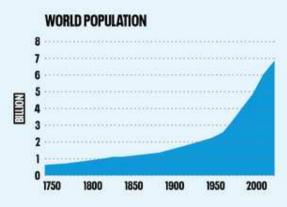
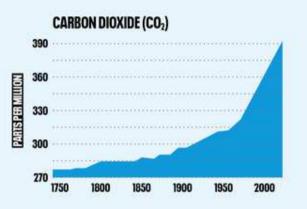
Slide#12 solution

i) contant demand $\frac{24,000 EJ}{160 EJ/year} = 150 years$

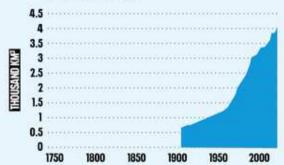
ii) 0.6% annual growth rate 24,000 EJ = $160EJ/year \left[\frac{(1+0.006)^n}{0.006}\right]$ $(1.006)^n = \frac{24,000}{160} \times 0.006$ $n \times \log 1.006 = 1.9$ n = 107 years

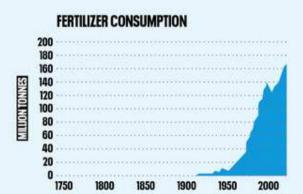
Sustainability

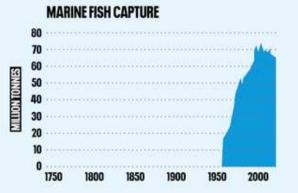

- Sustainability? Being sustainable?
- Sustainability regarding resource consumption
- Sustainable energy sources
- Green engineering and life cycle assessment

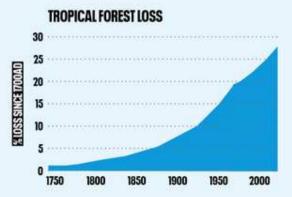

Being "sustainable": what does it mean?

- Sustainability (in dictionaries)
 - The ability to be maintained at a certain rate or level
 - Harvesting or using a resource so that the resource is not depleted or permanently damaged
- Sustainable development (WCED, 1987)


Development that meets the needs of the present without compromising the ability of future generations to meet their own needs


HUMAN FOOTPRINT





Source: WWF

http://sdgs.un.org/goals

K-SDGs 소개	배경과 의의	세부목표와 지표	심볼 다운로드

국가지속가능발전목표(K-SDGs)

국가 지속가능발전목표 119개 세부목표 및 236개 지표 [원문보기]

http://ncsd.go.kr/

(1) 의료비 가계직접 본인부담률 K-SDGs 세부목표 (2) 고용보험 가입률 1-2 (3) 국민연금 보험료 납부율

정책 과제

① 국민의료비 부담 경감

② 고용보험 및 산재보험 적용대상 확대를 통한 사각지대 해소

취익계층을 위한 노후보장 강화

enale and service and make a losses

세부목표 1-2. "사회보장제도의 사각지대를 최소화하고, 빈곤충과 취약계층에 대한 실질적 보장을 달성한다."

현 수치

현 수치

-2018: 36.2%

-2019: 90.3%

-2018: 78.6%

2018: 16.7%

-2018: 0.97%

목표

- 2030: 14.3%

- 2040: 11.8%

- 2030: 1.0% 이상

- 2040: 1.5% 이상

목표

- 2030: 30.0%

- 2040: 25.0%

- 2030: 90.0%

- 2040: 99.0% - 2030: 82.5%

- 2040: 84.2%

세부목표 1-1. "남녀노소, 장애여부 등과 관계 없이 빈곤인구 비율을 OECD 평균 이하 수준으로 줄인다."

지표명

(1) 중위 가처분소득 50% 기준

(2) 복지 급여(소득보장) 예산 및

지표명

상대빈곤율

GDP 대비 비율

② 노후소득보장체계 확충

목표 1. 빈곤층 감소와 사회안전망 강화

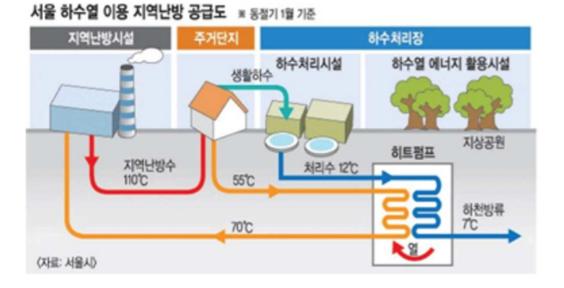
⑦ 공공부조제도 역할 강화

지표및목표

정책 과제

지표 및 목표

K-SDGs


세부목표

1-1

Resources: renewable vs. nonrenewable

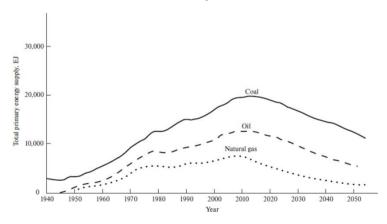
- Renewable resources
 - Resources that can be replaced within a few human generations
 - timber, surface water, solar energy, wind energy
- Nonrenewable resources
 - Resources that are replaceable only in geologic time scales
 - fossil fuels (coal, petroleum, natural gas), metal ores

Are these renewable? Do they help improving the global sustainability?

Fossil fuel

Typical net heating values

Material	Net heating value (MJ kg ⁻¹)			
Charcoal	26.3			
Coal, anthracite	25.8			
Coal, bituminous	28.5			
Fuel oil, no. 2 (home heating)	45.5			
Fuel oil, no. 6 (bunker C)	42.5			
Gasoline (regular, 84 octane)	48.1			
Natural gas	53.0			
Wood	13.3-22.3			


MJ: megajoule, 10⁶ J

World commercial energy reserves of fossil fuels

Fuel	Energy reserves (EJ)		
Coal	24,000		
Oil	12,700		
Natural gas	7,500		

EJ: exajoule, 10¹⁸ J

World fossil fuel supply (record+forecast)

The length of time the current reserves will last

Assuming constant demand over time

$$T_{S} = \frac{F}{A}$$

$$T_{S} = time \ until \ exhaustion \ (yr)$$

$$F = energy \ reserve \ (EJ)$$

$$A = annual \ demand \ (EJ \ yr^{-1})$$

• Assuming geometric growth in demand: solve for *n* from the following equation

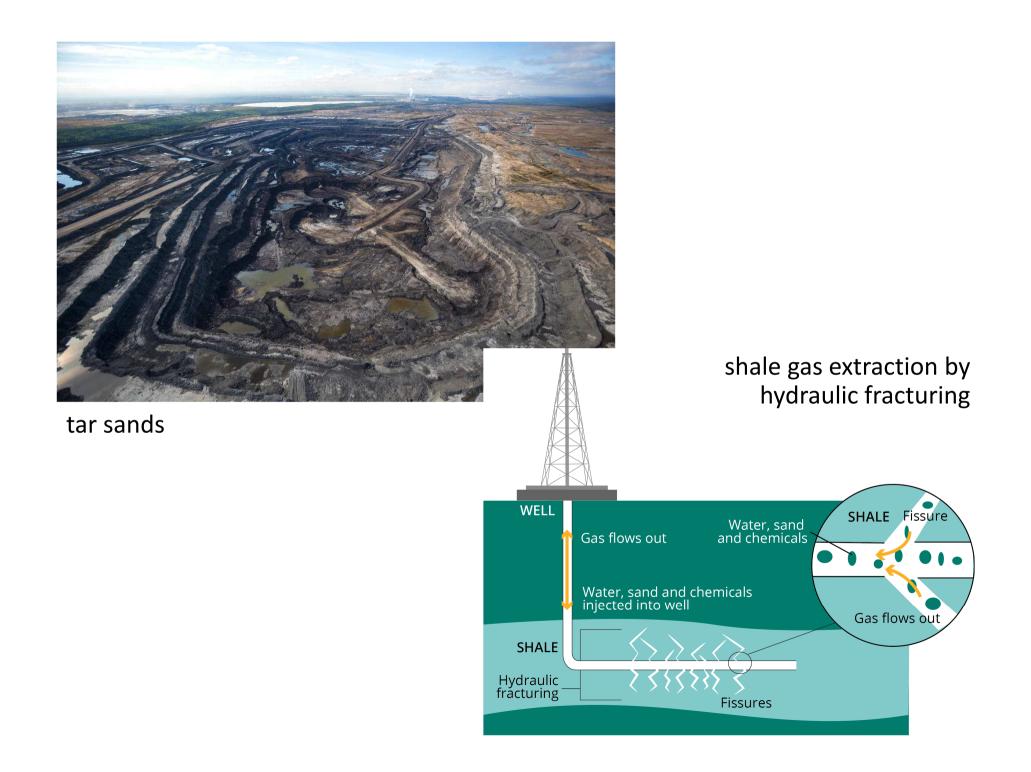
$$F = A\left[\frac{(1+i)^n - 1}{i}\right]$$

n = number of years until exhaustion i = annual growth rate (in fraction)

The length of time the current reserves will last

Q: In 2015, the world consumption of coal for energy was 160 EJ. Assuming the demand remains constant, how long will world reserves last? The estimate of the average world consumption of coal-based energy ranged from a 0.6% increase to a 1.8% decrease in 2015. Using the 0.6% increase, estimate how long the world's coal reserves will last.

More fossil fuel reserves


- Tar sands (oil sands) & shale gas
 - Not included in slide#10 data
 - Discovered (or mining became feasible) recently
 - Consumes a huge amount of water / generates highly polluted water

• Tar sands

- Sands laden with petroleum
- Estimated reserves: 3.7 x 10¹¹ m³
- Amount recoverable with current technology: 2.8 x 10^{10} m³

• Shale gas

- Estimated reserves: 4,000 EJ in 2010, being updated with rapidly growing quantity
- Natural gas in shale formations
- Mined by hydraulic fracturing

Renewable energy sources (1)

Hydropower

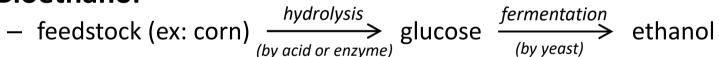
- Potential E of water \rightarrow Kinetic E of water \rightarrow Electricity

- Power available
$$= g(\Delta Z) \frac{dM}{dt} = g(\Delta Z) \rho Q$$

 $g = acceleration due to gravity (=9.81 \text{ m} \cdot \text{s}^{-1})$ $\Delta Z = difference in water elevation between the water surface$ at the top of the dam and the turbine (m) $<math display="block">dM/dt = mass flow rate of water (kg \cdot \text{s}^{-1})$ $\rho = water density (kg \cdot m^{-3})$ $Q = water flow rate (m^3 \cdot \text{s}^{-1})$

turbine

- Solar energy
 - Photovoltaic systems: good for distributed generation & supply
- Wind, geothermal, wave, tidal, ...



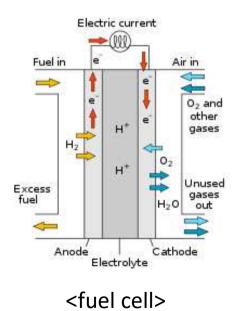
Renewable energy sources (2)

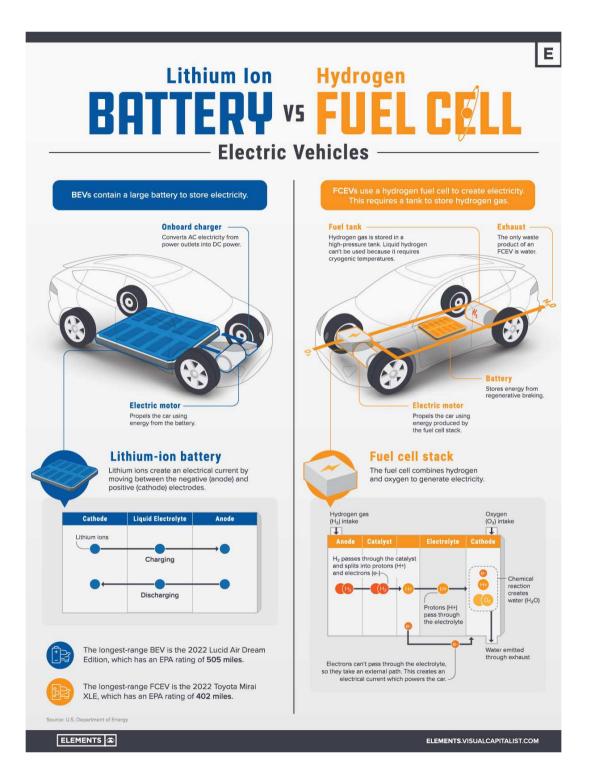
• Biofuels from biomass

- Combustion of biomass
- Recovering fuel from biomass: bioethanol, biodiesel, biobutanol, ...

Bioethanol

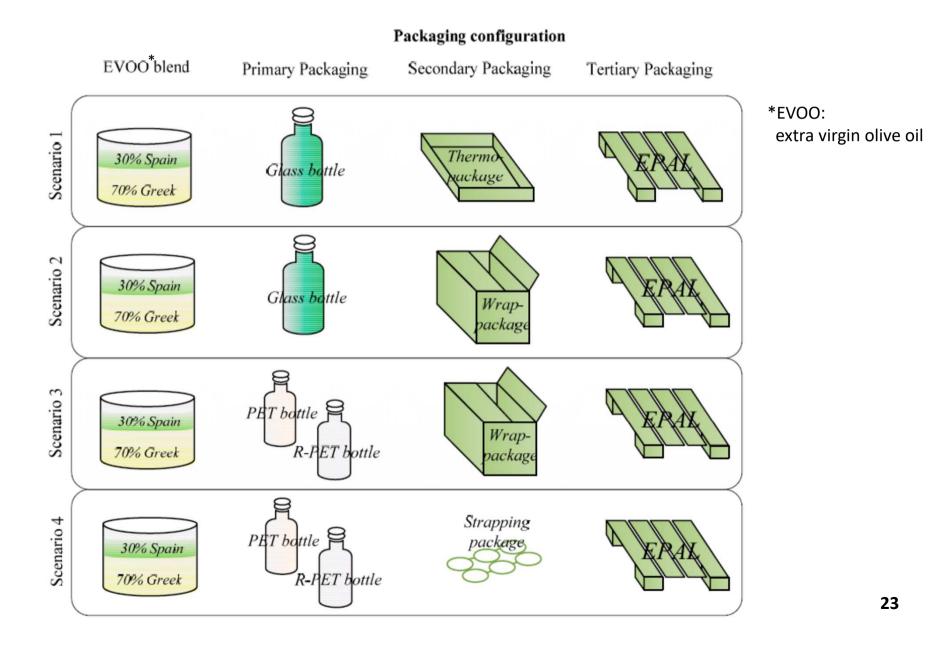
- Blended with gasoline


• Biodiesel

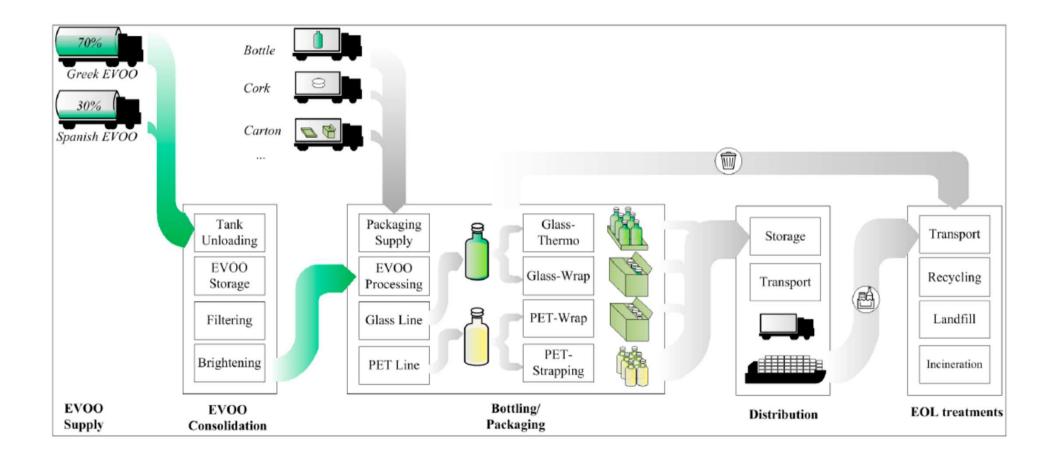

- Use soybean oil (ex: canola oil) as feedstock, produce alkyl esters using f...?, blended with diesel
- Biobutanol, biomethane

Hydrogen

- Oxidized in a fuel cell to generate electricity
- No pollutant generation in fuel cells
- To be a renewable energy H₂ should be generated from renewable sources (ex: water splitting in photovoltaic cells)
- Challenges
 - High cost, longevity of the fuel cell, safety concerns, transport & storage problem of H₂, poor infrastructure


Green engineering

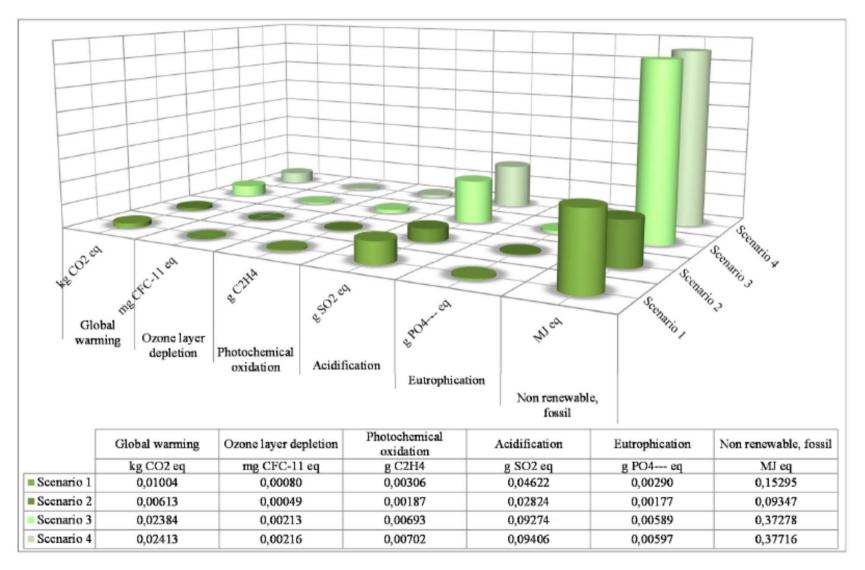
- Design, commercialization, and use of processes and products that are feasible and economical while
- Reducing the generation of pollution at the source
- Minimizing risk to human health and the environment
- Need to consider the whole life cycle (from cradle to grave) of products
 - Mining/collecting resources, production, use, waste management including disposal, and transportation involved
 - Generation of pollution and risk for each step
 - Potential ways to reduce the pollution and risk


Life cycle assessment

- A technique to assess the assess the environmental aspects and potential impacts associated with a product, process, or service, by
 - compiling an inventory of relevant energy and material inputs and environmental releases;
 - evaluating the potential environmental impacts associated with identified inputs and releases;
 - interpreting the results to help you make a more informed decision.

Life cycle assessment example: glass vs. PET bottle

Defining the system boundary



Life cycle inventory

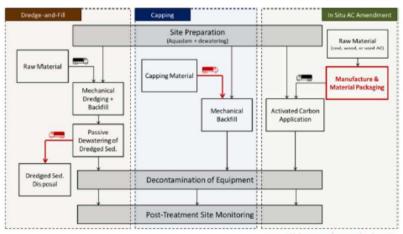
	Processes/Materials	Unit	Amount	Data Sources	Scenarios (FUs)			
Process					Scenario 1	Scenario 2	Scenario 3	Scenario -
EVOO Supply	Transport	tkm	1.43	Ecoinvent database	•	•	•	•
Consolidation	Energy	kWh/FU	0.006	On-field monitoring				
Brightening	Energy	kWh/FU	0.00719	On-field monitoring	•	•	•	•
Filtering	Cellulose fossil flour	g./FU	2	On-field monitoring, Interview		•	•	
	Cellulose assembled filter	g./FU	0.0050325	On-field monitoring, Interview	•			
PET bottling line	PET bottle	g./FU	36	Ecoinvent database			•	
	PET cap	g./FU	3.8	Ecoinvent database			•	•
	PET sleever	g./FU	5	On-field monitoring			•	•
	Wood pallet	g./FU	25.8	Ecoinvent database			•	
	PE film	g./FU	0.72	Ecoinvent database			•	•
	Energy	kWh/FU	0.0338	On-field monitoring				
PET-wrap line	Cardboard wrap	g./FU	20.1	On-field monitoring				
PET-strapping line	PP stripe	g./FU	0.75	Ecoinvent database				•
Glass bottling line	Glass bottle	g./FU	460	Ecoinvent database	•			
	Aluminum cap	g./FU	3	Ecoinvent database	•	•		
	PE pourer	g./FU	2	On-field monitoring				
	Labels	g./FU	4	On-field monitoring	•	•		
	Wood pallet	g./FU	41.3	Econvent database				
	PE film	g./FU	0.65	Ecoinvent database		•		
	Energy	kWh/FU	0.0107	On-field monitoring		•		
Glass-wrap line	Cardboard wrap	g./FU	20.4	On-field monitoring		•		
Glass-thermopack line	Cardboard tote, PET film	g./FU	9.33	On-field monitoring	•			
Product distribution	Transport	tkm	variable	Ecoinvent database, On-field monitoring		•	•	
Waste collection	Transport	tkm	variable	Ecoinvent database		•	•	•
EOL treatments	Transport, Energy	tkm- kWh/FU	variable	Ecoinvent database, ARPA, Eurostat	•			•

Table 1. Life cycle inventory: primary and secondary data source per each function unit (FU) scenario. EOL, end-of-life; PP, polypropylene; tkm, ton km; ARPA, Regional agency for prevention and environment (Emilia-Romagna).

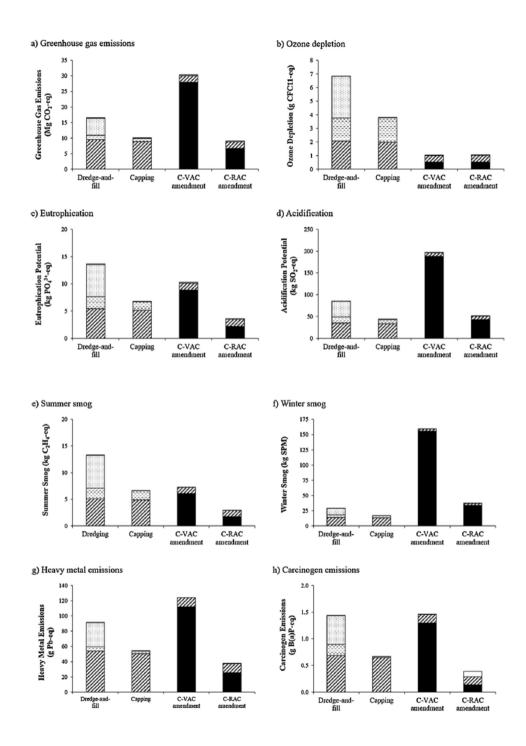
Life cycle impacts

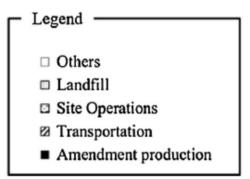
Another life cycle assessment example

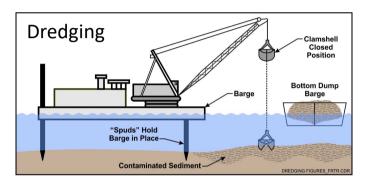
Secondary environmental impacts of remedial alternatives for sediment contaminated with hydrophobic organic contaminants

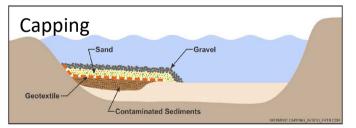

Yongju Choi^{a,*}, Jay M. Thompson^b, Diana Lin^b, Yeo-Myoung Cho^b, Niveen S. Ismail^b, Ching-Hong Hsieh^b, Richard G. Luthy^b

^a Department of Civil and Environmental Engineering, Seoul National University, Seoul 151-744, South Korea ^b Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020, USA


HIGHLIGHTS


- Compared secondary environmental impacts for sediment remediation alternatives.
- Studied different types and source materials for activated carbon amendment.
- Sorbent production as a major impact contributor for in-situ amendment.
- Minimize impacts of in-situ amendment by using recycled or bio-based sorbents.
- LCA results sensitive to the transport distance for dredging and capping.


GRAPHICAL ABSTRACT



- Major process for secondary impacts

C-VAC/C-RAC amendment

C-VAC: coal-based virgin activated carbon C-RAC: coal-based recycled activated carbon

Suggested readings

```
[ENG] pp. 319 – 322, 345 – 366
```

```
[KOR] pp. 307 – 310, 335 – 351
```

Next class

Water treatment I

- Water treatment process overview
- Coagulation & flocculation
- Softening