
Hybrid Mapping-based
Flash Translation Layer

Jihong Kim

Dept. of CSE, SNU

Outline

• Problem of BAST

• Advanced Hybrid-mapping schemes
– FAST

– Superblock FTL

– LAST

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

2

FAST

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

3

Problems of BAST

• Log-block thrashing
– Not enough to cover the write requests

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

4

LBA 0
LBA 1
LBA 2
LBA 3

LBA 4
LBA 5
LBA 6
LBA 7

LBA 8
LBA 9

LBA 10
LBA 11

LBA 12
LBA 13
LBA 14
LBA 15

Requests
[WRITE LBA 0]
[WRITE LBA 7]
[WRITE LBA 9]
[WRITE LBA 15]
[WRITE LBA 0]
[WRITE LBA 11]
…

Log Block

LBA 0 LBA 7

Garbage Collection is triggered!

Data Block

Challenges of BAST

• Frequent merge operation
– In random write patterns

– In complicated application

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

5

FAST: Fully Associative S. T.
• FAST : Fully Associative Sector Translation
• Key idea

– Fully associative mapping between data blocks and log
blocks

• Mapping within a log block is managed in page-level as in log
block scheme

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

6

LBA 0
LBA 1
LBA 2
LBA 3

LBA 4
LBA 5
LBA 6
LBA 7

Log Block
(dedicated)

LBA 0 LBA 7

Data Block
LBA 0
LBA 1
LBA 2
LBA 3

LBA 4
LBA 5
LBA 6
LBA 7

Log Block
(full associative)

LBA 0
LBA 7

Data Block

FAST: Pros and Cons

• Pros
– Higher utilization of log blocks

– Delayed merge operation
• increases the probability of page invalidation

• Cons
– When GC, excessive overhead for a single log block

reclamation
• Severely skewed performance depending on the number

of data blocks involved in a log block

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

7

FAST: Sequential Log Block
• Increase the number of switch operations

– Which one is the better option?

• Insert a page in the sequential log block if the offset is ‘0’
• Merge sequential log block if there is no empty one or the

sequentiality is broken
Hybrid Mapping-based Flash Translation Layer

(Jihong Kim/SNU)
8

Log Block
LBA 5
LBA 0

LBA 13
LBA 1

LBA 2
LBA 3

Log Block
LBA 5

LBA 13
LBA 2
LBA 3

LBA 0
LBA 1

Full merge with block 1
Full merge with block 0
Full merge with block 3

Only one switch merge with block 0

FAST: Example

• Example scenario same as before

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

9

LBA 0
LBA 1
LBA 2
LBA 3

LBA 4
LBA 5
LBA 6
LBA 7

LBA 8
LBA 9

LBA 10
LBA 11

LBA 12
LBA 13
LBA 14
LBA 15

Requests
[WRITE LBA 0]
[WRITE LBA 7]
[WRITE LBA 9]
[WRITE LBA 15]
[WRITE LBA 0]
[WRITE LBA 11]
…

Log Block

LBA 0 LBA 7
LBA 9

LBA 15

Sequential Log Block

Merge Operation in FAST
• In the garbage collection to get a free page

– When a log block is the victim block, the number of
merge operations is same as the number of associated
data blocks.

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

10

LBA 0
LBA 1
LBA 2
LBA 3

LBA 4
LBA 5

LBA 7
LBA 6

Log Block

LBA 0 LBA 7
LBA 4

LBA 15

Data Block

LBA 7
LBA 1
LBA 4 LBA 18

Victim Log Block

LBA 0
LBA 1
LBA 2
LBA 3LBA 7

LBA 4
LBA 5
LBA 6

Valid page

Invalid page

O-FAST(Optimized FAST)
• To delay / skip unnecessary merge operations

– If the data of pages in current victim log block is
invalid, skip the merge operations for the pages.

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

11

LBA 0
LBA 1
LBA 2
LBA 3

LBA 4
LBA 5

LBA 7
LBA 6

Log Block

LBA 0 LBA 7
LBA 4

LBA 15

Data Block

LBA 7
LBA 1
LBA 4 LBA 18

Victim Log Block

LBA 0
LBA 1
LBA 2
LBA 3

Valid page

Invalid page

Experimental Result

• Performance metrics
– Number of total erase count
– Total elapsed time

• Benchmark characteristic
– Patterns A and B (Digital Camera)

• Small random writes and large sequential writes
– Patterns C and D (Linux and Symbian)

• Many small random writes and small large sequential
write

– Pattern E (Random)
• Uniform random writes

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

12

Experimental Result

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

13

Experimental Result

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

14

Experimental Result

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

15

Superblock FTL

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

16

Problem of FAST

• Full merge performed more frequently
– The sequential log block for handling sequential

writes causes frequent garbage collection

• Cost of a garbage collection process is high
– Associated data blocks of victim log blocks are joined

in a garbage collection process

• Once a log block is allocated, the subsequent
write requests to the data block are redirected to
the associated log block

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

17

• Superblock scheme
– Superblock

• A set of adjacent logical blocks that share D-block and U-
blocks

– Block mapping at the super block level

– But allow logical pages within a superblock to be
freely located in one of the allocated data block and
log block

– Increase chances of partial or switch merge operation
instead of expensive full merge operation

Rearranging Pages In Several Blocks

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

18

Superblock FTL Scheme

• Overall Architecture
– Pagemap N logical blocks into N + M physical block

• N : Number of logical blocks composing a single
superblock

– Identical to the number of D-blocks allocated for the
superblock

– Determined by superblock size

• M : Log-blocks (=U-blocks) allocated for the superblock
– Dynamically changed according to the number of currently

available U-blocks

– If a new U-block is allocated to the superblock, M is increased
by one

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

19

Rearranging Pages In Several Blocks

• The pages are updated : P5, P2, P3, P7, P5,P2, P3, P7

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

20

Exploiting Block-Level Spatial Locality

• Block-level temporal locality
– The pages in the same logical block are likely to be

updated again near future

• Block-level spatial locality
– The pages in the adjacent logical block are likely to be

updated in the near future

• Use superblock scheme makes some advantages
– Exploit the block-level spatial locality to increase the

storage utilization of U-blocks – control degree of sharing

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

21

Address Translation in Superblock

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

22

Example of Address Translation in Superblock

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

23

A cache for
PMD and its associated PTs

Garbage Collection

• Garbage collection process
– Find a physical block that has no valid pages
– If there is such a block

• It is erased and then allocated to another superblock
– If the first step fails

• Find superblock that has least recently written U-block
• If there is the D-block that has sufficient free pages - Partial

merge
• Other case, select two D-blocks from superblock which has the

smallest number of valid pages – Full merge

Q: Why two D-blocks? Not D-block + U-block?

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

24

Garbage Collection

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

25

Performance Evaluation

• Evaluation methodology
– Implemented trace-driven simulator for log block scheme

and FAST
– Traces are extracted from disk access logs of real user

activities on FAT32
• PIC, MP3, MOV – Digital camera, MP3P, Movie player, PMP

– By creating and deleting various files

• PC trace is the storage access trace of a real user during one
week

– The number of erase and valid page copies during
garbage collection are main factor

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

26

Overall Performance

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

27

Overall Performance

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

28

• Superblock has the smallest migration overhead

Overall Performance

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

29

• Superblock scheme shares D-blocks and U-blocks among several
logical blocks

• Organizes all physical block with an out-of-place scheme which
increases the chance of the switch merge

 Garbage overhead when the amount of U-blocks is varied
 From 16(0.05% of the number of D-blocks) to 2048 (6.25%)

The Effect of the Number of U-blocks

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

30

LAST

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

31

FTL in General-Purpose Computing Systems

• Existing FTL schemes are ill-suited for general-purpose
computing systems

Garbage collection overhead is significantly increased !!!
Hybrid Mapping-based Flash Translation Layer

(Jihong Kim/SNU)
32

I/O Characteristics of Mobile
Embedded Applications

An MP3 player

– Most of write requests are sequential
– Many merge operations can be performed by cheap switch merge
⇒ A little garbage collection overhead

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

33

General-purpose applications

I/O Characteristics of General-purpose Applications

– Many random writes with a high temporal locality
– Many sequential writes with a high sequential locality
– A mixture of random and sequential writes

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

34

The increased full and partial merge operations
• The ratio of expensive full and partial merges is

significantly increased !!!

⇒ Need to take advantage of the I/O characteristics of general-purpose applications

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

35

Locality-Aware Sector Translation (LAST)

• Design goals of the LAST scheme
– Replace expensive full merges by cheap switch merges
– Reduce the average cost of full merge

• Our solutions
– Extract a write request having a high sequential locality

from the mixed write patterns
• a locality detector

– Exploit a high temporal locality of a random write
• a hot/cold separation policy
• an intelligent victim selection policy

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

36

Random log buffer

Overall Architecture of the LAST Scheme
Write request

Locality detector

Sequential log bufferCold partition Hot partition

Merge operation

Data blocks

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

37

Locality Detector (1)
• How to detect the locality type of a write request

– The locality type is highly correlated to the size of write
request

Lo
ca

lit
y

High

Low

Request sizeSmall Large

Temporal Locality

Sequential locality

From the observation of realistic workloads
- small-sized writes have a high temporal locality
- large-sized writes have a high sequential locality

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

38

Locality detector

Locality Detector (2)

• A locality-detection policy based on the request size

Write request

Random log buffer

If the size of the write ≤ a threshold value
⇒write it into the random log buffer

Sequential log buffer

If the size of the write > a threshold value
⇒write it into the sequential log buffer

Increase the possibility
of switch merge

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

39

Random log buffer

Overall Architecture of the LAST Scheme

Write request

Locality detector

Sequential log bufferCold partition Hot partition

Merge operation

Data blocks

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

40

Sequential Log Buffer

• Multiple sequential write streams are
simultaneously issued from the file system
– Accommodate multiple sequential write streams

• maintain several log blocks in the sequential log buffer
– Distribute each sequential write into different log block

• one log block can be associated with only one data block

Write stream 1 (page 0 and 1)

Sequential log block 0 Sequential log block 1

0 1

Write stream 2 (page 4 and 5)

4 5

Write stream 1 (page 2 and 3)

2 3

Data block 0

0 1 2 3

Data block 1

4 5 6 70 1 2 3 4 5Write stream 3 (page 8 and 9)

Switch merge
Hybrid Mapping-based Flash Translation Layer

(Jihong Kim/SNU)
41

Random log buffer

Overall Architecture of the LAST Scheme
Write request

Locality detector

Sequential log bufferCold partition Hot partition

Merge operation

Data blocks

A hot/cold
separation policy

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

42

Log Buffer Partitioning Policy
• Log buffer partitioning policy

– Proposed to provide a hot and cold separation policy
– Separate hot pages from cold pages
– Invalid pages are likely to be clustered in the same log block

• All the pages in a log block can be invalidated ⇒ dead block

– Remove dead block with only one erase operation

4 3 21 7 8 5 9 6

Cold partition

1 2 1 2 1 2 9

Hot partition

Many dead blocks are generated

Cold pages Hot pages

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

43

Log Buffer Partitioning Policy

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

44

1 4 3 1 2 7 8 2 1 5 2 9 1 4 2 91 1 2 2 1 2 9

A single partition

Requested pages:

4

• A single partition
– All the requested pages are sequentially written to log

blocks

→ 41 → 3 → 1 → 2 → 7 → 8 → 2 → 1 → 5 → 2 → 9 → 1 → 4 → 2 → 9

Write

Log Buffer Partitioning Policy

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

45
Two partitions (k = 5)

1 4 31 12 7 8 22 115 2 29 114 2 2 99

Write Write

Cold partition Hot partition

4

Requested pages:
→ 41 → 3 → 1 → 2 → 7 → 8 → 2 → 1 → 5 → 2 → 9 → 1 → 4 → 2 → 9

• Two partitions
– The requested page is written to a different partition depending on

its locality
– If the requested page is one of k pages recently written, we regard it

as a hot page; otherwise, it is regarded as a cold page

Random log buffer

Overall Architecture of the LAST Scheme

Write request

Locality detector

Sequential log bufferCold partition Hot partition

Merge operation

Data blocks

A victim selection
policy

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

46

Log Buffer Replacement Policy
• Log buffer replacement policy

– Proposed to provide a more intelligent victim selection
– Delay an eviction of hot pages as long as possible

4 3 21 7 8 5 9 6

Cold partition

1 2 1 2 1 2 9

Hot partition

(1) evict a dead block first from the hot partition
- requires only one erase operation

(2) evict a cold block from the cold partition
- select a block associated with a smallest number of data blocks

4 3 21 7 8 5 9 6

Cold partition

1 2 1 3 1 2 9

Hot partition

910 17 20

victim

victim
Hybrid Mapping-based Flash Translation Layer

(Jihong Kim/SNU)
47

Experimental Results
• Experimental environment

– Trace-driven FTL simulator
• Three existing FTL schemes: BAST, FAST, SUPERBLOCK
• The propose scheme: LAST

– Benchmarks
• Realistic PC workload sets, TPC-C benchmark

– Flash memory model

• Important parameters
– Total log buffer size: 512 MB
– Sequential log buffer size: 32 MB
– Threshold value: 4 KB (8 sectors)

Flash memory Organization

Block Size 128 KB

Page size 2 KB

Num. of pages per block 64

Access time

Read (1 page) 25 usec

Write (1 page) 200 usec

Erase (1 block) 2000 usec

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

48

Result 1: Garbage Collection Overhead

• LAST shows the best garbage collection efficiency
– Garbage collection overhead is reduced by 46~67% compared to the

SUPERBLOCK scheme
Hybrid Mapping-based Flash Translation Layer

(Jihong Kim/SNU)
49

Result 2: Ratio of Switch Merge

• The ratio of switch merges is significantly increased
– SUPERBLOCK also shows a high switch merge ratio

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

50

Result 3: Ratio of Dead Block

• Many dead blocks are generated from the random log buffer

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

51

Reference

• J. Kim et al, “A space-efficient flash translation layer for compact flash
systems,” IEEE Transactions on Consumer Electronics, vol. 48, no. 2, pp.
366-375, 2002.

• S. W. Lee et al, “A log buffer based flash translation layer using fully
associative sector translation,” ACM Transactions on Embedded
Computing Systems, vol. 6, no. 3, 2007.

• S. Lee et al, “LAST: Locality-Aware Sector Translation for NAND Flash
Memory-Based Storage Systems, ”SPEED 2008.

• J. Kang et al., “A Superblock-based Flash Translation Layer for NAND Flash
Memory,” EMSOFT '06: Proceedings of the 6th ACM & IEEE International
conference on Embedded software, 2006

Hybrid Mapping-based Flash Translation Layer
(Jihong Kim/SNU)

52

	Hybrid Mapping-based� Flash Translation Layer
	Outline
	FAST
	Problems of BAST
	Challenges of BAST
	FAST: Fully Associative S. T.
	FAST: Pros and Cons
	FAST: Sequential Log Block
	FAST: Example
	Merge Operation in FAST
	O-FAST(Optimized FAST)
	Experimental Result
	Experimental Result
	Experimental Result
	Experimental Result
	Superblock FTL
	Problem of FAST
	Rearranging Pages In Several Blocks
	Superblock FTL Scheme
	Rearranging Pages In Several Blocks
	Exploiting Block-Level Spatial Locality
	Address Translation in Superblock
	Example of Address Translation in Superblock
	Garbage Collection
	Garbage Collection
	Performance Evaluation
	Overall Performance
	Overall Performance
	Overall Performance
	The Effect of the Number of U-blocks
	LAST
	FTL in General-Purpose Computing Systems
	I/O Characteristics of Mobile �Embedded Applications
	I/O Characteristics of General-purpose Applications
	The increased full and partial merge operations
	Locality-Aware Sector Translation (LAST)
	Overall Architecture of the LAST Scheme
	Locality Detector (1)
	Locality Detector (2)
	Overall Architecture of the LAST Scheme
	Sequential Log Buffer
	Overall Architecture of the LAST Scheme
	Log Buffer Partitioning Policy
	Log Buffer Partitioning Policy
	Log Buffer Partitioning Policy
	Overall Architecture of the LAST Scheme
	Log Buffer Replacement Policy
	Experimental Results
	Result 1: Garbage Collection Overhead
	Result 2: Ratio of Switch Merge
	Result 3: Ratio of Dead Block
	Reference

