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Outline

• Problem of BAST

• Advanced Hybrid-mapping schemes
– FAST

– Superblock FTL

– LAST
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Problems of BAST

• Log-block thrashing
– Not enough to cover the write requests
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Requests
[WRITE LBA 0]
[WRITE LBA 7]
[WRITE LBA 9]
[WRITE LBA 15]
[WRITE LBA 0]
[WRITE LBA 11]
…

Log Block

LBA 0 LBA 7

Garbage Collection is triggered!

Data Block



Challenges of BAST 

• Frequent merge operation
– In random write patterns

– In complicated application
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FAST: Fully Associative S. T.
• FAST : Fully Associative Sector Translation
• Key idea

– Fully associative mapping between data blocks and log 
blocks

• Mapping within a log block is managed in page-level  as in log 
block scheme 
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FAST: Pros and Cons

• Pros
– Higher utilization of log blocks

– Delayed merge operation
• increases the probability of page invalidation

• Cons
– When GC, excessive overhead for a single log block 

reclamation
• Severely skewed performance depending on the number 

of data blocks involved in a log block
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FAST: Sequential Log Block
• Increase the number of switch operations

– Which one is the better option?

• Insert a page in the sequential log block if the offset is ‘0’
• Merge sequential log block if there is no empty one or the 

sequentiality is broken
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FAST: Example

• Example scenario same as before
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LBA 10
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LBA 13
LBA 14
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Requests
[WRITE LBA 0]
[WRITE LBA 7]
[WRITE LBA 9]
[WRITE LBA 15]
[WRITE LBA 0]
[WRITE LBA 11]
…

Log Block

LBA 0 LBA 7
LBA 9

LBA 15

Sequential Log Block



Merge Operation in FAST
• In the garbage collection to get a free page

– When a log block is the victim block, the number of 
merge operations is same as the number of associated 
data blocks.
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O-FAST(Optimized FAST)
• To delay / skip unnecessary merge operations

– If the data of pages in current victim log block is 
invalid, skip the merge operations for the pages.
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Experimental Result

• Performance metrics
– Number of total erase count
– Total elapsed time

• Benchmark characteristic
– Patterns A and B (Digital Camera)

• Small random writes and  large sequential writes
– Patterns C and D (Linux and Symbian)

• Many small random writes and small large sequential 
write

– Pattern E (Random)
• Uniform random writes
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Experimental Result

Hybrid Mapping-based Flash Translation Layer 
(Jihong Kim/SNU)

13



Experimental Result

Hybrid Mapping-based Flash Translation Layer 
(Jihong Kim/SNU)

14



Experimental Result
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Superblock FTL 
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Problem of FAST

• Full merge performed more frequently
– The sequential log block for handling sequential 

writes causes frequent garbage collection

• Cost of a garbage collection process is high
– Associated data blocks of victim log blocks are joined 

in a garbage collection process

• Once a log block is allocated, the subsequent 
write requests to the data block are redirected to 
the associated log block
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• Superblock scheme
– Superblock

• A set of adjacent logical blocks that share D-block and U-
blocks

– Block mapping at the super block level

– But allow logical pages within a superblock to be 
freely located in one of the allocated data block and 
log block

– Increase chances of partial or switch merge operation 
instead of expensive full merge operation

Rearranging Pages In Several Blocks
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Superblock FTL Scheme

• Overall Architecture
– Pagemap N logical blocks into N + M physical block

• N  : Number of logical blocks composing a single 
superblock 

– Identical to the number of D-blocks allocated for the 
superblock

– Determined by superblock size

• M : Log-blocks (=U-blocks) allocated for the superblock
– Dynamically changed according to the number of currently 

available U-blocks

– If a new U-block is allocated to the superblock, M is increased 
by one
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Rearranging Pages In Several Blocks

• The pages are updated : P5, P2, P3, P7, P5,P2, P3, P7                                                    
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Exploiting Block-Level Spatial Locality

• Block-level temporal locality
– The pages in the same logical block are likely to be 

updated again near future

• Block-level spatial locality
– The pages in the adjacent logical block are likely to be 

updated in the near future

• Use superblock scheme makes some advantages 
– Exploit the block-level spatial locality to increase the 

storage utilization of U-blocks – control degree of sharing
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Address Translation in Superblock
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Example of Address Translation in Superblock
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A cache for
PMD and its associated PTs



Garbage Collection

• Garbage collection process
– Find a physical block that has no valid pages
– If there is such a block

• It is erased and then allocated to another superblock
– If the first step fails

• Find superblock that has least recently written U-block
• If there is the D-block that has sufficient free pages - Partial 

merge
• Other case, select two D-blocks from superblock which has the 

smallest number of valid pages – Full merge

Q: Why two D-blocks? Not D-block + U-block?
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Garbage Collection
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Performance Evaluation

• Evaluation methodology
– Implemented trace-driven simulator for log block scheme 

and FAST
– Traces are extracted from disk access logs of real user 

activities on FAT32
• PIC, MP3, MOV – Digital camera, MP3P, Movie player, PMP

– By creating and deleting various files

• PC trace is the storage access trace of a real user during one 
week

– The number of erase and valid page copies during 
garbage collection are main factor
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Overall Performance
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Overall Performance
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• Superblock has the smallest migration overhead



Overall Performance
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• Superblock scheme shares D-blocks and U-blocks among several 
logical blocks 

• Organizes all physical block with an out-of-place scheme which 
increases the chance of the switch merge



 Garbage overhead when the amount of U-blocks is varied
 From 16(0.05% of the number of D-blocks) to 2048 (6.25%)

The Effect of the Number of U-blocks
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LAST
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FTL in General-Purpose Computing Systems

• Existing FTL schemes are ill-suited for general-purpose 
computing systems

Garbage collection overhead is significantly increased !!!
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I/O Characteristics of Mobile 
Embedded Applications

An MP3 player

– Most of write requests are sequential
– Many merge operations can be performed by cheap switch merge
⇒ A little garbage collection overhead
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General-purpose applications

I/O Characteristics of General-purpose Applications

– Many random writes with a high temporal locality
– Many sequential writes with a high sequential locality
– A mixture of random and sequential writes
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The increased full and partial merge operations
• The ratio of expensive full and partial merges is 

significantly increased !!!

⇒ Need to take advantage of the I/O characteristics of general-purpose applications
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Locality-Aware Sector Translation (LAST)

• Design goals of the LAST scheme
– Replace expensive full merges by cheap switch merges
– Reduce the average cost of full merge

• Our solutions
– Extract a write request having a high sequential locality 

from the mixed write patterns
• a locality detector

– Exploit a high temporal locality of a random write
• a hot/cold separation policy 
• an intelligent victim selection policy
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Random   log buffer

Overall Architecture of the LAST Scheme
Write request

Locality detector

Sequential log bufferCold partition Hot partition

Merge operation

Data blocks
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Locality Detector (1)
• How to detect the locality type of a write request

– The locality type is highly correlated to the size of write 
request

Lo
ca

lit
y

High

Low

Request sizeSmall Large

Temporal Locality

Sequential locality

From the observation of realistic workloads
- small-sized writes have a high temporal locality
- large-sized writes have a high sequential locality
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Locality detector

Locality Detector (2)

• A locality-detection policy based on the request size

Write request

Random log buffer

If the size of the write ≤ a threshold value
⇒write it into the random log buffer

Sequential log buffer

If the size of the write > a threshold value
⇒write it into the sequential log buffer

Increase the possibility 
of switch merge
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Random   log buffer

Overall Architecture of the LAST Scheme

Write request

Locality detector

Sequential log bufferCold partition Hot partition

Merge operation

Data blocks
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Sequential Log Buffer

• Multiple sequential write streams are 
simultaneously issued from the file system
– Accommodate multiple sequential write streams

• maintain several log blocks in the sequential log buffer
– Distribute each sequential write into different log block

• one log block can be associated with only one data block

Write stream 1 (page 0 and 1)

Sequential log block 0 Sequential log block 1

0 1

Write stream 2 (page 4 and 5)

4 5

Write stream 1 (page 2 and 3)

2 3

Data block 0

0 1 2 3

Data block 1

4 5 6 70 1 2 3 4 5Write stream 3 (page 8 and 9)

Switch merge
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Random   log buffer

Overall Architecture of the LAST Scheme
Write request

Locality detector

Sequential log bufferCold partition Hot partition

Merge operation

Data blocks

A hot/cold 
separation policy
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Log Buffer Partitioning Policy
• Log buffer partitioning policy

– Proposed to provide a hot and cold separation policy
– Separate hot pages from cold pages
– Invalid pages are likely to be clustered in the same log block

• All the pages in a log block can be invalidated ⇒ dead block

– Remove dead block with only one erase operation

4 3 21 7 8 5 9 6

Cold partition

1 2 1 2 1 2 9

Hot partition

Many dead blocks are generated

Cold pages Hot pages
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Log Buffer Partitioning Policy
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1 4 3 1 2 7 8 2 1 5 2 9 1 4 2 91 1 2 2 1 2 9

A single partition

Requested pages: 

4

• A single partition
– All the requested pages are sequentially written to log 

blocks 

→ 41 → 3 → 1 → 2 → 7 → 8 → 2 → 1 → 5 → 2 → 9 → 1 → 4 → 2 → 9

Write



Log Buffer Partitioning Policy
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Two partitions (k = 5)

1 4 31 12 7 8 22 115 2 29 114 2 2 99

Write Write

Cold partition Hot partition

4

Requested pages: 
→ 41 → 3 → 1 → 2 → 7 → 8 → 2 → 1 → 5 → 2 → 9 → 1 → 4 → 2 → 9

• Two partitions
– The requested page is written to a different partition depending on 

its locality
– If the requested page is one of k pages recently written, we regard it 

as a hot page; otherwise, it is regarded as a cold page



Random   log buffer

Overall Architecture of the LAST Scheme

Write request

Locality detector

Sequential log bufferCold partition Hot partition

Merge operation

Data blocks

A victim selection 
policy
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Log Buffer Replacement Policy
• Log buffer replacement policy

– Proposed to provide a more intelligent victim selection
– Delay an eviction of hot pages as long as possible

4 3 21 7 8 5 9 6

Cold partition

1 2 1 2 1 2 9

Hot partition

(1) evict a dead block first from the hot partition
- requires only one erase operation

(2) evict a cold block from the cold partition
- select a block associated with a smallest number of data blocks

4 3 21 7 8 5 9 6

Cold partition

1 2 1 3 1 2 9

Hot partition

910 17 20

victim

victim
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Experimental Results
• Experimental environment

– Trace-driven FTL simulator
• Three existing FTL schemes: BAST, FAST, SUPERBLOCK
• The propose scheme: LAST

– Benchmarks
• Realistic PC workload sets, TPC-C benchmark

– Flash memory model

• Important parameters
– Total log buffer size: 512 MB
– Sequential log buffer size: 32 MB
– Threshold value: 4 KB (8 sectors)

Flash memory Organization

Block Size 128 KB

Page size 2 KB

Num. of pages per block 64

Access time

Read (1 page) 25 usec

Write (1 page) 200 usec

Erase (1 block) 2000 usec
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Result 1: Garbage Collection Overhead

• LAST shows the best garbage collection efficiency
– Garbage collection overhead is reduced by 46~67% compared to the 

SUPERBLOCK scheme
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Result 2: Ratio of Switch Merge

• The ratio of switch merges is significantly increased
– SUPERBLOCK also shows a high switch merge ratio
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Result 3: Ratio of Dead Block

• Many dead blocks are generated from the random log buffer
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