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Outline

® Basic problem setup
® Deterministic system

e Stochastic system (Lecture 7)



Basic Problem Setup

Linear Deterministic System:

r(k+ 1) = Az(k) + Bu(k)
y(k) = Cx(k)

We consider time-invariant system for simplicity.

For a linear state feedback controller
u(k) = —L(k)z(k)
The closed-loop response is:

2(k+1) = (A — BL(k))x(k)

. Stablhty

(1)
(2)

(3)

eigenvalues of (A - BL) lie within the unit disk

The state feedback controller (3) stabilizes the system if all the




Objective of LO

e A system visits a sequence of states of x(0), z(1

N—"

, oo, x(p)

(p)

8

and desired sequence of states z(0), z(1), ...,
e Without loss of generality, the desired trajectory, z, can be set as the origin.

® Objective function
p—1
min Y [27(k)Qx(k) + u” (k) Ru(k)] + «7 (p)Qsx(p)
k=0
- Q and R are symmetric positive definite; Q; is positive semi-definite
- Q provides relative importance to the errors in various states

- R accounts for the cost of implementing input moves

® If p = oo, it is infinite horizon problem.



Open-Loop Control vs. Feedback Control

e Optimal open-loop control problem

- Find the optimal sequence of u(0), ..., u(k) for given (as a function of)
distribution of x(0)

e Optimal feedback control problem

e Find the optimal feedback law u(k) = f(z(k)) or
u(k) = f(y(k), y(k—1), ...)

e For completely deterministic systems, the two should provide the same

performance.

e State Feedback vs. Output Feedback

u(k) = f(x(k)) = State feedback
u(k) = F(y(k)) = Output feedback

F would be a dynamic operator in general.



Least Squares Solution
Open-Loop Optimal Feedback Control

Using (1) recursively gives,
r(k+1) = Azx(k) + Bu(k) = A(Ax(k — 1) + Bu(k — 1)) + Bu(k)
= A%x(k — 1) + Bu(k) + ABu(k — 1)

= A"12(0) + (Bu(k) + ABu(k — 1) + ...+ A" Bu(0))

Thus, we can write

z(0) I 0 0 0 u(0)
x(1) A B 0 0 u(1)
x(2) | _ | A2 2(0) + AB B 0 u(2)
: : : : 0 f
- z(p) | AP | AP~'B  APB B u(p — 1)
x RE s u



System equation
X =8%z(0) +S“U

Quadratic cost function

p—1
Vo(z(0);u) =Y [27 (k)Qu(k) + u” (k) Ru(k)] + =" (p)Qea(p)
k=0
—xIrrx +ul'ruy
['* = blockdiag {Q, ..., Q, Q;};I'* = blockdiag{R, ..., R}

Optimal cost

Vo(w(0)) = min {xT(O)SxTFxSxx(O)+

Ut [S“Trwsu + r“}u + 2:UT(O)S‘”TF$8“U}
Optimal solution

1
U* = —H g = — [SuTrxsu n r“} SUTT=S%4(0)



OLOFC

—1
U = — {SuTrwsu + r“} SUTT2S72(0) 5)

Ve (2(0)) = 2T (0) [sxTrwsx—

1
seTrest ($UTre s + 1) SuTrxsx] z(0)

Open-loop optimal control finds a sequence

u*(0), u*(1), ..., u"(p—1) foragiven x(0)

Recursively use (5) as in Receding Horizon Control

Not etficient computationally

Not generalizable to the stochastic case



Closed-Loop Optimal Feedback Control
CLOFC

e One obtains the optimal control move as a function of state at each time
® Solved using Dynamic Programming

® More elegant and closed-loop optimal solution



Dynamic Programming

At the stage p-1, Bellman’s equation is

Vo-1(#(p— 1)) = min, {z'(p—1)Qx(p — 1) +u' (p — 1)Ru(p — 1)

+z' (p)S(p)z(p)} (6)
where S(p) = Q:

Noting that z(p) = Az(p — 1) + Bu(p — 1) , we get:

Vp—i(z(p—1)) = min {z"(p—1) (ATS(p)A+ Q) z(p— 1)+

u(p—1)
221 (p — 1) AT S(p) Bu(p — 1)+

u' (p—1)(B'S(p)B+ R)u(p— 1)}



As before, the optimal solution can be obtained as:

u (p—1)=—(B'S(p)B+R)"'B'S(p)Az(p—1)

L(p—1)

Substitution of u"(p — 1) gives
Vo1 (z(p—1)) = 2" (p— 1)S(p— Da(p — 1)
where S(p - 1) is given by the following Riccati Equation

S(p—1)=ATS(p)A+Q — ATS(p)B (BTS(p)B+ R) " BTS(p)A
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Stage: p - 2

‘@4@@—2»:ﬁggﬁ@”p—%Qﬂp—%+UHP—mRWP—%+

Vo—1(z(p—1))}

= min {27 (p—2)Qa(p —2) +u" (p —2) Ru(p — 2)+

' (p—1)S(p — Dz(p—1)}

This equation is in the same for as (6). The optimal solution is

ut(p—2) = —\(BTS(p —1)B + R)_l BYS(p — 1)/{%(}? — 2)

~

L(p—2)
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Generalization

Successively solving for cost-to-go Vi (z(k)), we get:

u*(k) = —L(k)x(k), fork=p—1, ..., 0

where

L(k) = (BTS(k+1)B+R) " BTS(k+1)A

S(k) =ATS(k+1)A+ Q—

ATS(k+1)B (BTS(k+1)B+R)  BTS(k+1)A )

Note that (7) is the familiar Riccati Difference Equation that we encounter in

Kalman Filtering as well.
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Comments

e For a deterministic case, OLOFC and CLOFC yield the same solution.
e The optimal p-stage cost is: Vy(zo) = z* (0)S(0)z(0)
e Receding horizon solution to optimization is computationally demanding

e Dynamic Programming leads to the optimal control solution as an explicit
linear function, u(k) = —L(k)xz(k)

e Recursive solution of Riccati equation, required in DP, is straightforward.

e Note that the results hold only for the unconstrained system.

14



Extension of DP to Infinite Horizon

Assuming the RDE solution converges to S,

u(k) = — (BTSooB + R) " BTS. Ax(k)

Lo

Soo = ATS A+ Q — ATS, B(BTS.B+R)  BTS,A (8)

e Note that (8) is known as Algebraic Riccati Equation

e The RDE (7) converges to S, in the infinite horizon case if (A, B) is

stabilizable pair.

e The converged solution gives stable controller if (Ql/ 2, A) is detectable

pair.
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Extension of OLOCP to Infinite Horizon

Q. Direct extension of OLOCP to infinite horizon seems impossible because of

the infinite number of inputs to optimize. What can we do?

A. For certain choices of Q, the finite horizon problem:

can be made equivalent to the infinite horizon problem.
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OLOCP: Equivalence with the Infinite Horizon Problem
Option 1

We can choose Q; such that:

v (k+ p)Qix(k +p) = (Igl_ir)l { E (k4 9)Qx(k+ 1) +u' (K +4)Ru(k + i)}
U D),... )
1=p

It is clear that we can compute such Q; by solving the ARE of
Q= ATQiA+Q - ATQ:B (B"Q:B+R) B"Q.A

- With this choice of Q;, the optimal solution of p-horizon problem is

equivalent to that of co-horizon one.
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OLOCP: Equivalence with the Infinite Horizon Problem
Option 2

We may also choose Q; such that:

vl (k +p)Qix(k +p) = Zx (k+1)Qxz(k + 1)

=bp

* The above equation is under the assumption that no control action is taken

beyond the horizon k + p.

* Then, the autonomous system z(k + 1) = Az (k) describes the evolution of the

state.

* This assumption is meaningful only when the system is stable, otherwise the

cost is infinite.

» We can show that the above Q; is a solution to Lyapunov Equation:

Qi =Q+ ATQ.A
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Option 2: Lyapunov Function

* Generalized energy function
 Zero @ equilibrium point and positive elsewhere

* The equilibrium will be stable if Lyapunov function (V;) decreases along the
trajectories of the system

AVi(z) or Vl(a:)

Note that the system equation from time k + p is given as

rk+i+1)=Ak+i)x(k+1)

Vi(x(k+p)) = ' (k + p)Qz(k + p)
AVi(z(k +p)) = Vi(z(k+p+1)) — Vi(z(k + p))
Az(k +p)) — Vi(x(k + p))
=z' (k+p) (A" QA — Q) x(k +p) = —x(k + p)" Px(k + p)

 Usually, Q: is found by specifying P as a positive definite matrix.
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In this case, P = Q from the definition of the terminal cost:

2T (k+p)Qur(k+p) =27 (k+p)Qu(k+p)+ Y a7 (k+9)Qu(k+1)

1=p+1
= 2" (k+p)Qx(k +p) +z' (k+p+1)Qrx(k +p+1)
=zl (k+p)Qx(k +p) + ' (k +p)AT Q Ax(k + p)

This gives a discrete time Lyapunov equation

Qi =A"QA+Q
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OLOCP: Equivalence with the Infinite Horizon Problem

Option 3

Solve the finite horizon problem with z(k + p) = 0 as a constraint.

* Note that Option 2 cannot be used if the system is unstable.

e Option 3 can then be used for unstable systems.
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Separation Principle

.

Extension to Output Feedback Case

So far, we assumed that the full state feedback is available. In case of output

feedback, the control actions are based on state estimates (k).

e Observer:
z(k) =Ax(k—1)+ Bu(k—1)+ K [y(k) — C (Az(k — 1) + Bu(k — 1))]

e Controller: u(k) = —Lz(k)

a

If we define z.(k) = z(k) — 2(k) , we get

[ fe((ﬁlf) ] N [ A_OBL A:l;([éA ] [ ;e(@) ]

Since the above equation is one-way coupled, the system is guaranteed to be

stable if the controller and the filter are guaranteed to be stable independently.

J
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