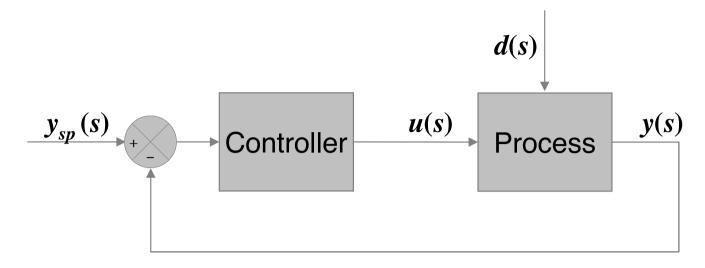

458.308 Process Control & Design

Lecture 5: Feedback Control System (Part 1)

Jong Min Lee School of Chemical and Biological Engineering Seoul National University

Feedback Control Scheme: Surge Tank

LT: a level measurement device (e.g., differential pressure cell)


- senses the level
- sends a signal to the controller

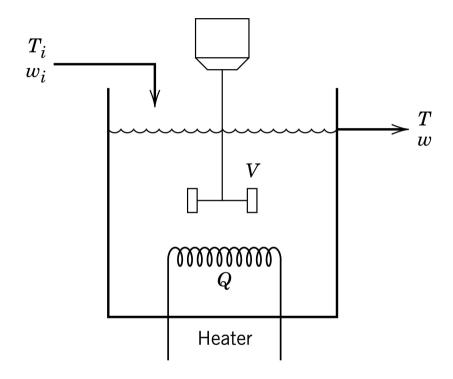
LC: a level controller

- compares the tank height (h_m) with the desired set point (h_{sp})
- sends a controller output (pressure signal) to the valve

Simplified Control Block Diagram

Negative feedback: self-stabilizing property with positive process gain

$$e = y_{sp} - y$$

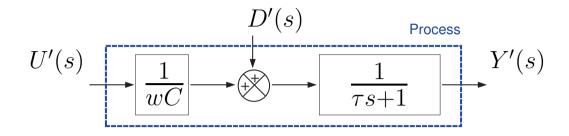

Positive feedback: makes a process unstable with positive process gain in general

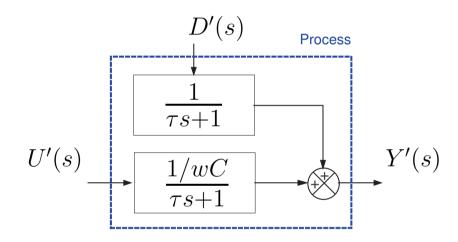
$$e = y_{sp} + y$$

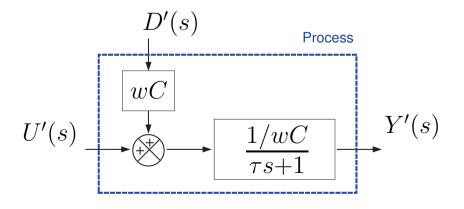
Used for describing complex systems (i.e., biological system)

Block Diagram

 $w_i = w$: no need for MB


$$\frac{dT}{dt} = \frac{w_i}{V\rho}(T_i - T) + \frac{Q}{\rho V C_p}$$


$$\Rightarrow \quad \tau \frac{dT}{dt} = (T_i - T) + \frac{Q}{wC_p}$$


$$y' = T - \bar{T}, \ u' = Q - \bar{Q}, \ d' = T_i - \bar{T}_i$$

$$Y'(s) = \frac{1}{\tau s + 1} \left(\frac{U'(s)}{wC_p} + D'(s) \right)$$

Equivalent Representations

Pneumatic Control Valve

- Air is the energy source to move the valve stem
- Typical pressure range: () -() psig
- If the control signal is lost, then the valve stem will go to 3 psig

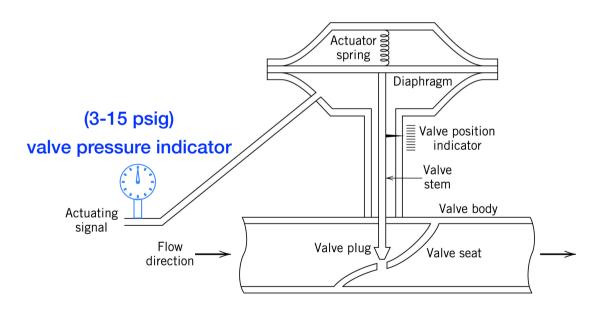


Figure 9.9 A control valve with a pneumatic actuator (air-to-open)

Types of Pneumatic Control Valve

1. Air-to-Open Valve (A-O)

Requires air to open the valve

Loss of air = _____

Often referred to as _____ (F-C)

2. Air-to-Close Valve (A-C)

Requires air to close the valve

Loss of air = _____

Often referred to as _____ (F-O)

Choice of valve types?

consideration

If you control the reactor temperature by manipulating the steam flow rate into the reactor jacket, what type of control valve should you choose?

- (a) A-O
- (b) A-C
- (c) F-O
- (d) F-C

If we consider the control valve as an input-output system, what are the input and output variables?

- (a) feedback error, pneumatic pressure
- (b) pneumatic pressure, steam flow rate
- (c) steam flow rate, temperature
- (d) temperature, set point

Actuators are also categorized as 'direct acting' or 'reverse acting' In a direct acting actuator, an *increase* in pneumatic pressure applied to the diaphragm *extends* the valve stem. In a **reverse acting** actuator, an *increase* in pneumatic pressure applied to the diaphragm *lifts* the valve stem. Which of the following statements is (are) correct?

- Air-to-Open valve is direct acting.
- Air-to-Close valve is direct acting.
- The gain of the control valve (Kv) will be positive for a reverse acting actuator
- The gain of the control valve (Kv) will be negative for a direct acting actuator

© J.M. Lee

10

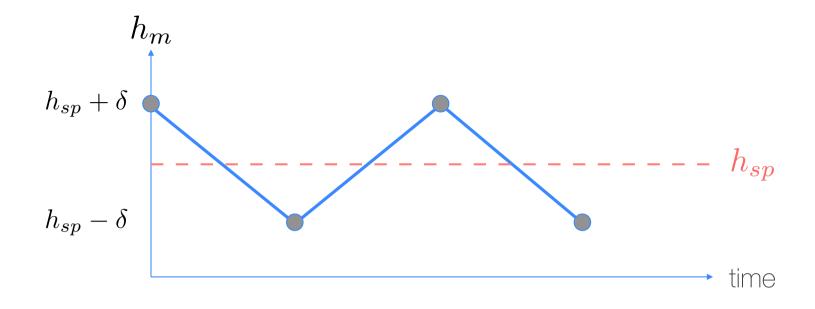
Algorithm: On/Off Controller

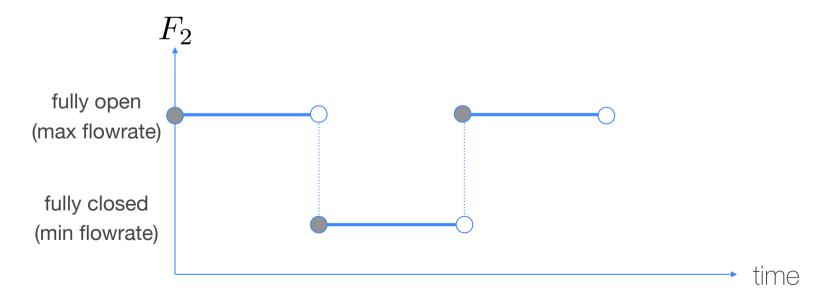
How does the controller change the flow rate?

(1) $y_m(=h_m)>y_{sp}$: valve is _____ open

 $y_m < y_{sp}$: valve is ____ closed

Example) Home heating unit

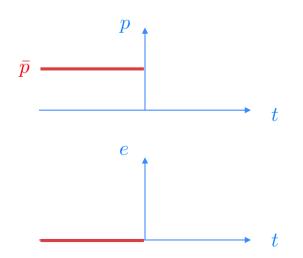

(2) In practice, a dead-band (δ) is used


$$y_m \ge y_{sp} + \delta$$
 : valve is fully open

$$y_m \leq y_{sp} - \delta$$
 : valve is fully closed

$$y_{sp} - \delta < y_m < y_{sp} + \delta$$
 : current valve position

Algorithm: Proportional Controller


Control action is proportional to the feedback error

$$p(t) = \bar{p} + K_c(y_{sp}(t) - y_m(t)) \quad \Longrightarrow \quad p'(t) = K_c e(t)$$

p: valve top pressure

 K_c : proportional gain (tuning parameter)

 \bar{p} : steady-state valve top pressure when $e(t) = y_{sp}(t) - y_m(t) = 0$

P-controller is static or memory-less

Proportional Band (PB) =
$$\frac{100}{K_c}\%$$
 (Foxboro, etc.)

Sign of Kc

This depends on the valve type

If
$$e(t) > 0$$
 $(y_{sp} > y_m)$; F_2 should be lower

If
$$e(t) < 0 \quad (y_{sp} < y_m)$$
; F_2 should be higher

(1) Air-to-Open

$$e(t) > 0 \rightarrow F_2 \downarrow \rightarrow \text{valve close} \rightarrow \text{air pressure} \downarrow$$

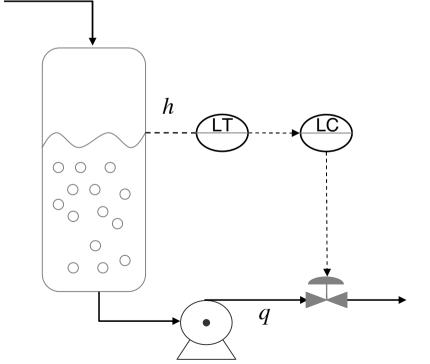
·. _____

$$e(t) < 0 \rightarrow \text{same}$$

2 Air-to-Close

$$e(t) > 0 \rightarrow \text{air} \uparrow \text{ to close}$$

∴ _____


Reverse-Acting / Direct-Acting

Kc > 0 is called _____-acting because

as
$$y_m \uparrow$$
, $p \downarrow$

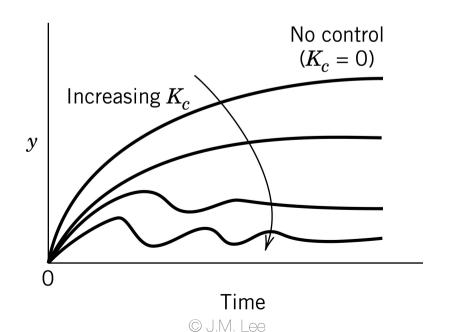
Kc < 0 is called _____-acting because

as
$$y_m \uparrow$$
, $p \uparrow$

LT is designed to be direct-acting (most transmitters are direct-acting)

- Its output signal increases as the level increases

P-Controller: Pros and Cons


Advantage: simplicity

Disadvantage

Leaves offset with a set-point change or a sustained disturbance

why?

 \bar{p} is a equilibrium point (input) for the previous set point or disturbance

Algorithm: Proportional Integral (PI) Control

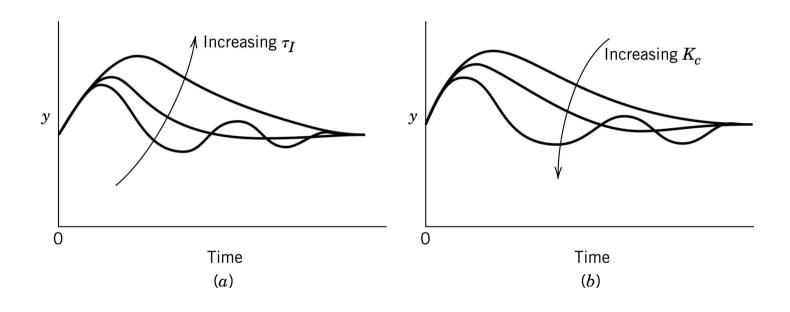
$$p(t) = \bar{p} + K_c \left(e(t) + \frac{1}{\tau_I} \int_0^t e(t^*) dt^* \right)$$

 τ_I : integral time or reset time ($\rightarrow \infty = P$ -control)

Integral control action: reset control, floating control

Some variations

Honeywell
$$p(t) = \bar{p} + K_c \left(e(t) + \tau_R \int_0^t e(t^*) dt^* \right)$$


$$\frac{\text{Foxboro}_{\text{\tiny by Schneider Electric}}}{p(t)} \quad p(t) = \bar{p} + \frac{100}{PB} \left(e(t) + \tau_R \int_0^t e(t^*) dt^* \right)$$

 τ_R : reset rate

PI-Controller: Pros and Cons

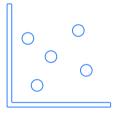
Advantage: eliminates _____ (regardless of size of Kc)

Disadvantages

One more parameter to tune

Easier to induce oscillation or instability

© J.M. Lee


18

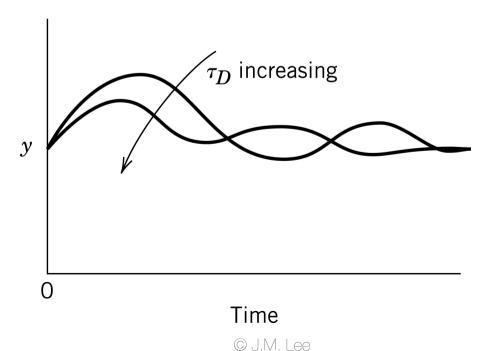
Algorithm: Proportional Integral Derivative (PID) Control

Adjustment proportional to the current error + accumulated error + current rate of change in the error

$$p(t) = \bar{p} + K_c \left(e(t) + \frac{1}{\tau_I} \int_0^t e(t^*) dt^* + \tau_D \frac{de}{dt} \right)$$

 τ_D : derivative time constant

Pure differentiation in real-time is not possible since evaluation of de/ dt at time t requires error information beyond time t. But it can be approximated very closely

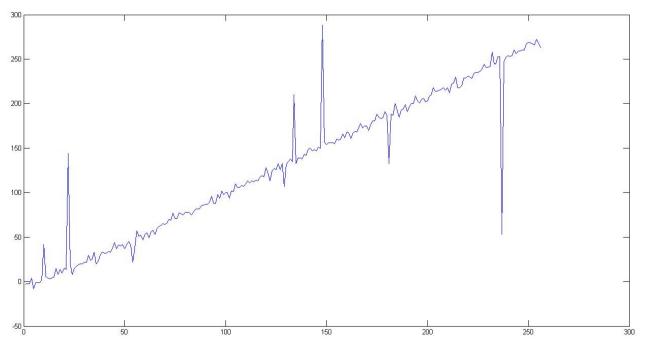

PID Controller: Pros and Cons

Advantages

Quick action to a change in the error - effective prevention of runaway (e.g., in an auto-catalytic reactor)

Decrease settling time for processes with slow dynamics and fast disturbances

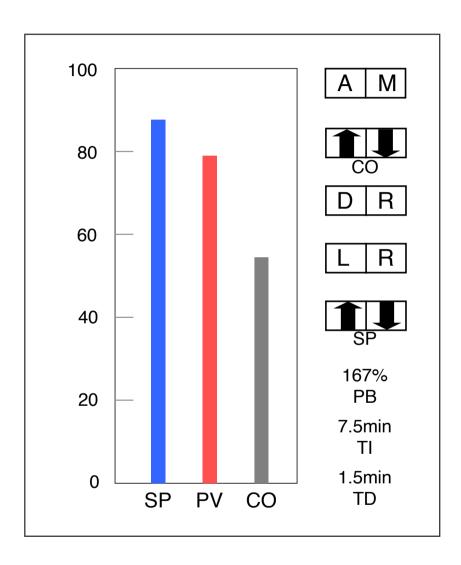
Decrease _____ (stabilizing factor for integral mode, etc.)



PID Controller: Pros and Cons

Disadvantages

Yet one more parameter to tune


Amplifies measurement _____ effect (not suitable in flow control)

"noisy" measurements

Typical PID Controller Display

PV, SP, CO: Process variable, Set point, Control output (normalized 0-100%) CO is also denoted as OP.

Auto/Manual Switch (Bumpless Transfer)

Direct/Reverse Switch

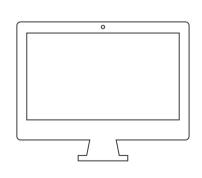
Local/Remote Switch: source of set point signal

© J.M. Lee

Digital PID Controller

Analog:

$$p(t) = \bar{p} + K_c \left(e(t) + \frac{1}{\tau_I} \int_0^t e(t^*) dt^* + \tau_D \frac{de}{dt} \right)$$


Digital:

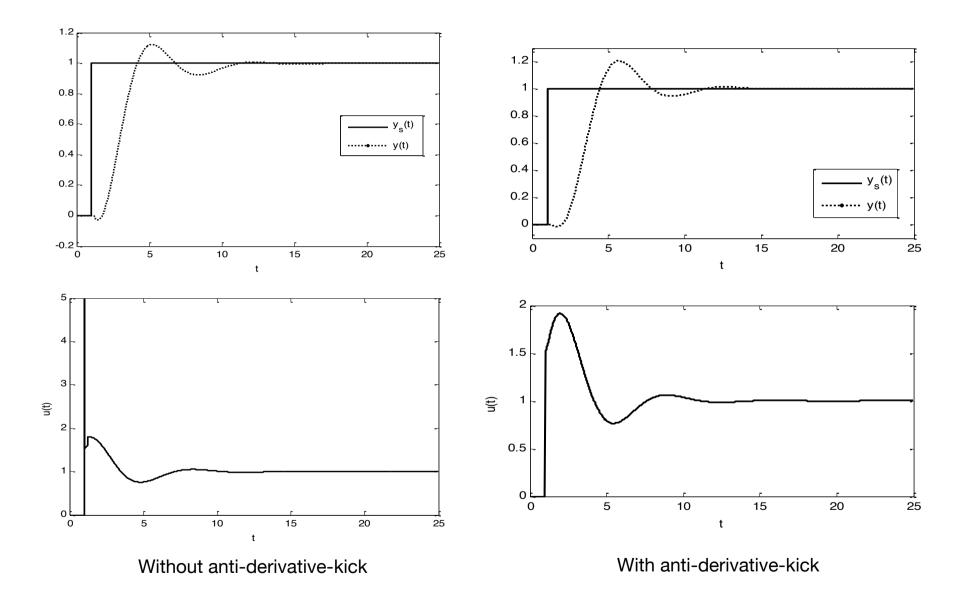
$$p(t_k) = \bar{p} + K_c \left(e(t_k) + \frac{\Delta t}{\tau_I} \sum_{i=0}^k e(t_i) + \tau_D \frac{e(t_k) - e(t_{k-1})}{\Delta t} \right)$$

 Δt : sampling period (interval)

 $e(t_k)$: error at the k^{th} sample time

 $p(t_k)$: controller output at the k^{th} sample time

Removing "Kicks"

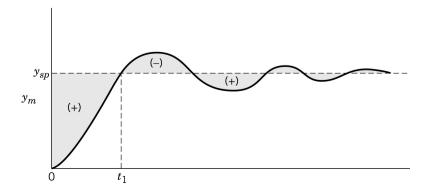

- Sudden set point change (a step change)
 - de/dt will be very large, giving a sudden jump in the valve position (undesirable in most cases)
 - Apply the derivative action only on the output signal, not set point signal

$$\frac{de}{dt} = \frac{d}{dt} \left(y_{sp}(t) - y_m(t) \right) \Rightarrow -\frac{dy_m}{dt}$$

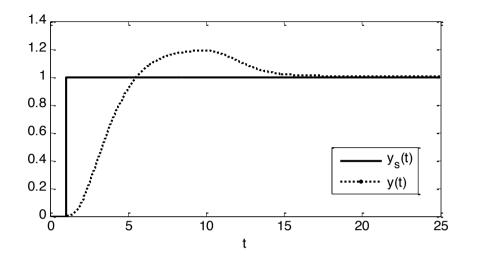
 Similar phenomenon can show up for the P-mode, though not as severe as the D-mode

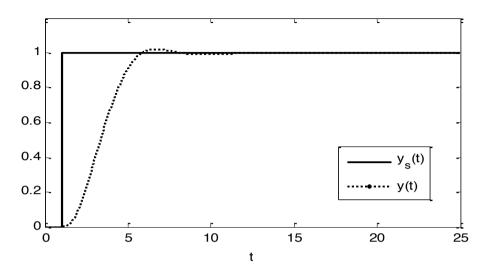
© J.M. Lee

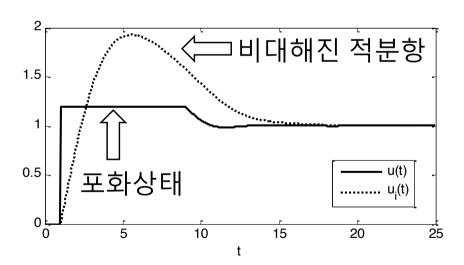
© J.M. Lee


Windup and Anti-Windup

Windup


 When a constant error persists for a long time (such as when the valve saturates), the integral term can be wound up to a very large term


Consequence


- When the reason for the constant error (e.g., un-realizable set point change or too large a disturbance to reject completely) goes away, the integral term must unwind before the valve position returns to the normal value and control resumes
- Large error in the opposite direction will result

1.5 석당한 크기의 적분항 0.5 0 5 10 15 20 25

Without antiwindup

With anti-windup(back-calculation)

© J.M. Lee