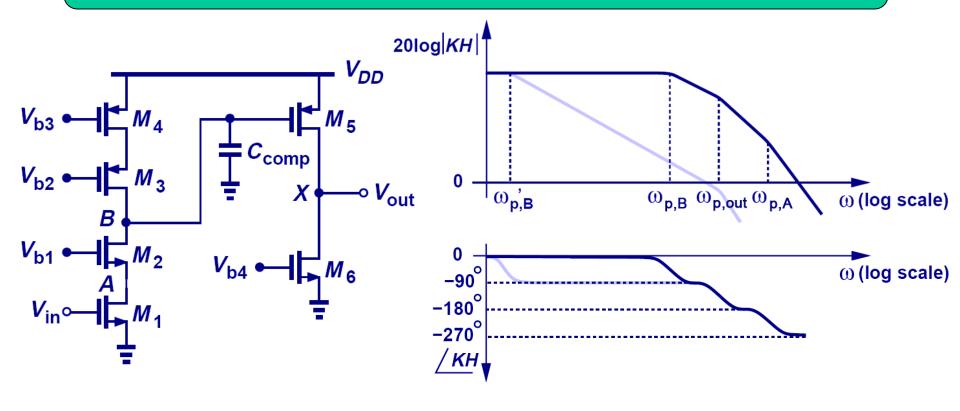
Frequency Compensation



Phase margin can be improved by moving $ω_{GX}$ closer to origin while maintaining $ω_{PX}$ unchanged.

CH 12 Feedback 106 / 110

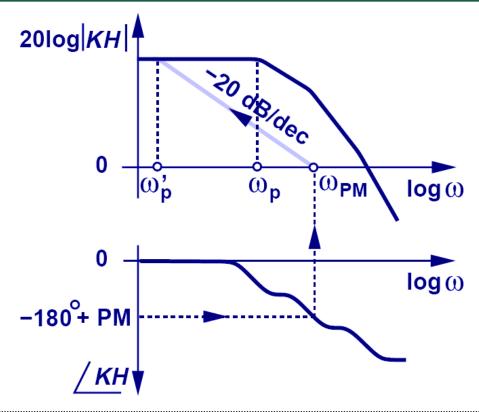
Example 12.42: Frequency Compensation



 $ightharpoonup C_{comp}$ is added to lower the dominant pole so that ω_{GX} occurs at a lower frequency than before, which means phase margin increases.

CH 12 Feedback 107 / 110

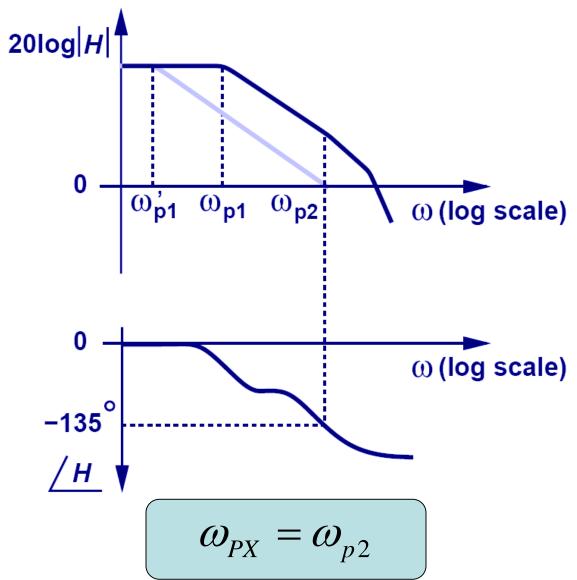
Frequency Compensation Procedure



- > 1) We identify a PM, then -180°+PM gives us the new ω_{GX} , or ω_{PM} .
- \triangleright 2) On the magnitude plot at ω_{PM} , we extrapolate up with a slope of +20dB/dec until we hit the low frequency gain then we look "down" and the frequency we see is our new dominant pole, ω_P '.

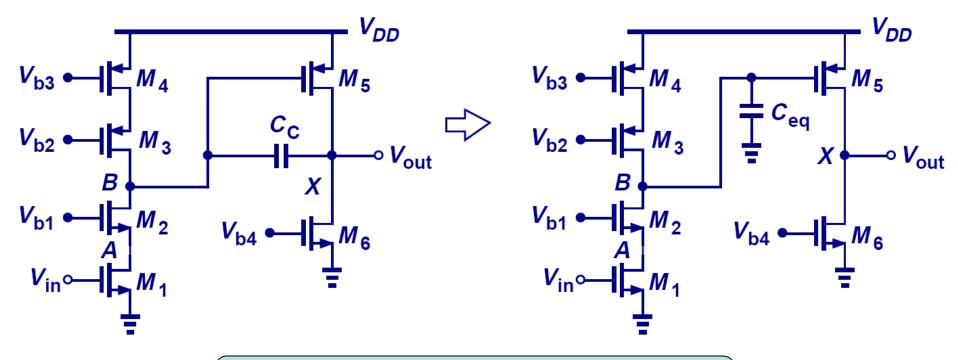
CH 12 Feedback 108 / 110

Example 12.43: 45° Phase Margin Compensation



CH 12 Feedback 109 / 110

Miller Compensation



$$C_{eq} = [1 + g_{m5}(r_{O5} \parallel r_{O6})]C_c$$

➤ To save chip area, Miller multiplication of a smaller capacitance creates an equivalent effect.

CH 12 Feedback 110 / 110