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induced leading-edge separation. Dynamic stall generates high oscillatory and vibratory torsion
loads on the blades and the swash-plate servos. Predicting dynamic stall is necessary for initial
sizing and stall flutter calculations. It is also key to achieving higher forward speed capabilities for
heavily loaded rotor systems.

Numerous experiments have revealed the general sequence of events. For an airfoil pitching up, a
progressive trailing edge separation due to flow reversal in the boundary layer, is accompanied by the
formation of a leading edge vortex. The onset of a critical leading edge pressure triggers a leading-
edge separation where the vortex detaches and starts moving downstream. This phenomenon
of vortex detachment generates a strong pitching moment stall. However, as long as the vortex
traverses over the airfoil, the lift does not stall and continues to increase. The lift stalls when the
vortex leaves the trailing edge. At this time, the pitching moment reaches its maximum negative
value. A period of progressive flow re-attachment follows as the airfoil pitches down. During
this time one or more weaker vortices can be shed from the upper surface, creating additional
fluctuations in lift and pitching moment. This sequence of events lead to large hysteresis loops in
airloads when plotted versus the angle of incidence. Typical hysteresis loops in airfoil lift coefficient
and pitching moment coefficients are shown in Fig.4.1. The figure shows the airloads on a 2D SC-
1095 airfoil section undergoing pitch oscillations at a nondimensional frequency k = ωc/2U , where
ω is the frequency of oscillation in radians/sec, c is the airfoil chord, and U is the incident velocity.
The incident velocity corresponds to a Mach number of 0.3. When the angle of attack variation is
such that the airfoil goes slightly out of the static stall regime with each oscillation, it is called a
light stall. When a large part of the angle of oscillation occurs outside the static stall regime, it is
called a deep stall.
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Figure 4.1: SC-1095 light and deep dynamic stall cycles; static and dynamic data from
McCroskey et al NASA TM-84245, 1982, at Mach 0.3, reduced frequency k = 0.1
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Fundamental understanding of dynamic stall began with the seminal work of Liiva [16] on
helicopter rotors and Carta [17] on axial-flow turbomachines. Subsequently, many experimental
investigations have provided greater insights into the phenomena.

Current comprehensive analyses calculates dynamic stall using semi-empirical models. like the
UTRC Method 1970, the Beddoes Time-Delay Method 1976, Gangwani’s Method 1982 (all reviewed
in [8]), the Boeing-Vertol gamma function method 1973 [18], Johnson’s Method 1969 [19], the
Leishman-Beddoes Method 1986 [12], ONERA EDLIN (Equations Differentielles Linearires) model
1990 [20] and the ONERA BH (Bifurcation de Hopf) model 1998 [21].

Dynamic stall is characterized by a delay in angle of attack before stall (or separation) and high
transient loads induced by a leading edge vortex after stall. All dynamic stall models, model the
delay in angle of attack and the aerodynamic coefficient increments after stall. In the Leishman-
Beddoes model uses first-order differential equations for the delayed angle of attack and leading-edge
vortex lift. All models are 2-D and semi-empirical in nature. The ONERA EDLIN model and BH
model both use second-order differential equations to calculate delayed angle of attack and lift,
drag and moment increments. The Johnson model uses an angle of attack delay proportional to
the rate of change of angle of attack. The Boeing model uses an angle of attack delay proportional
to the square-root of the rate of change of angle of attack. In general the agreement between
different models are good considering the simplicity of the models, but correlation with test data
show significant errors, as expected with empirical models. Johnson [22] compared 2D airloads,
PUMA blade sectional airloads, and power predictions under stall conditions using the different
models. The predictions were similar but correlation with test data showed errors, as expected of
all semi-empirical models.

4.3 Unsteady Thin Airfoil Theory

Thin airfoil theory is widely used to calculate the lift force on an airfoil. The theory tries to solve
the Laplace equation in two dimensions while implementing boundary conditions that produce
useful aerodynamic solutions. The assumption of inviscid potential flow implies that the governing
equation remains the same for both steady and unsteady flows. The treatment of unsteady flows
is via boundary conditions.

Normally, the problem is divided into two parts, lift and drag. Typically, the lift problem is
normally solved using the inviscid flow assumption. On the other hand, the viscosity plays an
important role near the surface and it influences the drag force. The drag solution is separately
obtained for the real fluid either using some empirical relations or the experimental data. For most of
the problems, viscosity has little influence on the pressure solution. An airfoil is assumed sufficiently
thin so that for a small angle of attack the disturbances in the flow are small perturbations.

The assumptions are:

1. Flow disturbances are small perturbations.

2. Flow on the surface is tangential.
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3. Flow leaves trailing edge smoothly (Kutta condition).

Break the problem into two parts.

Part I: Thickness solution

The airfoil camber as well as the angle of attack are set to zero. A symmetric airfoil at zero
angle of attack gives symmetric pressure resulting in zero net lift. The airfoil is replaced by a source
distribution on the chord line.

We would like to find the strength of the source distribution, and this is done using the tangential
flow condition on the surface. Once the strength is known then the pressure distribution can be
calculated.

Part II: Lift solution

The airfoil thickness is set to zero, so the camber line is set at an angle of attack. The lift solution
is obtained by replacing the camber line with the vortex sheet. The solution is anti-symmetric in
character.

Using the boundary condition on the surface and the Kutta condition at the trailing edge, the
strength of the vorticity distribution is evaluated. Then the pressure distribution can be calculated.
Glauert used a Fourier series to solve the problem. Note that, without the Kutta condition the
airfoil generates zero forces and moments. The assumption of inviscid irrotational flow gaurantees
that the flow slips past the body without producing any net forces. The Kutta condition ensures
that at least a lift is produced. This lift happens to be close to measured values, implying that the
Kutta condition has a physical basis.

It was Helmholtz who first proposed an idea to obtain a lift solution for a thin airfoil, essentially
a flat plate. It is impossible he reasoned that a real flow with viscosity would negotiate a sharp
turn (zero radius of curvature) at the leading and trailing edges. One way to indirectly incorporate
viscous behavior within a potential flow solution was to impose flow smoothness at the leading
and trailing edges. The lift solution he obtained was far off, but the idea was correct. Kutta and
Joukowski, independantly, imposed the condition only at the trailing edge. Their solution was quite
accurate. We now know that the effects of viscosity is pronounced at the trailing edge, not the
leading edge. The boundary layer is thick near the trailing edge.
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4.3.1 Steady Airloads

Let us examine the lifting problem through the thin airfoil theory. The flow is assumed to be
inviscid, irrotational (i.e. potential) and in addition incompressible.

The airfoil camber is given by z = z(x), z(x) << c, where c is the airfoil chord. The camber
line is replaced by the vorticity distribution γ(x). For steady flow, the shed vorticity is neglected.
The induced velocity w(x) perpendicular to the camber line at any x is approximated to be the
same as that perpendicular to the x axis. This is the thin airfoil assumption.

wb(x) =

∫ c

0

γb(ξ)dξ

2π(ξ − x)

For flow tangency, or impenetrability along the camber line, the induced velocity from the free
stream should be equal and opposite to the vortex induced velocity. Thus∫ c

0

γ(ξ)dξ

2π(ξ − x)
+

(
α− dz

dx

)
U = 0

or ∫ c

0

γ(ξ)dξ

2π(x− ξ)
=

(
α− dz

dx

)
U

The Kutta condition is given by

γ(c) = 0

Solve for γ(x). Then the lift and moment about the leading edge can be calculated using

L =

∫ c

0
ρUγdx

Mle =

∫ c

0
ρUγxdx

The moment can be transfered to any chord-wise location based on requirements.
Glauert calculated the solution using the Fourier series. The results are summarized here. The

non-dimensional lift and pitching moment coefficient at quarter chord are given by

Cl = 2π(A0 +A1/2)

Cm 1
4
c = −π

4
(A1 −A2)

where

A0 = α− 1

π

∫ π

0

dz

dx
dθ

An =
2

π

∫ π

0

dz

dx
cosnθdθ

θ = cos−1

(
1− 2x

c

)
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4.3.2 Quasi-Steady Airloads

The steady airloads results can be adapted to unsteady airfoil motions. It provides quasi-steady
airloads solutions that are quite useful for simple aero-elastic stability analysis. The world quasi-
steady is used because the effects of shed wake is still being neglected.

Note that the slope of the camberline dz/dx satisfies the following equation to maintain impen-
etrability conditions.(

α− dz

dx

)
U = wa(x)

where wa(x) is the component of free stream perpendicular to the camberline. Thus

dz

dx
= α− wa(x)

U

In the case of a flat plate we have

dz

dx
= 0

Consider a flat plate with a plunge velocity ḣ downwards (so that the relative air velocity is ḣ
positive upwards).

wa(x) = Uα+ ḣ

wa(x)

U
= α+

ḣ

U

dz

dx
= − ḣ

U

Now consider a flat plate pitching with a angular rate α̇. The point with zero translational velocity
(center of rotation, elastic axis) is at a distance ahb from the mid-chord, where b = c/2.

wa(x) = Uα+ (x− b− ahb) α̇

wa(x)

U
= α+ (x− b− ahb)

α̇

U

dz

dx
= − (x− b− ahb)

α̇

U

For an airfoil both pitching and plunging we have

dz

dx
= − ḣ

U
− (x− b− ahb)

α̇

U

Using the above expression in the steady airload results and noting that x = b(1 − cos θ), we have

A0 = α+
1

π

∫ π

0

[
ḣ

U
+ (x− b− ahb)

α̇

U

]
dθ

= α+
ḣ

U
− ahb

U
α̇

(4.69)

For pitching about 1/4c, i.e. if the elastic axis is at 1/4c then

ahb = −b/2
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ah = −1/2

A0 = α+
ḣ

U
+

bα̇

2U
or

A0 = α+
ḣ

U
+

cα̇

4U

Similarly

A1 = − 2

π

∫ π

0

[
ḣ

U
+ (x− b− ahb)

α̇

U

]
cos θdθ

= − 2

π

α̇

U

∫ π

0
x cos θdθ

=
α̇

U
b

(4.70)

Thus

Cl = 2π

[
α+

ḣ

U
+

α̇

U

(
b

2
− ahb

)]

Lqs =
1

2
ρU2(2b)

= 2πbρU

[
Uα+ ḣ+ α̇

(
b

2
− ahb

)] (4.71)

where Lqs is the quasi-steady lift per unit span. Note that

b

2
− ahb =

(
b+

b

2

)
− (b+ ahb)

=
3

4
c− xea

(4.72)

Thus

Cl = 2π

[
α+

ḣ

U
+

α̇

U

(
3

4
c− xea

)]

= 2π

[
α+

downward velocity at 3/4 chord

U

]
= 2παg

(4.73)

where αg is defined as a geometric angle of attack, arising out of the unsteady blade motions. αg

is the angle of attack at 3/4c.
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Thus, the quasi-steady assumption boils down to the following. At any instant of time, freeze
the motion of the body. Calculate the effective angle of attack at 3/4c. Then use the static
aerodynamic characteristics to evaluate the forces on the body.

4.3.3 Unsteady Airloads

For unsteady flow, the shed vorticity plays an important role. The Laplace solutions are retained
with the addition of shed vorticity. Consider a similar pitching and plunging airfoil motion as
before.

The bound vorticity strength is γb as before. In addition we have a shed (or wake) vorticity
strength of γw.

wa(x) = Uα+ ḣ+ α̇(x− ahb)

where, as in the case of steady and quasi-steady airloads, the geometric camber has been neglected.
The airfoil is assumed to behave as a flat plate.

wb(x) =

∫ b

−b

γb(ξ)dξ

2π(ξ − x)

λs(x) =

∫ ∞

b

γw(ξ)dξ

2π(ξ − x)

For flow tangency or impenetrability as before we have

wb + λs + wa = 0

The unknown is γb. Note that γw is not an unknown. It can be related to γb, as follows. The total
bound circulation is Γ =

∫ +b
−b γbdx. The shed vorticity is the time rate of change in total bound

circulation Γ. Suppose in time Δt the airfoil has traversed a distance Δs. Then

γwΔs = −ΔΓ

It follows

γw
Δs

Δt
= −ΔΓ

Δt
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In differential form

γw = − 1

U

dΓ

dt

where the derivative is take at time t − (x − b)/U when the vorticity was shed from the airfoil.
The Kutta condition is same as before γb(c) = 0. In addition the condition γw(t) = γw(x − Ut)
is satisfied to enforce the shed vorticity to convect with free stream. This ensures that there is
no pressure differential across the shed wake. The solution of the impenetrability condition, along
with the above boundary conditions produce a γb of the following form. For details of the derivaion
see Johnson [23].∫ b

−b
γbdx = 2πb

[(
w0 +

1

2
w1

)
−
(
λ0 +

1

2
λ1

)]
where

w0 = Uα+ ḣ− ahbα̇

w1 = bα̇

λn =
2

π

∫ π

0
λs(x) cosnθdθ = − 1

π

∫ ∞

b
γw

(ξ −
√

ξ2 − 1)n

bn
√

ξ2 − b2
dξ

γb can be broken into two parts

γb = γbc + γbnc

such that the circulatory part γbc provides the net circulation Γ but does not affect the boundary
conditions, whereas the non-circulatory part γbnc does not affect the circulation but satisfies the
boundary condition. Thus∫ b

−b
γbcdx = Γ

∫ b

−b

γbc
2π(x− ξ)

dx = 0

and ∫ b

−b
γbncdx = 0

∫ b

−b

γbnc
2π(x− ξ)

dx = wa − λs

The solution γb is then related to the differential pressure on the top and bottom surfaces of
the airfoil and then to lift and pitching moments. The differential pressure is obtained from the
linearized form of the unsteady Bernoulli’s equation. This is valid for small perturbations of the
flow.

p = −ρ

(
U
∂φ

∂x
+

∂φ

∂t

)

−Δp = ρ

(
U
∂Δφ

∂x
+

∂Δφ

∂t

)
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∂Δφ

∂x
= Δu = γb

∂Δφ

∂t
=

∂

∂t

∫ x

−∞
Δudx

Finally

−Δp = ρ

(
Uγb +

∂

∂t

∫ x

−∞
γbncdx

)
where the effect of the time derivative of γbc has already been accounted for via λs(x). The lift and
pitching moments about the elastic axis then become

L =

∫ b

−b
(−Δp)dx

Mahb =

∫ b

−b
(−Δp)(−x+ ahb)dx

Substitute the expression for Δp to obtain

L = ρ

(
UΓ− ∂

∂t
Γ(1)
nc

)

Mahb = −ρ

(
UΓ(1) − 1

2

∂

∂t
Γ(2)
nc

)
where

Γ(n) =

∫ b

−b
xnγbdx

Γ(n)
nc =

∫ b

−b
xnγbncdx

Γ = Γ(0)

From the solution of γb, and using equation 4.71 we can obtain

Γ = 2πb

[
Uα+ ḣ+ α̇

(
b

2
− ahb

)]
+

∫ ∞

b

(√
ξ + b

ξ − b
− 1

)
γwdξ

=
Lqs

ρU
+

∫ ∞

b

(√
ξ + b

ξ − b
− 1

)
γwdξ

(4.74)

and

∂

∂t
Γ(1)
nc = −πb2(Uα̇+ ḧ− ahbα̈)− U

∫ ∞

b

(
1− ξ√

ξ2 − b2

)
γwdξ

Substituting in the lift expression we have per unit span

L = 2πbρU

[
Uα+ ḣ+ α̇

(
b

2
− ahb

)]
+ ρπb2(Uα̇+ ḧ− ahbα̈)

+ ρU

∫ ∞

b

b√
ξ2 − b2

γwdξ

= Lqs + Lnc + Lw

= Lc + Lnc

(4.75)
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Lqs is the same expression as obtained earlier in equation 4.71. Lnc and Lw are the new terms. The
shed wake contribution Lw can be re-arranged as follows. Note that, from conservation of vorticity
we have

Γ = −
∫ ∞

b
γwdξ

Using the above in the second line of equation 4.74 we obtain

Lqs = −ρU

∫ ∞

b

√
ξ + b

ξ − b
γwdξ

It follows

Lc = Lqs + Lw = −ρU

∫ ∞

b

ξ√
ξ2 − b2

γwdξ

Finally the total lift can be expressed as

L = Lc + Lnc

= (Lqs + Lw) + Lnc

=
Lqs + Lw

Lqs
Lqs + Lnc

=

∫∞
b

ξ√
ξ2−b2

γwdξ∫∞
b

√
ξ+b
ξ−bγwdξ

Lqs + Lnc

= CLqs + Lnc

(4.76)

where C is a lift deficiency function. The form of C depend on the specific time history of excitation.
For example, for α = ᾱeiωt and h = h̄eiωt, the shed wake is of the form γw = γ̄we

iω(t−ξ/U) and C
has the following form

C(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

(4.77)

where H
(2)
n are Hankel functions, expressed in terms of Bessel functions

H(2)
n = Jn − iYn

and k is defined as the reduced frequency.

k =
ωb

U

C(k) for this type of excitation is called the Theodorsen Lift Deficiency Function as discussed later.
The circulatory lift Lc acts at quarter chord for thin airfoil theory. The moment Mahb about the
elastic axis is given by

Mahb = Lc ·
(
b

2
+ ahb

)
− 1

2
ρπb3

[
2Uα̇+ ḧ+ b

(
1

4
− ah

)
α̈

]
= LqsC(k) ·

(
b

2
+ ahb

)
− 1

2
ρπb3

[
2Uα̇+ ḧ+ b

(
1

4
− ah

)
α̈

] (4.78)
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4.3.4 A Simple Interpretation

The unsteady results above are often interpreted as follows. The unsteady forces generated over
the wing can be classified into two categories; circulatory and non-circulatory forces. The cir-
culatory forces are caused by circulation, which means the origin of the forces is vorticity. The
non-circulatory forces are called virtual or apparent forces. Let us examine the various component
of forces. The airfoil chord is 2b.

ḣ = vertical motion, positive down
α̇ = pitch motion about elastic axis, positive nose up

1. Lift ‘L1’ caused by circulation. The downwash is computed at 3/4-chord. It lies at the aerody-
namic center.

L1 =
1

2
ρClαU

22b

[
α+

ḣ

U
+

α̇

U

(
b

2
− ahb

)]

In the case of thin airfoil theory, the lift curve slope, Clα = 2π. The aerodynamic center lies at
1/4c.
2. Lift ‘L2’ is noncirculatory with the center of pressure at mid-chord.

L2 = (apparent mass) × (vertical acceleration at mid-chord) = πρb2(ḧ− ahbα̈)

For an apparent mass, a cylinder of air with diameter equal to chord and length of unity assumed
to oscillate with the wing
3. Lift L3 is noncirculatory with the center of pressure at 3/4-chord. The nature of the force is of
centrifugal force type.

L3 = (apparent mass)× (Uα̇)

= πρb2Uα̇

4. Noncirculatory nose down moment ‘Ma’

Ma = (apparent moment of inertia)× (angular acceleration)

For an apparent mass moment of inertia, a one-quarter inertia of a cylinder with diameter equal to
chord and length unity is used.

Ma = −πρb4

8
α̈
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Total lift L = L1 + L2 + L3

Total moment about elastic axis

=

(
b

2
+ ahb

)
L1 + ahbL2 −

(
b

2
− ahb

)
L3 − πρb4

8
α̈

Circulatory lift LQ = L1

Noncirculatory lift LNC = L2 + L3

The effect of shed vorticity is only on circulatory lift.

4.3.5 The Theodorsen Lift Deficiency Function

The Theodorsen Lift Deficiency function is obtained for a pure harmonic excitation of a pitching
and plunging airfoil. Let us consider that the wing is undergoing pure harmonic motion at frequency
ω

h(t) = heiωt

α(t) = αeiωt

It follows then that the wake vorticity γw is also periodic in time with frequency ω. The circulation
lift build up depend on the reduced frequency.

L = C(k)LQ + LNC

where C(k) is called Theodorsen lift deficiency function and it depends on reduced frequency

k =
ωb

U

where ω is the frequency of oscillation, rad/sec, b is the semi-chord, m, and U = free stream
velocity, m/sec. The magnitude of C varies from 1 at low frequency to .5 at high frequency. The
lift deficiency C takes care of the effect of shed vorticity on the lift due to unsteady motion and
this always reduces the quasi-steady lift value. On the following figure, the lift deficiency function
in terms of magnitude and phase is plotted for various k. The magnitude gives deficiency of lift
and phase shows the lag in the lift build up. Thus the C(k) is a type of feed-back parameter of
wake vorticity.

Lift and moment expressions are

L = 2πbρU

[
Uα+ ḣ+ α̇

(
b

2
− ahb

)]
+ ρπb2(Uα̇+ ḧ− ahbα̈)

M = 2πbρU

[
Uα+ ḣ+ α̇

(
b

2
− ahb

)]
·
(
b

2
+ ah

)
C(k)

+ πρb2
[
(ḧ− ahbα̈)ahb− Uα̇

(
b

2
− ahb

)
− b2

8
α̈

] (4.79)



248 CHAPTER 4. UNSTEADY AERODYNAMICS

Let us examine a typical reduced frequency for a rotor blade

k =
ωb

U
=

ωc/2

Ωr

say ω = nΩ

k =
nc

2r

Consider a representative section at 3/4-radius

k =
nc

2× 3
4R

=
2n

3
(
c

R
)

Assume

c

R
=

1

20

For 1/rev motion, n = 1, k = 0.033

|C(k)| ∼ .97

The unsteady circulatory lift is about 97% of quasi-steady lift. This means that the unsteady effect
due to shedding of vorticity are negligible. This shows that the quasi-steady assumption is quite
adequate for 1/rev motion. For high frequency motion, say n = 4 (4/rev), there is about a 15%
reduction in lift. Therefore unsteady effect has to be included for higher harmonic motion.

4.3.6 Application to Rotary Wings

The objective is to apply unsteady forces results derived earlier for fixed wing to rotary wing
problems. For the fixed wing the blade undergoes two degrees of motion, pitching and heaving
motions. The rotor blade motion as well as flow environment are complex, and for simplicity the
effect of blade motion is taken care of in the velocity components. Let us examine the normal
velocity due to airfoil motion.
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where the first component is air velocity normal to the airfoil section at the pitch axis. The
normal velocity component Wa is a function of ḣ+Uα and α̇, it follows that the linear solution for
aerodynamic lift and moment must also depend on these two quantities. Therefore, rewriting the
lift and moment expressions.

L = 2πρUbC(k)

[(
ḣ+ Uα

)
+

(
b

2
− ahb

)
α̇

]
+πρb2

[(
ḧ+ Uα̇

)
− ahbα̈

]

M = 2πρUbC(k)

[(
ḣ+ Uα

)
+

(
b

2
− ahb

)
α̇

]
·
(
b

2
+ ahb

)
+πρb2

[
ahb
(
ḧ+ Uα̇

)
− 1

2
Ubα̇− b2

(
1

8
+ a2h

)
α̈

]
Writing the forces in this manner, one does not need to identify the section pitch and heave

motions, but on the other hand one needs the mean and linear components of the normal velocity
distribution over the airfoil chord. It is useful to identify, in the above expressions, the normal and
inplane velocity components UP and UT .

ḣ+

(
b

2
− ahb

)
α̇ = −UP

U = UT

α = θ

For rotor problems, h and θ are obtained based on the blade structural dynamic model. The inflow
and forward velocity components are added appropriately.
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For example, consider an articulated rotor blade with rigid flap and rigid pitch motions.

ḣ = −rβ̇

α̇ = θ̇

b = c/2

In hover

UT = Ωr

UP = λΩR+ rβ̇ −
( c
4
− ah

c

2

)
θ̇

In forward flight

UT = Ωr +ΩRμ sinψ

UP = λΩR+ βΩRμ cosψ + rβ̇ −
( c
4
− ah

c

2

)
θ̇

where

λ is wake induced inflow

β is flap motion

μ is advance ratio

λ = λTpp − μβ1c
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4.3.7 Near Shed Wake

Shed wake plays an important role in the determination of unsteady aerodynamic forces. The
rotary shed wake is in a helical sheet behind the blade. Most of the influence on airfoil loading
comes from near shed wake, extending 15◦ to 45◦ in azimuth behind the blade trailing edge. Thus
considering only the near shed wake and neglecting the far wake reduces the computation to a great
extent.

Miller (1964) considered a lifting line theory approximation for the near shed wake, implying a
low reduced frequency. He derived a simple expression for the lift deficiency function.

C(k) =
1

1 + π
2k

Pizialli Model (1966):

Pizialli made a discrete vortex approximation for the near wake.

The wake is represented by a series of finite strength point vortices.

Spacing d =
2πU

Nω
for N vortices per cycle. (Typically 5-8)

Daughaday and Pizialli (1966):
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They made another model for shed wake where combined continuous and discrete shed wake
vorticity is used.

4.3.8 Time-Varying Free Stream

The rotating blade in forward flight has a time varying free stream velocity at a station

uT = Ωr +ΩRμ sinψ

This is periodic with a period of 2π rad. Since the time varying component is of the same order of
magnitude as the mean component, one has to include the effect of time variation on the unsteady
forces, both the direct effect as well as the shed wake effect. This results in

(a) additional noncirculating forces caused by d
dt(Uα)

(b) additional circulatory forces

(c) additional influence of stretching and compressing of the vorticity in the shed wake.

A simple approximation sometimes can be very useful by choosing element C(k) based on mean
k.

4.3.9 Returning Wake

For a hovering rotor, the wake generally moves slowly away from the rotor disk. Therefore, for the
determination of unsteady loads, one needs to consider the influence of helical vortex sheets below
the disk, one from each blade. For high inflow or forward speed, the rotor wake is convected away
and so the influence of the returning shed wake is not important.

Loewy (1957) developed a two-dimensional model for unsteady aerodynamics of hovering rotor.

Consider a single blade rotor, so all the vorticity is originated from the same blade. The
returning wake is modeled as a series of planar two-dimensional vortex sheets with a vertical
separation h. For hover, the velocity U = Ωr, is constant with time and the vortex sheets are
parallel to free stream U. The spacing h depends on the mean flow through the rotor disk.
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The wake induced velocity λ is

λ =
1

2π

∫ ∞

b

γwdξ

x− ξ
+

∞∑
n=1

1

2π

∫ ∞

−infty

γwn(x− ξ)

(x− ξ)2 + h2n2
dξ

As before the strength of the shed vorticity is of the form

γw = γ̄we
iω(t−x/U)

The strength of the n-th sheet is of the form

γwn = γ̄we
iω(t−x/U−2πn/Ω)

The total lift can again be written in the following form

L = C ′LQ + LNC

where C’ is the Loewy function and it is a function of reduced frequency k, frequency of oscillation
ω/Ω and wake spacing h. The wake spacing h is such that the wake goes down by a distance Nbh
over a single rotor revolution. Thus

Nbh = v0
2π

Ω

where v0 is the steady inflow. It follows

h =
2λ0c

σ

h

c
=

h

2b
=

2λ0

σ
The Loewy function is quite similar to Theodorsen function, C(k). For a N blade rotor, the

returning wake model gets complicated, since the wake of other blades also has to be considered.

m = 0, 1, 2 blade index
For ω/Ω = integer and for low k (approximately < 0.4),

C ′ 	 1

1 + πσ
4λ0

where λ is the steady inflow ratio and σ is the solidity ratio. Typically,

λ0 = .05 to .07

h

b
	 3 or 4

C ′ 	 .5

This is quite important for control loads and stability. This may reduce flap damping significantly.
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4.3.10 Miller’s Conclusion

When system frequencies approach integers of rotational speed Ω, unsteady flow theory must be
used because of a large reduction in dcl

dα due to spiral wake. The near wake including the first
quadrant or so of vorticity behind the blade is important. For this the lift acts at 1/4-chord due
to angle of attack at 3/4-chord. When frequency ω are not close to integers of Ω, the far wake
contribution to C(k) are negligible.

For ω
Ω = integer,

C ′ 	 1

1 + πσ
4λ0

= F + iG (G = 0)

Where

λ0 = steady inflow.

This means that there is a lift deficiency but no lag is produced.

4.4 Time Domain Methods for Unsteady Aerodynamics

Consider a unit step function at t = h

u(t− h) = 1 t ≥ h

= 0 t < h

Any function f at a discrete time nh can be expressed as

f(nh) = f(0)u(t− 0) +

i=n∑
i=1

[
f(ih)− f(i− 1h)

]
u(t− ih)

= f(0)u(t − 0) +

i=n∑
i=1

Δf(ih)u(t− ih)

= f(0)u(t− 0) +

i=n∑
i=1

Δf(ih)

h
u(t− ih)h

In the limit as h → 0, we have at a continuous time t

f(t) = f(0)u(t− 0) +

∫ σ=t

σ=0

∂f

∂σ
u(t− σ)dσ

Thus any continous and smooth function f(t) can be expressed as a superimposition of a series of
step functions. Note that for t > 0, u(t − 0) = 1. Similarly an angle of attack variation can be
expressed in the same manner, as a series of step functions

α(t) = α(0) +

∫ t

0

∂α

∂σ
u(t− σ)dσ (4.80)

In order to calculate the airloads (normal force, pitching moment, and chord force) generated by
the airfoil in response to this angle of attack variation, it is therefore sufficient to calculate only
the response to a step input in angle of attack of unit magnitude. The response to any angle of
attack variation can then be constructed by superposition of these responses. The response to a
step input in angle of attack is called an indicial response. For example if θ(t − h) is the indicial
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lift coefficient generated in response to u(t−h), an unit step input in angle of attack at t = h, then
the lift coefficient at any time t is simply

Cl(t) = α(0)θ(0) +

∫ t

0

∂α

∂σ
θ(t− σ)dσ (4.81)

Note that θ(t−h), the lift increment generated in response to an unit step change in angle of attack
α(t − h) applied at time t = h, finally reaches a steady state value after some time. This value is
the airfoil lift curve slope Clα. In the case of a flat plate, based on calculations of thin airfoil theory
with no stall, we have Clα = 2π. Including the Glauert correction for compressibility Clα = 2π/β,
where β =

√
1−M2. For real airfoils, Clα depends on the initial angle of attack setting at which

the step change is applied. That is, the steady state increment in Cl in response to an unit step
increment in angle of attack depends on whether the unit step increment is imposed while the
airfoil is at 5o or 12o. At 12o, when the airfoil is already near stall, an unit step increment in angle
of attack may not produce any noticeable increment in Cl at all. Thus, below stall, Clα is same as
the airfoil lift curve slope. Above stall, Clα depends on the local angle of attack.

Instead of the lift coefficient Cl, let us consider the normal force coefficient Cn from now onwards.
The direction of the normal force coefficient is defined solely by the airfoil orientation. Similarly
instead of drag consider the chord force Cc. The choice is only a matter of convention, either can be
used to formulate the problem without any loss in generality. For pitching moments, we consider
those about the airfoil quarter-chord. In addition, we distinguish between the circulatory and non-
circulatory components by the superscript C and I, where I stands for ‘impulsive’. The impulsive
airloads in compressible flow are similar to their the noncirculatory counterparts in incompressible
flow. Let the circulatory part of the normal force indicial response to angle of attack be of the form

CC
nα(t) = Cnαφ

C
nα(t)

where the indicial response function φC
nα(t) → 1 as t → ∞, so that CC

nα(t) → Cnα at the steady
state. Also, at t = 0, the indicial function must vanish, φC

nα(0) = 0. Consider an acceptable form
as the following

φC
nα(t) = 1−A1e

−t/T1 −A2e
−t/T2 where A1 +A2 = 1 (4.82)

The normal force response of the airfoil to sinusoidal inputs can be deduced from its indicial
response. The response to sinusoidal inputs is the response to inputs of the general form ept, where
p = jω for sinusoidal inputs.

The response to inputs of the form ept is, by definition, the Transfer function between input
and output of the system expressed in terms of the Laplace variable p, assuming that the response
is related to the input via an ODE in time. A continuous function of time f(t) can be expressed
as a summation of basis functions each of form ept, where p is a complex variable with frequency
varying from +∞ to −∞, and each multiplied with a magnitude F (p) independant of time t but
in general a function of p. Thus

f(t) =
1

2πj

∫ γ+j∞

γ−j∞
F (p)eptdt (4.83)

The component F (p) is defined as the Laplace Transform of the function f(t) and can be determined
by

F (p) = lim
T→∞

∫ T

0
f(t)e−ptdt



256 CHAPTER 4. UNSTEADY AERODYNAMICS

Let f(t) be the input to a system governed by an ODE. Let y(t) be the output. The function y(t)
can again be expressed as a summation of basis functions as before.

y(t) =
1

2πj

∫ γ+j∞

γ−j∞
Y (p)eptdt (4.84)

where Y (p) is the Laplace Transform of y(t). Now, note that for a system (an input output
relationship) governed by a linear ODE with constant coefficients, the output corresponding to an
input ept must necessarily be of the form H(p)ept. H(p) is defined as the transfer function in terms
of the Laplace variable. A special case is when p = 1. The output corresponding to an input et

is always et itself, i.e., H(p) = 1. Thus the output y(t), corresponding to f(t), which is given by
eqn.4.83 is necessarily of the form

y(t) =
1

2πj

∫ γ+j∞

γ−j∞
F (p)H(p)eptdt (4.85)

Comparing expressions4.84 and 4.85 we have

Y (p) = F (p)H(p) (4.86)

or

H(p) =
Y (p)

F (p)
(4.87)

Thus the transfer function of a system H(p), which is the response of the system to an input of the
form ept can be determined by the ratio of the Laplace Transforms of any output-input combination.

Assuming that the airload response to an indicial input of angle of attack is governed by a
linear constant coefficient system, the response to an input angle of attack ept is simply H(p) where
H(p) is the ratio of the Laplace Transforms of any set of output-input combination. The Laplace
Transforms of the unit step input and assumed indicial output are

L [u(t− 0)] =
1

p

L
[
CC
nα

]
= Cnα

(
1

p
− A1T1

1 + T1p
− A2T2

1 + T2p

)
Thus

HC
nα(p) =

L
[
CC
nα

]
L [u(t− 0)]

= Cnα

(
1− A1T1p+A1 −A1

1 + T1p
− A2T2p+A2 −A2

1 + T2p

)
= Cnα

(
1−A1 −A2 +

A1

1 + T1p
+

A2

1 + T2p

)
= Cnα

(
A1

1 + T1p
+

A2

1 + T2p

)
using A1 +A2 = 1

For frequency response, i.e. response to inputs of sine and cosine harmonics, substitute p = jω.
The transfer function then takes the following form

HC
nα(jω) = Cnα

(
A1

1 + jT1ω
+

A2

1 + jT2ω

)
= Cnα

[
A1 (1− jT1ω)

1 + ω2T 2
1

+
A2 (1− jT2ω)

1 + ω2T 2
2

]
= Cnα

(
A1

1 + ω2T 2
1

+
A2

1 + ω2T 2
2

)
− jCnα

(
A1T1ω

1 + ω2T 2
1

+
A2T2ω

1 + ω2T 2
2

)
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Consider the indicial function given in eqn.4.88. For rotor problems, the time t is often replaced
with a nondimensional parameter s, where s is the distance traversed by the airfoil measured in
semi-chords in time t after the step change in angle of attack.

s =
Ut

c/2
or t =

c

2U
s

The time constants T1 and T2 are replaced with constants b1 and b2 where

T1 =
c

2U

1

b1β2

T2 =
c

2U

1

b2β2
where β2 = 1−M2

The indicial function in terms of s and b1 then take the following form

φC
nα(t) = 1−A1e

−sb1β2 −A2e
−sb2β2

where A1 +A2 = 1 (4.88)

Note that

ωT1 =
ωc

2U

1

b1β2
=

k

b1β2

ωT2 =
ωc

2U

1

b2β2
=

k

b2β2
where k is the reduced frequency

The transfer function then takes the following form

HC
nα = Cnα

(
A1b

2
1β

4

b21β
4 + k2

+
A2b

2
2β

4

b22β
4 + k2

)
− jCnα

(
A1b1kβ

2

b21β
4 + k2

+
A2b2kβ

2

b22β
4 + k2

)
(4.89)

4.4.1 Leishman-Beddoes indicial model

The Leishman-Beddoes model consists of the indicial functions given by Beddoes [9, 10] and subse-
quently refined by Leishman and Beddoes [11, 12, 13]. They included the effects of compressibility,
and later viscous flow separation. The indicial normal force due to angle of attack, the indicial
pitching moment (about quarter-chord) due to angle of attack, the indicial normal force due to
‘rate’ of angle of attack, and the indicial pitching moment due to ‘rate’ of angle of attack are given
by the following expressions. The first part is the impulsive part, analogous to the non-circulatory
components in incompressible flow, the second part is the circulatory part due to the effects of the
shed vorticity.

Cnα =
4

M
φI
αn +

2π

β
φC
αn (4.90)

Cmα = − 1

M
φI
αm − 2π

β
φC
αn (xac − 0.25) (4.91)

Cnq =
1

M
φI
qn +

π

β
φC
qn (4.92)

Cmq = − 7

12M
φI
qm − π

8β
φC
qm (4.93)

Each indicial response is assumed to consist of two parts: an exponentially decaying part for the
initial non-circulatory loading, and an assymptotically growing part which reaches a steady state
value. The initial non-circulatory loading is taken from piston theory [14, 15]. The circulatory
component of the indicial normal force due to angle of attack is

φC
αn = 1−A1e

−b1β2s −A2e
−b2β2s
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The impulsive component of the indicial normal force due to angle of attack is

φI
αn = e

− s
T ′α where T ′

α =
4M

2(1 −M) + 2πβM2(A1b1 +A2b2)

The circulatory component of the indicial normal force due to ‘rate’ of angle of attack is the same
as that due to angle of attack

φC
qn = 1−A1e

−b1β2s −A2e
−b2β2s

The impulsive component of the indicial normal force due to ‘rate’ of angle of attack has the same
form but with a different time constant

φI
qn = e

− s
T ′q where T ′

q =
2M

(1−M) + 2πβM2(A1b1 +A2b2)

The circulatory component of the indicial pitching moment due to angle of attack is assumed to be
due to the aerodynamic center offset from quarter chord. The impulsive component of the indicial
pitching moment due to angle of attack is

φI
αm = A3e

− s
b3T

′
αm +A4e

− s
b4T

′
αm where T ′

αm = 2M

[
A3b4 +A4b3
b3b4(1−M)

]
The circulatory component of the indicial pitching moment due to ‘rate’ of angle of attack is

φC
qm = 1− e−b5β2s

The impulsive component of the indicial pitching moment due to ‘rate’ of angle of attack is

φI
qm = e

− s
T ′qm where T ′

qm =
14M

15(1 −M) + 3πβM2b5

The original model parameters proposed by Beddoes are

A1 = 0.3 A2 = 0.7 A3 = 1.5 A4 = −0.5

b1 = 0.14 b2 = 0.53 b3 = 0.25 b4 = 0.1 b5 = 0.5

4.4.2 Frequency response of indicial model

It was shown earlier that it is possible to deduce the frequency response (i.e. response to sinusoidal
inputs) from indicial response. The frequency response of the circulatory normal force was deduced
in eqn.4.89. Consider the impulsive indicial normal force in response to angle of attack.

CI
nα(s) =

4

M
e
− s

T ′α

To convert to a function in time use s = 2Ut/c. The nondimensional constant T ′
α can be expressed

as

T ′
α =

2U

c
Tα

where Tα has the dimension of time. Then we have

CI
nα(t) =

4

M
e−t/Tα
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The Laplace Transform is

L
[
CI
nα

]
=

4

M

Tα

1 + Tαp

Thus

HI
nα(p) =

L
[
CI
nα

]
L [u(t− 0)]

=
4

M

Tαp

1 + Tαp

Substitute p = jω to obtain

HI
nα(jω) =

4

M

(
ω2T 2

α

1 + ω2T 2
α

)
+ j

4

M

(
ωTα

1 + ω2T 2
α

)
The time constant Tα can be expressed as

Tα =
c

a
Kα

where a is the speed of sound, and Kα is a nondimensional constant. Then

ωTα = ω
c

a
Kα =

2Uk

c

c

a
Kα = 2MkKα

The transfer function then takes the following form

HI
nα =

4

M

(
4K2

αM
2k2

1 + 4K2
αM

2k2

)
+ j

4

M

(
2KαMk

1 + 4K2
αM

2k2

)
(4.94)

The transfer function has been expressed as a function of incident Mach number M and reduced
frequency k. Consider the impulsive indicial pitching moment in response to angle of attack.

CI
mα(s) =

1

M

(
A3e

− s
b3T

′
αm +A4e

− s
b4T

′
αm

)
To convert to a function in time use s = 2Ut/c. The nondimensional constant T ′

αm can be expressed
as

T ′
αm =

2U

c
Tαm

where Tαm has the dimension of time. Then we have

CI
mα(t) =

1

M

(
A3e

− t
b3T

′
αm +A4e

− t
b4T

′
αm

)
The Laplace Transform is

L
[
CI
mα

]
=

1

M

(
A3b3Tαm

1 + b3Tαmp
+

A4b4Tαm

1 + b4Tαmp

)
Thus

HI
mα(p) =

L
[
CI
mα

]
L [u(t− 0)]

=
1

M

(
A3b3Tαmp

1 + b3Tαmp
+

A4b4Tαmp

1 + b4Tαmp

)
Substitute p = jω to obtain

HI
mα(jω) =

1

M

(
A3b

2
3ω

2T 2
αm

1 + b23ω
2T 2

αm

+
A4b

2
4ω

2T 2
αm

1 + b24ω
2T 2

αm

)
− j

1

M

(
A3b3ωTαm

1 + b23ω
2T 2

αm

+
A4b4ωTαm

1 + b24ω
2T 2

αm

)
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The time constant Tα can be expressed as

Tαm =
c

a
Kαm

where a is the speed of sound, and Kα is a nondimensional constant. Then

ωTαm = ω
c

a
Kαm =

2Uk

c

c

a
Kαm = 2MkKαm

The transfer function then takes the following form

HI
mα =

1

M

(
4A3b

2
3M

2k2K2
αm

1 + 4b23M
2k2K2

αm

+
4A4b

2
4M

2k2K2
αm

1 + 4b24M
2k2K2

αm

)
−j

1

M

(
2A3b3MkKαm

1 + 4b23M
2k2K2

αm

+
2A4b4MkK2

αm

1 + 4b24M
2k2K2

αm

)
(4.95)

The transfer function has been expressed as a function of incident Mach number M and reduced
frequency k.

Consider the impulsive indicial normal force in response to ‘rate’ of angle of attack. Note that,
here, the input is still a unit step of angle of attack, and not an unit step of ‘rate’ of angle of attack.

CI
nq(s) =

1

M
e
− s

T ′q

To convert to a function in time use s = 2Ut/c. The nondimensional constant T ′
q can be expressed

as

T ′
q =

2U

c
Tq

where Tq has the dimension of time. Then we have

CI
nq(t) =

1

M
e−t/Tq

The Laplace Transform is

L
[
CI
nq

]
=

1

M

Tq

1 + Tqp

Note that the above expressions describes the response to a sinusoidal input in pitch rate, i.e. a
pitch rate of the form ept. This is not the transform we seek. We seek the response to a sinusoidal
input in angle of attack, i.e. an angle of attack variation of the form ept. The response will depend
on the pitch rate this angle of attack variation generates. To this end we consider a step change
in input angle of attack. Then, relate in the Laplace domain, the output response with the input
pitch rate it generates. If the angle of attack variation is given by α(t), then the rate of angle of
attack is the time derivative α̇(t), with units of rad/sec. In nondimensional form

q(t) = α̇
c

U

The Laplace transform of the pitch rate is related to the Laplace transform of the angle of attack
variation as follows

L [q] = L [α̇]
c

U
= pL [α]

c

U

Now, the transfer function between normal force due to pitch input and pitch input is given by

L
[
CI
nq

]
L [q]

=
1

M

Tqp

1 + Tqp
(4.96)
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Replace the Laplace transform of the pitch rate

L
[
CI
nq

]
pL [α] c

U

=
1

M

Tqp

1 + Tqp

The transfer function between normal force due to pitch input and the angle of attack is then
obtained by simply re-arranging the above expression

HI
nq(p) =

L
[
CI
nq

]
L [α]

=
1

M

Tqp

1 + Tqp
p
c

U
=

1

M

2Tqp

1 + Tqp
p

c

2U
(4.97)

Substituting p = jω in eqn.4.102 gives CI
nq when q is sinusoidal. Substituting p = jω in eqn.4.97

gives CI
nq when α is sinusoidal. This is the transfer function we seek. Substitute p = jω in eqn.4.97

to obtain

HI
nq(jω) =

1

M

(
jωTq

1 + jωTq
jω

c

2V

)
=

1

M

(
jωTq

1 + jωTq
jk

)
= − 1

M

(
2ωTqk

1 + ω2T 2
q

)
+ j

1

M

(
2ω2T 2

q k

1 + ω2T 2
q

)

The time constant Tq can be expressed as

Tα =
c

a
Kq

where a is the speed of sound, and Kq is a nondimensional constant. Then

ωTα = ω
c

a
Kq =

2Uk

c

c

a
Kq = 2MkKq

The transfer function then takes the following form

HI
nq = − 1

M

(
4KqMk2

1 + 4K2
qM

2k2

)
+ j

1

M

(
8K2

qM
2k3

1 + 4K2
qM

2k3

)
(4.98)

Similarly, consider the circulatory indicial pitching moment in response to ‘rate’ of angle of attack,
i.e. pitch rate.

CC
mq(s) = − π

8β

(
1− e−b5β2s

)
To convert to a function in time use s = 2Ut/c, and introduce the nondimensional constant T5

T5 =
c

2U

1

b5β2

Then we have

CC
mq(t) = − π

8β

(
1− e−t/T5

)
Now, the transfer function with respect to the pitch input is given by

L
[
CC
mq

]
L [q]

= − π

8β

(
1

1 + T5p

)
(4.99)



262 CHAPTER 4. UNSTEADY AERODYNAMICS

Following the arguments given earlier, the transfer function with respect to the angle of attack is
then

HC
mq(p) =

L
[
CC
mq

]
L [α]

= −2π

8β

(
p

1 + T5p

)
c

2U
(4.100)

Substitute p = jω to obtain

HC
mq(jω) = − π

8β

(
jk

1 + jωT5

)
= − π

8β

(
kωT5

1 + ω2T 2
5

)
− j

π

8β

(
k

1 + ω2T 2
5

)
Use

ωT5 =
k

b5β2

to obtain

HC
mq = − π

8β

(
b5k

2β2

k2 + b25β
4

)
− j

π

8β

(
kb25β

4

k2 + b25β
4

)
(4.101)

Lastly, consider the impulsive indicial pitching moment in response to pitch rate.

CI
mq(s) = − 7

12M
e
− s

T ′qm

To convert to a function in time use s = 2Ut/c. The nondimensional constant T ′
mq can be expressed

as

T ′
mq =

2U

c
Tmq

where Tq has the dimension of time. Then we have

CI
mq(t) = − 7

12M
e−t/Tmq

Now, the transfer function with respect to the pitch input is given by

L
[
CI
mq

]
L [q]

= − 7

12M

(
Tqmp

1 + Tqmp

)
(4.102)

Following the arguments given earlier, the transfer function with respect to the angle of attack is
then

HI
mq(p) =

L
[
CC
mq

]
L [α]

= − 7

12M

(
2Tqmp

1 + Tqmp

)
c

2U
(4.103)

Substitute p = jω, and express the time constant Tmq as

Tmq =
c

a
Kmq

where a is the speed of sound, and Kmq is a nondimensional constant. Then

ωTmq = ω
c

a
Kmq =

2Uk

c

c

a
Kmq = 2MkKmq

The transfer function then takes the following form

HI
nq =

7

12M

(
4KmqMk2

1 + 4K2
mqM

2k2

)
− j

7

12M

(
8K2

mqM
2k3

1 + 4K2
mqM

2k3

)
(4.104)
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4.4.3 Recursive formulation of an indicial model

The normal force at any time t is the sum of normal forces due to angle of attack and pitch rate,
each having a circulatory and an impulsive component.

CN = Cα
N + Cq

N

= CαC
N + CαI

N + CqC
N + CqI

N

where the components are given in terms of the indicial response functions (see eqns.4.80 and 4.81)
as follows

CαC
N (s,M) =

2π

β
φC
αn(0)α(0) +

∫ s

0

∂α

∂σ

2π

β
φC
αn(s− σ)dσ

=
2π

β

[
α(0) +

∫ s

0

∂α

∂σ
φC
αn(s− σ)dσ

]
=

2π

β

[
α(0) +

∫ s

0

∂α

∂σ

{
1−A1e

−b1β2(s−σ) −A2e
−b2β2(s−σ)

}
dσ

]
=

2π

β

[
α(0) +

∫ s

0
dα−

∫ s

0
A1

∂α

∂σ
e−b1β2(s−σ)dσ −

∫ s

0
A2

∂α

∂σ
e−b2β2(s−σ)dσ

]
=

2π

β
[α(s)−X(s)− Y (s)]

(4.105)

where

X(s) =

∫ s

0
A1

∂α

∂σ
e−b1β2(s−σ)dσ

Y (s) =

∫ s

0
A2

∂α

∂σ
e−b2β2(s−σ)dσ

(4.106)

The above formulation can be cast into a recursive form for discrete advances in time Δt, or reduced
time Δs, where Δs = 2UΔt/c. For example, at s+Δs we have

CαC
N (s+Δs,M) =

2π

β
[α(s+Δs)−X(s +Δs)− Y (s +Δs)]

Using eqn4.106 it can be shown

X(s +Δs) = X(s)e−b1β2Δs +A1Δα(s +Δs)e−b1β2 Δs
2

or in terms of current s

X(s) = X(s −Δs)e−b1β2Δs +A1Δαe−b1β2 Δs
2

where Δα is at s and

X(0) = 0

Thus the recursive formulation for the circulatory normal force due to angle of attack variation can
be expressed as

CαC
N (s,M) =

2π

β
[α(s)−X1(s)− Y1(s)]

X1(s) = X1(s−Δs)e−b1β2Δs +A1Δαe−b1β2 Δs
2

Y1(s) = Y1(s−Δs)e−b2β2Δs +A2Δαe−b2β2 Δs
2

X1(0) = Y1(0) = 0

(4.107)
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Using the same approach it can be shown that the recursive formulation for the impulsive normal
force due to angle of attack variation is

CαI
N (s,M) =

4T ′
α

M

[
Δα(s)

Δs
−D1(s)

]
D1(s) = D1(s−Δs)e

−Δs
T ′α +

{
Δα(s)

Δs
− Δα(s−Δs)

Δs

}
e
− Δs

2T ′α

CαI
N (0,M) = 0 , D1(0) = 0

(4.108)

The recursive formulation for the circulatory normal force due to pitch rate is

CqC
N (s,M) =

π

β
[q(s)−X3(s)− Y3(s)]

X3(s) = X3(s−Δs)e−b1β2Δs +A1Δqe−b1β2 Δs
2

Y3(s) = Y3(s−Δs)e−b2β2Δs +A2Δqe−b2β2 Δs
2

X3(0) = Y3(0) = 0

(4.109)

The recursive formulation for the impulsive normal force due to pitch rate is

CqI
N (s,M) =

T ′
q

M

[
Δq(s)

Δs
−D3(s)

]
D3(s) = D3(s−Δs)e

−Δs
T ′q +

{
Δq(s)

Δs
− Δq(s−Δs)

Δs

}
e
− Δs

2T ′q

CqI
N (0,M) = 0 , D3(0) = 0

(4.110)

The circulatory pitching moment due to angle of attack is simple due to the aerodynamic center
offset from quarter-chord and is given by

CαC
M (s,M) =

(
1

4
− xac

)
CαC
N (s,M) (4.111)

The recursive formulation for the circulatory pitching moment due to pitch rate is

CqC
M (s,M) = − π

8β
[q(s)−X2(s)]

X2(s) = X2(s−Δs)e−b5Δs +A5Δqe−b5β2 Δs
2

X(0) = 0

(4.112)

The recursive formulation for the impulsive pitching moment due to angle of attack is given by

CαI
M (s,M) = −A3b3T

′
mα

M

[
Δα(s)

Δs
−D4(s)

]
− A4b4T

′
mα

M

[
Δα(s)

Δs
−D5(s)

]
D4(s) = D4(s−Δs)e

− Δs
b3T

′
mα +

{
Δα(s)

Δs
− Δα(s −Δs)

Δs

}
e
− Δs

2b3T
′
mα

D5(s) = D5(s−Δs)e
− Δs

b4T
′
mα +

{
Δα(s)

Δs
− Δα(s −Δs)

Δs

}
e
− Δs

2b4T
′
mα

CαI
N (0,M) = 0 , D4(0) = 0 , D5(0) = 0

(4.113)

The recursive formulation for the impulsive pitching moment due to pitch rate is

CqI
M (s,M) = −7T ′

mq

12M

[
Δq(s)

Δs
−D6(s)

]
D6(s) = D6(s−Δs)e

− Δs
T ′mq +

{
Δq(s)

Δs
− Δq(s−Δs)

Δs

}
e
− Δs

2T ′mq

CqI
N (0,M) = 0 , D6(0) = 0

(4.114)
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4.4.4 Leishman-Beddoes dynamic stall formulation

The first step is to reconstruct the static airfoil property data, normal force (or lift) and pitching
moments using a theoritical model for flow separation over 2D bodies. A theory which models the
separated flow regions on 2D bodies is due to Kirchhoff [7, 24]. An airfoil at an angle of attack
α, normal force coefficient CN , and force curve slope 2π for incompressible flow, has a the trailing
edge separation point f given by

CN = 2π

(
1 +

√
f

2

)2

α

For real airfoils this can be adapted to

CN = C0 + Cnα

(
1 +

√
f

2

)2

α

Given the static airfoil properties, f can be calculated at every α. A smooth curve is then fitted
through these data points

f =

⎧⎨⎩ f1 + f2 exp
(
α−α1
S1

)
if α ≤ α1

f3 + f3 exp
(
α1−α
S2

)
if α ≥ α1

α1 is the static angle of attack at which the airfoil stalls. At α = α1, the separation point f = f1+f2.
For incompressible flow this point often corresponds to f = 0.7. In the Leishman-Beddoes model,
f is therefore described as

f =

⎧⎨⎩ 1− 0.3 exp
(
α−α1
S1

)
if α ≤ α1

0.04 + 0.66 exp
(
α1−α
S2

)
if α ≥ α1

S1, S2, α1, and in general the constants f1, f2, f3, f4 can be determined from static airfoil tables at
a given Mach number. The pitching moment about quarter-chord can be constructed as a function
of the separation point as

CM = CM0 + CN [K0 +K1(1− f) +K2 sin (πf
m)] (4.115)

where CM0 is the zero lift moment. The constant K0 = (0.25 − xac) is the aerodynamic center
offset from the quarter-chord. K1 models the effect on the center of pressure due to the growth of
the separated flow region. K2 and m help describe the shape of the moment break at stall. The
four constants are to be adjusted to provide the best static moment reconstruction for a particular
airfoil.

Consider the circulatory normal force due to angle of attack variation as in eqn.4.107. Writting
terms of a current time n we have

CNn = Cnα [αn −Xn − Yn]

Xn = Xn−1 exp
(−b1β

2Δs
)
+A1Δαn exp

(
−b1β

2Δs

2

)
Yn = Yn−1 exp

(−b2β
2Δs
)
+A2Δαn exp

(
−b2β

2Δs

2

) (4.116)

where CN = CαC
N , the superscript ‘αC’ is dropped for brevity. Δs = sn − sn−1 is the distance, in

semi-chords, traversed by the airfoil in Δt = tn − tn−1. Δαn = αn − αn−1 is the step change in
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Figure 4.2: NACA 0012 light and deep dynamic stall cycles: Test data vs. prediction
using Leishman-Beddoes model (data from McCroskey et al NASA TM-84245, 1982)
Mach No. 0.3, reduced freq. k = 0.1

angle of attack at step n. Note that the flat plate lift curve slope has been replaced with a general
lift curve slope Cnα.

During unsteady conditions, stall is delayed due to a lag in leading edge pressure response
with respect to the normal force. To implement this lag a first order reduction is applied to the
circulatory normal force producing a new value

C ′
Nn

= CNn −Dpn

where

Dpn = Dpn−1 exp

(
−Δs

Tp

)
+
(
CNn − CNn−1

)
exp

(
−Δs

2Tp

)
Tp is an empirical constant, a function of Mach number, and determined from unsteady experimental
data. The corrected angle of attack is then

αf =
C ′
Nn

− C0

Cnα

where C0 is the normal force coefficient at zero angle of attack. The corrected angle of attack is
then used to determine the effective separation point on the airfoil, f ′, from the static f versus α
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Figure 4.3: SC-1095 light and deep dynamic stall cycles: Test data vs. prediction using
Leishman-Beddoes model (data from McCroskey et al NASA TM-84245, 1982) Mach
No. 0.3, reduced freq. k = 0.1; Old airfoil data is static data from McCroskey report,
New airfoil data is a refined version from U.S.Army

relationship given above. The additional effect of unsteady boundary layer response is incorporated
using a first order lag

f ′′
n = f ′

n −Dfn

where

Dfn = Dfn−1 exp

(
−Δs

Tf

)
+
(
f ′
n − f ′

n−1

)
exp

(
− Δs

2Tf

)
Tf is an empirical constant, a function of Mach number. Can be determined from unsteady data
or an unsteady boundary layer analysis, in absence of data. Once the separation parameter has
been determined, the normal force can then be determined as

CNn = Cnα

(
1 +
√

f ′′
n

2

)2

αf = CC
Nn

where Cnα is the lift curve slope, a function of Mach number. The pitching moment is given by

CMn = CM0 + CC
Nn

[
K0 +K1(1− f ′′

n) +K2 sin
(
πf ′′m

n

)]
(4.117)
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Figure 4.4: Hughes HH-02 light and deep dynamic stall cycles: Test data vs. prediction
using Leishman-Beddoes model (data from McCroskey et al NASA TM-84245, 1982)
Mach No. 0.3, reduced freq. k = 0.1

Note that, here CM corresponds to CαC
N , the circulatory pitching moment due to angle of attack

variation. The contributions of the pitch rate terms and the impulsive terms will be added later
on. As the airfoil gradually pitches up, the separation point f progressively advances towards the
leading edge. At the same time, a leading edge vortex is formed, gradually growing in strength.
The gradual growth in its strength can be viewed as caused by an accumulation of circulation,
such that, the lift induced by this gradually growing vortex accounts for the difference between the
normal force given by the Kirchhoff approximation above, CNn , and a hypothetical normal force
that would result if there was no separation, i.e. corresponding to f ′′

n = 1. Thus the incremental
vortex lift at a time step n is given by

CVn = CNn − Cnααf = Cnα

(
1 +
√

f ′′
n

2

)2

αf − Cnααf (4.118)

The total vortex lift, Cv
N , results from the cummulative addition of the above increments along

with a simultaneous mechanism for decay.

Cv
Nn

= Cv
Nn−1

exp

(
−Δs

Tv

)
+
(
Cv
n −Cv

n−1

)
exp

(
−Δs

2Tv

)
(4.119)

where Tv is another empirical constant. When a leading edge separation is triggered, the vortex
lift is added to the normal force as long as the vortex traverses the chord and has not been washed
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aft of the trailing edge. The condition of leading edge separation, and the duration of the vortex
passage over the chord are set by empirical means. The condition for leading edge separation is
when CNn exceeds the value corresponding to static stall. This value is a function of Mach number
and denoted by CN1 in the model. At this point the accumulated vortex is assumed to start to
convect over the airfoil chord. The rate of convection has been experimentally determined to be
less than half of the free stream velocity. During the vortex convection, the vortex lift evolves
according to eqns.4.118 and 4.119, i.e. the total vortex lift Cv

Nn
is allowed to decay exponentially

with time while being constantly updated by a new increment. The duration of vortex passage, in
terms of nondimensional time τv (distance travelled by the airfoil in semi-chords), is from τv = 0 to
τv = τvl. At τv = τvl, the vortex leaves the trailing edge. The center of pressure movement behind
quarter-chord due to the vortex movement is determined empirically to be

Cv
P = 0.20

[
1− cos

(
πτv
Tvl

)]
(4.120)

The pitching moment contribution of the moving center of pressure is then simply

Cv
Mn

= −Cv
P Cv

Nn
(4.121)

The final normal force and pitching moment expressions at a given time step n is then

CN = C0 + CαC
N + Cv

N + CαI
N + CqC

N + CqI
N

CM = CM0 + CαC
M +Cv

M + CαI
M + CqC

M + CqI
M

The seperated flow model is embedded in the underlined terms. The dynamic stall effects are in
Cv
N and Cv

M . Dynamic stall cycles for an oscillating 2D airfoil are shown in Figs.4.2, 4.3 and 4.4.

4.5 Wing Models

4.5.1 Prandtl Lifting Line Theory

Associated with the lift on the wing, there is a circulation around the wing. At the tip, the lift is
zero and therefore the circulation must vanish at the tip. This means circulation varies along the
span. Whenever there is a variation of circulation spanwise, there has to be shedding of vorticity.
If there is a continuous variation of circulation along the wing span, a continuous sheet of trailing
vortices must proceed from the wing.

If we assume that the circulation is uniform along the span and drops to zero at the tips of the
wing, then one can consider a simple model of two concentrated vorticity filaments originated at
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the wing tips. this concept of two tip vortices was originated by Lanchester. This model gives a
good global picture but is not appropriate for analyzing flow near the wing.

A better model is to consider a continuous trailing vortex sheet distribution, as proposed by
Prandtl.

The vortex sheet on the top and bottom surface is called the bound vortex sheet. Across the
bound vortex sheet, a pressure difference may exist. The trailing edge sheet is called the free vortex
sheet and no pressure difference exists across the sheet. The shed vortices are pulled downstream
by the wind. If there is no new shedding, the old one will not have any influence on the airfoil.

For large aspect ratio wings, the bound part of the vortex sheet may be approximated by a
single bound vortex line of varying strength. This is called the Prandtl lifting line theory.

For steady flow, influence on the shedding vorticity sheet on lift is negligible. For a body in
motion, the lift is changing with time and so there is a continuous shedding of vorticity. The vorticity
which is close to the surface plays an important role for the calculation of unsteady pressure on the
surface.

4.5.2 Weissinger-L Lifting-surface Theory

The W-L model [25] is essentially a lifting-surface model with only one chord-wise element. The
W-L model represents blade lift using a series of spanwise horseshoe vortex elements. The bound



4.5. WING MODELS 271

circulation is located at the 1/4-chord point. The flow tangency condition is imposed at the 3/4-
chord point. Compared to a lifting line model, the W-L model predicts improved loading for fixed
wings with arbitrary planforms.

Let the blade be divided into N aerodynamic segments. For the i−th segment the flow tangency
can be written as

Vbi = V∞iαei

= V∞i(αi − φNWi)

= V∞iαi − VNWi

(4.122)

where Vbi is the bound vortex induced velocity at the i− th control point and V∞i is the incident
free stream velocity at the control point. αei is the effective angle of attack at the section. The
effective angle of attack is obtained by subtracting the near wake induced angle of attack from the
input angle of attack. The later includes the effect of blade deformation and far wake inflow. VNWi

is the velocity induced by the nearwake at the i− th control point.
The velocities Vbi and VNWi are related to the strength of the bound vortices, Γi through

influence coefficient matrices. These matrices depend both on the blade deformations and on the
blade geometry e.g., rigid twist, control angles, planform, sweep etc.

Vbi =

N∑
j=1

Ibi,jΓj (4.123)

VNWi =
N∑
j=1

INWi,jΓj (4.124)

The linear algebraic governing equations for bound circulation (N equations, N unknowns) are thus
obtained as

N∑
j=1

{
Ibi,j + INWi,j

}
Γj = V∞iαi (4.125)

Once the bound circulation strengths, Γj are known they are used to calculate αei using equations
(4.124) and (4.122). Assuming thin airfoil theory, i.e., with a lift curve slope of 2π, the local lift
coefficient simply becomes

Cl = 2παei

=
2π

V∞i

N∑
j=1

Ibi,j
(4.126)

using equations (4.122) and (8.34). This is the effective angle of attack approach and is consistent
with K-J theorem for 3D wings which gives

Cl =
2π

V∞i

N∑
j=1

Ibi,j (4.127)

In the present analysis, the effective angle of attack approach is used.
The radial distribution of input angle of attack is influenced by the far wake (rotor inflow) which

in turn is governed by the bound circulation strengths. Therefore, iterations are performed between
far wake and near wake until bound circulation strengths are converged. The iterations are started
with a uniform inflow far wake (based on helicopter gross weight) which is subsequently replaced
with non-uniform inflow.
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Within the W-L near wake model, the airfoil property tables are included using the following
method. The input angle of attack is scaled to an equivalent flat plate angle of attack using the lift
coefficients obtained from the airfoil tables. This scaled angle of attack is used by the W-L model
to calculate bound circulation strengths at 1/4-chord locations. The bound circulation strengths
are then used to calculate the circulation strengths of near wake trailers. The near wake trailers are
used to estimate the induced angle of attack at 3/4-chord locations. This induced angle of attack
is subtracted from the input angle of attack and the resulting effective angle of attack is used to
obtain lift (also pitching moment and drag) from the airfoil tables.

4.5.3 Unsteady Lifting-Line Analysis

An unsteady lifting-line model can be constructed using a consistent combination of the following
parts: (1) A near wake model, e.g. a W-L type lifting surface model, (2) A far wake model, with free
or prescribed wake geometries (3) 2D airfoil properties and (4) An unsteady aerodynamic model
for attached and seperated flow flow.
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Figure 4.5: Dynamic stall prediction on a hypothetical 3D wing of Aspect ratio 15.30
with SC-1095 airfoils; Weissinger-L and Leishman Beddoes model; Inboard predictions
(almost 2D) are compared with 2D airfoil data from McCroskey et al NASA TM-84245,
1982, Mach No. 0.3, reduced freq. k = 0.1

For a prescribed set of deformations, the airloads were calculated using the following three
steps. In the first step, the blade deformations and an initial inflow distribution, for example,
a uniform inflow based on the measured thrust, were used to calculate the sectional angle of
attack. The sectional angle of attack was used as input to the W − L near wake model, which
then calculates the spanwise bound circulation distribution. The bound circulation distribution is
calculated iteratively, so that it is consistent with the airfoil properties, the Kutta condition, and the
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Figure 4.6: Dynamic stall prediction on a 3D wing with NACA 0015 airfoils, Mach No.
0.3, reduced freq. k = 0.1 Piziali test data compared with McCroskey SC1095 test,
(prediction for Piziali test case uses 2D static data sent to UMD on Aug. 1991)

near-wake trailer sheet. This procedure is described later. In the second step, the bound circulation
strengths were used to calculate the rotor far wake (free or prescribed). The far-wake generates a
refined non-uniform inflow distribution. Using the non-uniform inflow, the sectional angles of attack
are recalculated. In the third step, the new angles of attack are used as input to the near wake
model to recalculate the bound circulation strengths. Steps one to three are repeated untill the
airloads converge. Iterations are required because the bound circulation strengths calculated by the
near wake model changes the far wake inflow which changes the input angle of attack distribution
of the near wake model.

Within the W − L model, the bound circulation strengths are obtained iteratively. First, the
input angle of attack and incident Mach number are used to obtain the spanwise lift distribution
from the airfoil tables. The bound circulation is obtained using the Kutta condition. Next, a near
wake trailer sheet is layed out over thirty degree azimuth following the blade; 25 blade segments are
used. The bound circulation line is at local 1/4−chord and swept back at the tip. The trailer sheet
follows the local incident velocity. It is allowed to trail in the reverse direction in the regions of
reverse flow. The velocity induced by the trailer sheet at the local 3/4−chord is then used to reduce
the input angle of attack to an effective angle of attack. The effective angle of attack is then used
to update the bound circulations using airfoil properties and the Kutta condition. The steps are
repeated until the bound circulation converges. A relaxation scheme is necessary for converging the
bound circulation strengths (10% used). The converged bound circulation strengths are consistent
with the near wake trailers and the airfoil properties.

The W-L model can be combined with the 2D static airfoil property data and a 2D unsteady
dynamic stall model. The stall model is applied at each section on the effective angle of attack
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distributions. Sample test data and predictions are shown in Figs.4.5 and 4.6.

4.6 Perturbation Aerodynamic Forces

The quasisteady blade element theory can used to obtain the perturbation aerodynamic forces.

uT = tangential flow velocity, ft/sec

up = normal flow velocity, ft/sec

uR = radial flow velocity acting radially outward, ft/sec

θ = pitch, rad

α = angle of attack, θ − φ, rad

φ = induced angle, rad

ρ = air density, slug/ft3, lb-sec2/ft4

c = chord, ft

v = resultant velocity,
√

u2p + u2T , ft/sec

The blade lift and drag forces per unit length

L = 1/2ρv2c cl

D = 1/2ρv2c cd

The moment about aerodynamic center

Mac = 1/2ρv2c2cmac

Resolving forces in hub plane

Fz = L cosφ−D sinφ

Fz = L sinφ+D cosφ

Moment about elastic axis

Mea = 1/2ρv2c2cm − Lxa

where xa is the chordwise offset of aerodynamic center from elastic axis (+ ve aft). The radial force
can be important for forward flight and it consists of two components; drag force due to radial
velocity, and resolved component of vertical force in the radial direction.
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Fr = D
uR
v

− Fz
dW

dr

Note

sinφ =
up
v

cosφ =
uT
v

Thus

Fz =
1

2
ρc(cluT v − cdupv)

Fx =
1

2
ρc(clupv + cduT v)

Fr =
1

2
ρc(cdvuR)− Fz

dw

dr

Ma =
1

2
ρc2(cmac −

xa
c
cl)v

2

These are the forces per unit span. These forces contain blade motion and thus these are the motion
dependent aerodynamic forces.

To make analysis simple, the flow components are broken into two parts, steady and perturba-
tion components.

uT = (uT )trim + δuT

up = (up)trim + δup

uR = (uR)trim + δuR

θ = θtrim + δθ

The trim or steady components are due to the operating condition of the rotor and the perturbed
components are caused by the perturbed motion. Similarly, the forces are also expressed into two
parts, trim and perturbation components.

Fz = (Fz)trim + δFz

Fx = (Fx)trim + δFx

Fr = (Fr)trim + δFr

Mea = (Mea)trim + δMea

for convenience, the trim word is omitted from flow components.

Trim Forces

(Fz)trim =
1

2
ρc(cluT v − cdupv)

(Fx)trim =
1

2
ρc(clupv + cduT v)
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(Fr)trim =
1

2
ρccduRv − Fz

dw

dr

(Ma)trim =
1

2
ρc2(cm − xa

c
cl)v

2

In the above expressions, the aerodynamic coefficients are obtained for trim flight.

Perturbations

Let us first examine the perturbation of resultant velocity v and pitch θ.

δv = δ(u2p + u2T )
1/2

=
upδup + uT δuT

v

δα = δ(θ − tan−1 up
uT

) 	 δ(θ − up
uT

)

= δθ +
uP δuT − uT δup

uT

The aerodynamic coefficients are the functions of the angle of attack and Mach number.

cl = cl(α,M)

cd = cd(α,M)

cm = cm(α,M)

The perturbation in aerodynamic coefficients are

δcl =
∂cl
∂α

δα +
∂cl
∂M

δM

= clαδα + clM δM

δcd = cdαδα + cdM δM

δcm = cmαδα + cmM
δM

The Mach number at any radial station is

M =
Mtip

vtip
v

= Mtip
v

ΩR

and the perturbation in the Mach number is

δM =
Mtip

ΩR
δv

Let us now look at the perturbation in forces

Fz =
1

2
ρc{cluT v − cdupv}

δFz =
1

2
ρc{δcluT v + clδuT v + cluT δv

−δcdupv − cdδupv − cdupδv}
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=
1

2
ρc{(clαδα+ clM δM)uT v + clδuT v + cluT δv

−(cdαδα + cdM δM)upv − cdδupv − cdupδv}

δFz
1
2ρc

=

δuT {up
v
(uT clα − upcdα) +

u2T
2
(cl +MclM ) + clv

−(cd +McdM )
upuT
v

+ δup{−uT
v
(uT clα − upcdα) +

upuT
v

(cl +MclM )

−cDv
u2p
v
(cd +McdM )}+ δθ{clαvuT − cdαvup}

Similarly

δFx
1
2ρc

= δuT [
up
v
(upclα + uT cdα) +

u2T
v
(cd +McdM )

+cdv + (cl +MclM )
upuT
v

}

+δup{−uT
v
(upclα + uT cdα) +

upuT
v

(cd +mcdM )

+clv +
u2p
v
(cl +MclM )}

δθ{clαvup + cdαvuT }

δFr
1
2ρc

= δuT {cdα
upuR
v

+
uTuR
v

(cd +mcdM )

+δup{−cdα
upuR
v

+
upuR
v

(cd +McdM )}
+δuR{cdv}
δθ{cdαvuR}

δMea
1
2ρc

2
= δuT {2uT (cm − cl

xa
c
) + v2

up
u2T

(cmα − clα
xa
c
)

+μT (cmM
− clM

xa
c
)}

+δup{2up(cm − cl
xa
c
)− v2

uT
(cmα − clα

xa
c
)

+Mup(cmM
− clM

xa
c
)}

+δθ{v2(cmα − clα
xa
c
)}

To these perturbation forces, the noncirculating forces also are added. The most important com-
ponent is the virtual moment.

δMea = (δMea)c +Mnc

MNC = noncirculatory moment

=
1

4
πρΩ2c3

[
r

(
1

4
+

xa
c

)
β̈ − r

(
1

2
+

xa
c

)
θ̇ − c

(
3

32
+

1

2

xa
c

)
θ̈

]
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Small Angle Simplification

Assume small angles

Fz 	 L

Fx 	 L
up
uT

+D

α 	 θ − up
uT

Assume simplified airfoil characteristics

cl = aα (symmetric airfoil)

= a(θ − up
uT

)

cd = cd0

cm = cm0 (for symmetric it is zero)

v = uT

Trim Forces

Fz =
1

2
ρca(u2T θ − upuT )

Fx =
1

2
ρca(upuT θ − u2p +

cd
a
u2T )

Ma =
1

2
ρc2a{cm

a
(u2p + u2T )−

xa
c
(u2T θ − upuT )}

Perturbation Forces

δFz =
1

2
ρca{δuT (2uT θ − up) + δup(−uT ) + δθ(u2T )}

δFx =
1

2
ρca{δuT (upθ + cd

a
2uT ) + δup(uT θ − 2up) + δθ(upuT )}

δMa =
1

2
ρc2a{δuT (2cm

a
uT +

xa
c
up − 2

xa
c
uT θ)

+δup(2
cma

a
up +

xa
c
uT ) + δθ(−xa

c
u2T )}

Example 4.1:

In a circulation-controlled rotor, the aerodynamic lift is a function of geometric angle as well as
blowing

cl = cl(α, cμ)

where

cμ =
ṁVj
1
2ρV

2c
(ṁVj = jet momentum)
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calculate the perturbation in lift in terms of flow components of up and uT and pitch angle θ (steady
and perturbations).

Lift L = 1/2ρV 2c cl(α, cμ)

Perturbation δL = ρc clV δV + 1/2ρcV 2δcl

V =
√

u2p + u2T

δV =
upδup + uT δuT

V

δcl = claδα + clμδcμ

δcμ = −2cμ
δV

V

α = θ − tan−1 up
uT

δα = δθ − uT δup − upδuT
u2T

δL

1/2ρc
= δuT {2uT cl + V 2

u2T
upclα − 2uT cμclμ}

+δup{2upcl − V 2

u2T
uT clα − 2upcμclμ}

+δθ{V 2clα}

Example 4.2:

For an articulated rotor in hovering flight, obtain the blade flapping equation under varying pitch
conditions. For unsteady aerodynamic forces, use the lift deficiency function of a typical section at
75% radius position. Assume a 6% hinge offset, and the elastic axis at mid-chord position.

∗∗
β +ν2ββ − 3

2

xI
R
(
∗∗
θ +θ) = γMβ

Mβ =
1

2

∫ 1

0
x[
δuT
ΩR

(2
uT
ΩR

θ − up
ΩR

) +
δup
ΩR

(− uT
ΩR

) + δθ(
uT
ΩR

)2]C(k))dx

+

∫ 1

0
xLNCdx

uT
ΩR

= x,
up
ΩR

= λ,
δuT
ΩR

= 0,
δup
ΩR

= xβ̇ − 1

4

c

R

∗
θ

δθ = θ

k =
ωb

U
=

1

.75

ω

Ω

c

R

LNC =
πρb2

ρacΩ2R4
[(uT θ − up)− bah(θ +Ωβ)]

Mβ = C(k)[−1

8

∗
β +

1

24

c

R

∗
θ +

1

8
θ] +

c

R
(

∗
θ

24
−

∗∗
β

24
)− 1

64
(
c

R
)2

∗∗
θ
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4.7 Dynamic Inflow Models

Typical stability analyses normally employ steady wake induced inflow calculated from simple
momentum theory. However, under unsteady flow conditions, the rotor wake will not be steady,
and this will naturally result in unsteady induced inflow, called as dynamic inflow. The dynamic
inflow may be a significant factor in the calculation of unsteady aerodynamic loads, and hence can
have an important influence on the rotor dynamics. In fact, the dynamic inflow components should
be related to the unsteady rotor loads (thrust, roll moment and pitch moment). These relationships
are complex and are still subject of research. For analyses, it is important to put these relationships
in simplified form. One possible way to derive these relationships is by using unsteady actuator
disk theory. Let us examine the steady as well as dynamic inflow components for hover and forward
flight.

4.7.1 Hover

A simple steady inflow model for hover is to assume uniform inflow over the rotor disk. Using
simple momentum theory the inflow is related to the rotor thrust.

λ = sign(CT )kp

√∣∣∣cT
2

∣∣∣
where CT is the thrust coefficient, λ us induced inflow (vi/ΩR) and kp is an empirical factor to
cover tip losses (∼ 1.15).

A simple dynamic inflow model for hover is

τ λ̇+ λ = sign(CT )kp

√∣∣∣∣CT

2

∣∣∣∣
or

τΔλ̇+Δλ = k2p
ΔCT

4λ0

where τ is time lag in seconds and can be approximately taken as .85/4λ0Ω. The λ0 is the mean
induced inflow and Ω is rotational speed (rad/sec). Note that the CT here consists of total thrust,
i.e., the sum of steady and perturbation thrust components.

4.7.2 Forward Flight

A simple steady inflow model for forward flight is to assume it uniform over the rotor disk.

λi =
1

2

CT√
μ2 + λ2

where λi is induced inflow ratio and μ is advance ratio and λ is inflow ratio

λ = μ tanα+ λi

and α is disk tilt to the free stream. An improvement over the simple uniform model is to assume
a linear variation for steady induced inflow

λi = λm(1 + κx
r

R
cosψ + κy

r

R
sinψ)

where λm is the mean value of induced flow, and κx represents the longitudinal variation of inflow
and κy represents the lateral variation of inflow.




