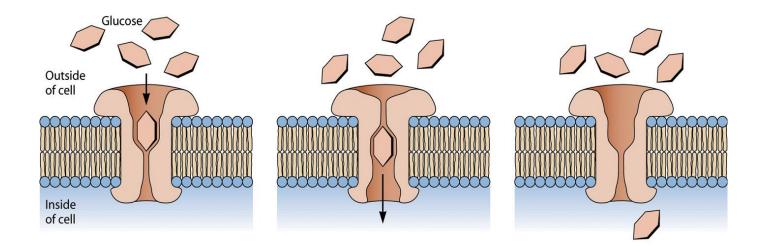

Chapter 7

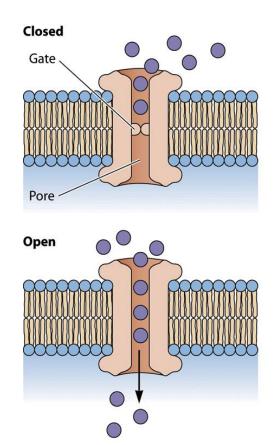
Cells Maintain Their Internal Environments


Cell Membrane

- Components of cell membrane
 - Lipid: phospholipids, sterols
 - Embedded proteins : receptor proteins, adhesion proteins, recognition proteins, transport proteins
 - Transmembrane proteins
 - Attachment to cytosolic or exterior face of membrane

Cell Membrane

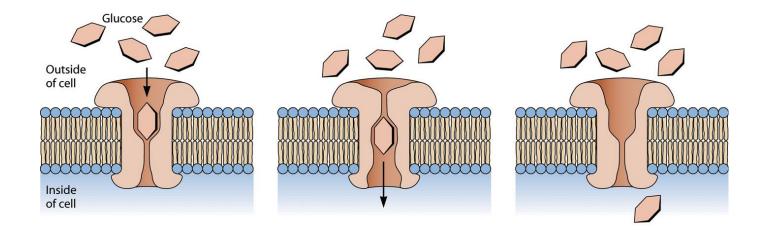
- Membrane-spanning domains of membrane proteins
 - Hydrophobic surface and hydrophilic core
 - Transport of sugars, amino acids and ions (hydrophilic) through the hydrophilic core of transport proteins


Transport Across Membrane

- Hydrophobic substances and very small molecules can cross the membrane unassisted.
- Diffusion
 - Free diffusion by concentration gradient
 - Hydrophobic substance, nonpolar molecules (O₂, CO₂), small polar molecules (water, ethanol)

Transport Proteins

Channel proteins


- Transport of ions (Na⁺, K⁺, Ca²⁺, Cl⁻)
- Along their concentration gradients
- Aquaporin: channel for water (much faster than the diffusion across the membrane)
- Gated channel

Transport Proteins

Carrier proteins

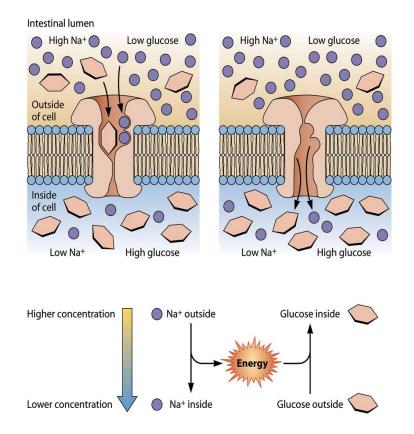
- Escort energy substrates and metabolic building blocks, such as glucose, amino acids, and nucleosides
- Along the concentration gradient
- Slower than simple diffusion

Active Transport

Pump

- One type of proteins that uses energy to move substances
- Transport against the concentration gradient
- Different concentrations between intracellular and extracellular fluids are maintained through pumps.

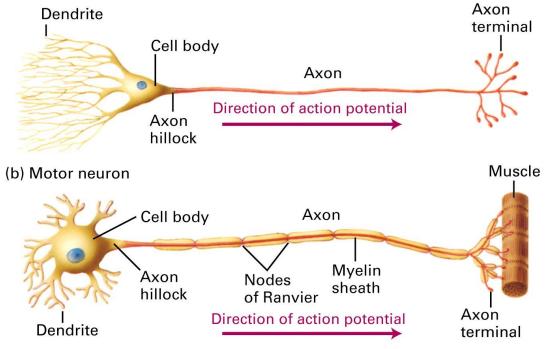
lon ^a	Intracellular concn (mM)	Interstitial concn (mM)	
Sodium (Na ⁺)	10	145	
Potassium (K ⁺)	150	5	
Calcium (Ca ²⁺)	0	3	
Chloride (C1 ⁻)	5	110	


Table 7.1 Approximate concentrations of ions in intracellular and extracellular fluids

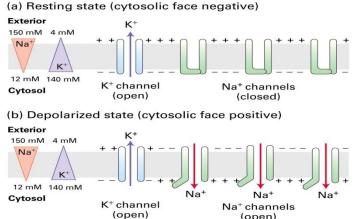
^{*a*}The most abundant ions in interstitial fluid are sodium and chloride ions, which are the components of table salt.

Pump

Two different energy sources


- ATP
 - -- e.g. Pumping Na⁺ and K⁺ against their gradients using ATP
 - (Na⁺/K⁺ ATPase)
- Energy inherent in gradient

Transport Proteins in Animals

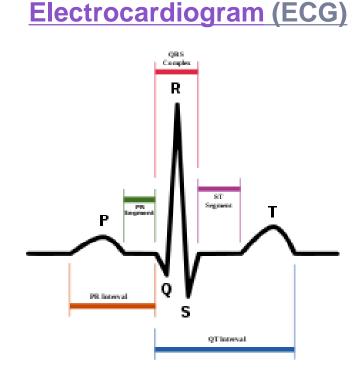

Nerve Impulses

(a) Multipolar interneuron

Nerve Impulses

- Key players: Na⁺, K⁺
- Resting membrane potential of -70mV
 - (Some K⁺ channels are open.)
- Opening of Na⁺ channel by stimulation
 - Generation of action potential 50 mV

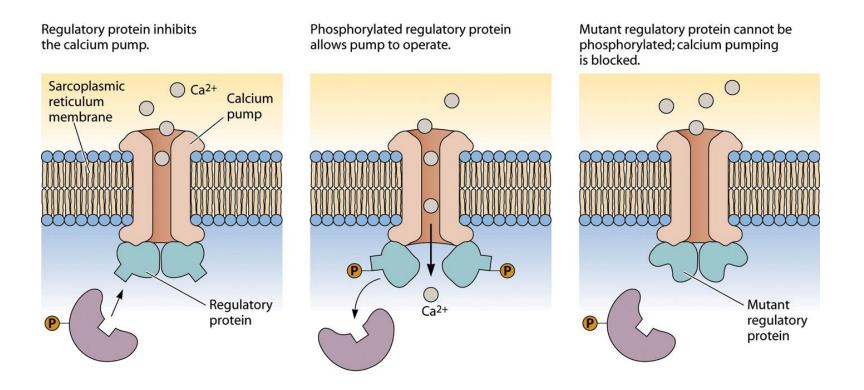
- Opening of voltage-gated K⁺ channel
 - Repolarization of membrane potential
- Restoration of membrane potential by Na+/K+ ATPase


Muscle Contraction

- Key player: Ca²⁺
- Inside muscle cells, Ca²⁺ are packed into a membrane-bound compartment called the sarcoplasmic reticulum (SR).
- When the nerve impulse (powered by Na⁺/K⁺ gradients) reaches the muscle cells, it triggers Ca²⁺ channel in the SR to open.
- Opening of Ca²⁺ channel in SR
 - → Release of Ca²⁺
 - \rightarrow Released Ca²⁺ binding to troponin (protein)
 - \rightarrow Muscle contraction

When Gradients Fail

Long QT (LQT) syndrome


- Long recovery periods before new heart contraction
- Cell to cell variation of recovery periods
 - Can cause arrhythmia (lack of rhythm)
- Defects in K⁺ or Na⁺ channels

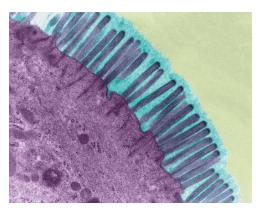
When Gradients Fail

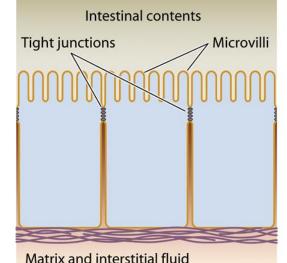
Inherited heart failure

 Mutation in the regulatory protein of Ca²⁺ channel in SR (The pump can not transport Ca²⁺ back into SR)

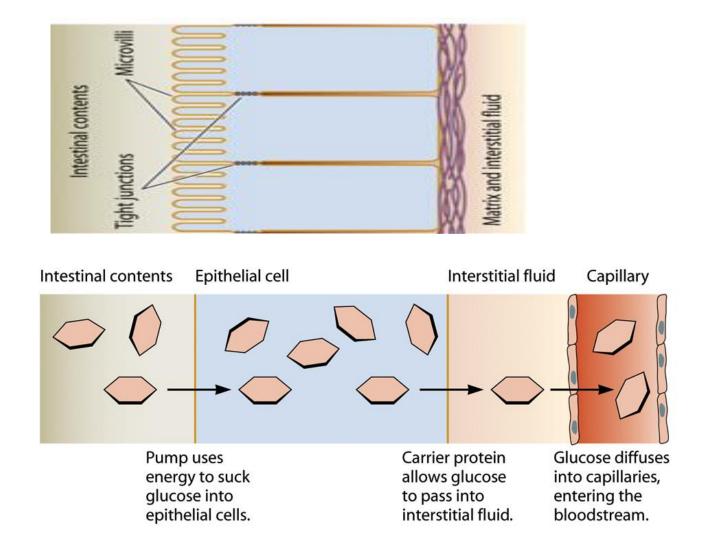
Pumps, Carriers, and Nutrient Distribution

- Nutrient components must move from the intestine to the blood stream through intestinal epithelium.
- Epithelium
 - The body's version of a cell's membrane
 - Epithelial cells
 - Cells cover body surfaces and line internal organs
- Intestinal epithelium
 - Cells lining the digestive tract

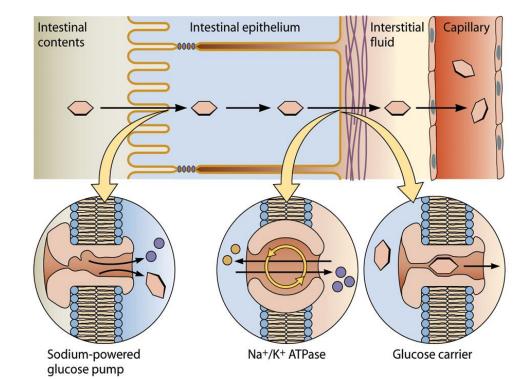

Intestinal Epithelium


Microvilli

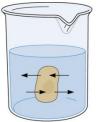
- Facing the intestinal track
- Enzymes and transport proteins are located.
 - The enzymes break down complex sugars into simple sugars.
 - lactose, sucrose \rightarrow glucose


Tight Junction between Cells

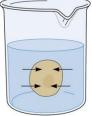
- Preventing transport of large molecules
- Barrier between the intestinal contents and the interstitial fluid
- Extracellular Matrix
 - Supporting epithelial cells
 - Tough network of extracellular proteins and carbohydrates



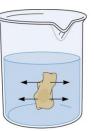
Transport of Nutrients across Epithelial Cells


Transport of Nutrients across Epithelial Cells

- Intestinal side
 - active transport of glucose powered by Na⁺ gradient
 - co-transport of two Na⁺ and one glucose molecule
- Interstitial fluid side
 - glucose
 - -- by carrier proteins
 - Na+
 - -- by Na⁺/K⁺ ATPase
- Capillary wall
 - Glucose diffusion
 - Designed to let all but the large molecules (e.g. blood proteins) cross over



Cells, Salts, and Water Balance


- Movement of water across the cell
 - Water movement to equalize the total concentration of solutes
 - Osmosis: movement of water across membranes
 - Osmotic balance: no net water movement

Cell is in osmotic balance with extracellular fluid.

Cell is higher in solutes than is extracellular fluid. Water enters the cell.

Extracellular fluid is higher in solutes than is the cell. Water leaves the cell.

- Cells in osmotic balance
 - Cells contain many proteins, amino acids, and other small molecules.
 - Concentration of total ions is higher outside than inside cells to keep the osmotic balance.

Water follows salt

Almost same solute (salt), since blood

Water in human body (75 kg man)

- 45 L of water
 - 30 L: intracellular
 - 3.75 L: blood plasma
 - 11.25 L: extracellular fluid capillaries are permeable to small molecules

Water balance

- Lactose intolerance
 - Lack of lactase breaking lactose into glucose and galactose
 - No digestion of lactose \rightarrow movement of water into the intestine
 - Metabolize of lactose by intestinal bacteria \rightarrow gas production
- High-magnesium laxative : relieving constipation
- Cystic fibrosis (by impaired salt transport)
 - Mutation in Cl⁻ channel : reduced water secretion → thick mucus in epithelia of respiratory and gastrointestinal tracts

Biotechnology

Rehydration therapy

- Diarrhea: kill 2 million children/year by dehydration
- Solution of sugar and salt is effective to treat dehydration: e.g. sports drinks

Enzyme treatments

- Lactose intolerance
 - Add lactase (β -galactosidase) in milk or dairy products
- When you eat a bean-rich meal in a Mexican restaurant
 - Beans contain galactose-containing sugars (galactosides)
 - Humans lack enzymes for breaking down galactosides.
 - Microbial munching on galactosides \rightarrow gas production
 - Buy α -galactosidase (Beano) in a drugstore

Chapter 8

Cells Respond to Their External Environments

Response to External Environments

Single-celled organism

- Respond to environmental changes
- Temperature, salinity, pH, toxins, mating factors
- Multicellular organism
 - Environment is the inside of the organism
 - Respond to external conditions and maintain cellular homeostasis

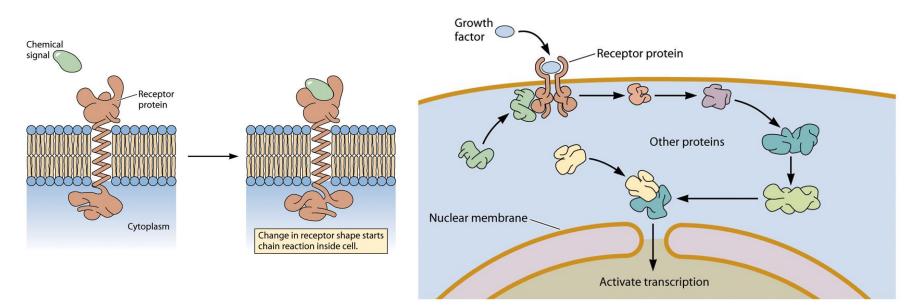
Signals and Receptors

- Response to signal
 - Signal
 - Chemicals, light, sound, electrical impulses, solutes concentration, pressure
 - Detection of signal
 - Receptors
 - Induction of cellular response
 - Cellular changes
 - Activation or suppression of enzyme activity
 - Activation or suppression of transcription or translation
 - Changes in the permeability of the cell
 - Release of stored proteins
 - Cellular responses
 - Generation of nerve impulse
 - Metabolizing nutrient
 - Migration
 - Growing and dividing
 - Differentiation
 - Dying

Types of Receptors

Receptors of the five senses

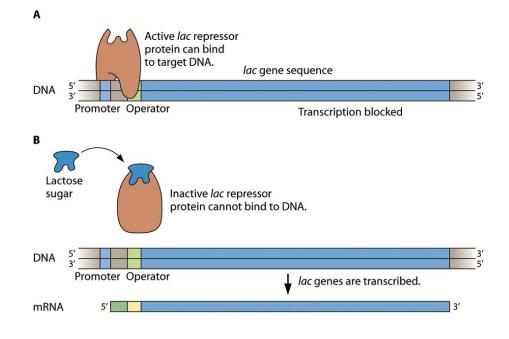
Type of receptor	Activating stimulus	Cellular response	Brain's interpretation of nerve impulse
Photoreceptor	Light	Change in membrane channels	Vision
Auditory receptors	Vibration	Release of stored neurotransmitters	Sound
Olfactory receptors	Various molecules in the air	Change in membrane channels	Smell
Taste receptors for sweet and bitter	Various dissolved molecules	Change in membrane channels	Sweet or bitter taste
Taste receptors	Na ⁺ , C1 ⁻ , K ⁺ (salty) H ⁺ (sour)	Release of stored neurotransmitters	Salty or sour taste
Baroreceptor	Deformation of cell	Change in membrane channels	Touch, pressure


Table 8.1 Receptors and the five senses

Osmoreceptors

 High salt → Cell shrinkage → Geometry change → Opening of ion channels → Generation of a nerve impulse

Signal Transduction


- Receptors
 - Membrane receptor: Binding of signal molecules which cannot cross the membrane
 - Intracellular receptors: Binding of signal molecule which can cross the membrane
- Signal transduction
 - Conformational change of receptor upon binding to the signal
 - Triggering cascade of reactions

Responses of Single-Celled Organisms

Lactose breakdown in *E. coli*

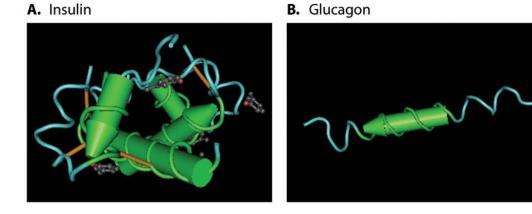
- Turning on lactose utilizing genes (*lac* genes) only in the presence of lactose
- In the absence of lactose
 - --- The *lac* repressor represses *lac* genes by binding to operator of *lac* operon.
- In the presence of lactose
 - --- Lactose binding to *lac* repressor leads to release from the *lac* operator
 - \rightarrow Transcription on

Coordination of Cellular Responses in Multicellular Organisms

Hormones Produced in various glands and secreted into blood stream

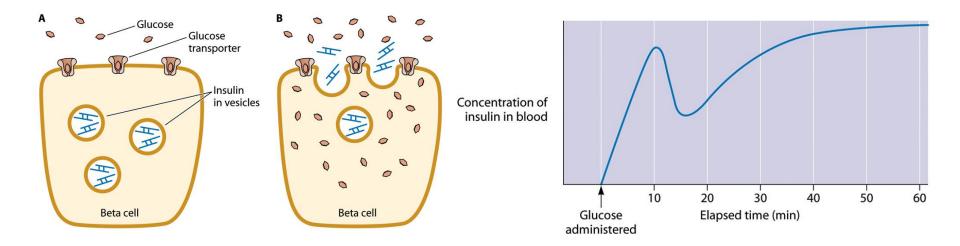
Primary effect(s) Where secreted Target(s) Hormone Stimulates and maintains metabolism; necessary for normal Thyroxine Thyroid Many tissues growth and development Growth hormone Anterior pituitary Bones, liver, muscle Stimulates protein synthesis and growth Follicle-stimulating Stimulates growth and maturation of eggs in females; stimulates Anterior pituitary Gonads hormone sperm production in males Melanocyte-stimulating Anterior pituitary Melanocytes Controls pigmentation hormone Insulin Pancreas Muscles, liver, fat Stimulates uptake and metabolism of glucose; increases glycogen and fat synthesis; reduces blood sugar Glucagon Pancreas Liver Stimulates breakdown of glycogen; raises blood sugar Digestive tract, pancreas Inhibits release of insulin and glucagon; decreases activity in the Somatostatin Pancreas digestive tract Posterior pituitary Stimulates water resorption and raises blood pressure ADH Kidneys Increases sodium ion excretion; lowers blood pressure ANH Kidneys Heart Aldosterone Adrenal cortex Stimulates excretion of potassium and resorption of sodium ions Kidneys Stimulate development and maintenance of female sexual Estrogens **Ovaries** Breast, uterus, and other tissues characteristics; necessary for proper bone development in males and females; proper seminal fluid formation in males Stimulate development and maintenance of male sexual Androgens Testes Various tissues characteristics

Table 8.2 Examples of human hormones

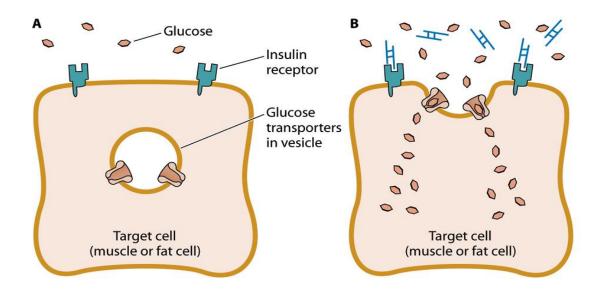

Hormones

Hormone receptors

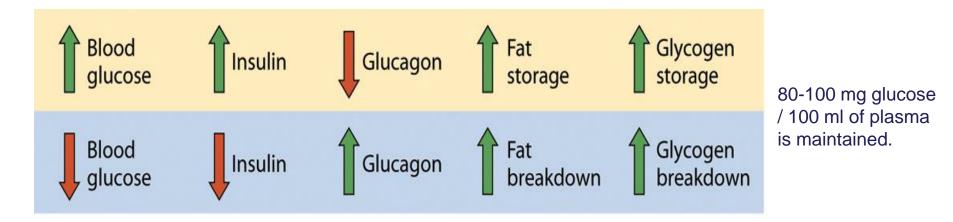
- Membrane receptors (Many hormones are proteins.)
 → signal transduction
- Intracellular receptors for steroid hormones
 - The receptor-hormone complex binds to target DNA.
 - \rightarrow repression or activation of transcription
- Estrogen
 - Female hormone (steroid hormone)
 - The receptor-hormone complex activates the transcription.
 - → Generation of new blood vessels in the uterus, Increase in lactoferrin (protein in breast milk)
 - Proper production of seminal fluid and development of skeletons in male


Regulation of Blood Glucose Concentration

- Importance of regulating glucose levels in blood stream
 - Low glucose: no energy source in the brain
 - \rightarrow unconsciousness, comma, and death
 - High glucose: mental confusion, dehydration etc.
- Hormones regulating blood glucose levels
 - Generated from pancreas
 - Insulin decreases glucose levels
 - Glucagon increases glucose levels


Insulin

- Synthesized in the pancreatic β cells and packed into vesicles
- If glucose is high,
 - \rightarrow the glucose enters the β cells via transport proteins
 - \rightarrow Insulin vesicles fuses with cell membrane
 - \rightarrow Insulin is released to the blood stream
- Glucose stimulates the transcription of insulin gene.


Roles of Insulin

- Binding to cell type-specific insulin receptors
 - e.g. Muscle and fat cells
 - Binding of insulin to insulin receptors
 - \rightarrow Increase in fusion of vesicles containing glucose transporters (GLUT4)
 - \rightarrow Stimulation of uptake of glucose from the blood
 - cf. liver and brain: insulin-independent glucose transporter (GLUT1)

Glucagon

- Release of glucagon upon low glucose levels
- Binding to cell type-specific glucagon receptors
 - Liver
 - Inhibition of glycogen synthesis
 - Stimulation of breakdown of glycogen
 → Release of glucose
 - Fat cells
 - · Activation of breakdown of fats
 - Fatty acids are used as E source, sparing glucose for brain cells

Diabetes

Diabetes mellitus

- Diabetes: excessive urination in Greek
- Mellitus: honey in Latin
- Problem in controlling blood glucose
 - Insufficient glucose absorption in the presence of high blood glucose
 - \rightarrow high concentration of glucose in the urine

Types of diabetes

- Type I, Juvenile, insulin-dependent diabetes
 - No insulin production
 - Autoimmune response --- destroying pancreatic $\boldsymbol{\beta}$ cells
- Type II, insulin-resistant, non-insulin-dependent diabetes
 - No response to insulin (unknown cause, associated with obesity)
 - 90~95% of diabetes

Biotechnology Application

Insulin production to treat diabetes

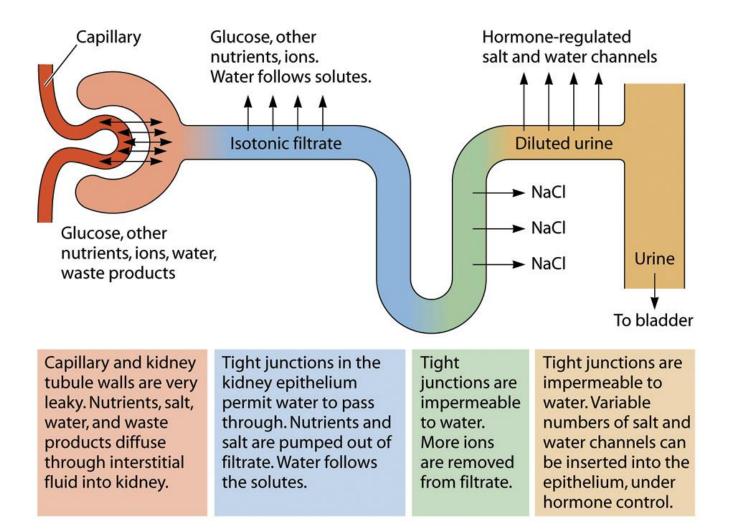
- 1920's
 - isolation of insulin from pig and cow pancreases
- 1980's
 - Recombinant human insulin expressed in *E. coli*

Blood Pressure, Salt, and Water

Roles of blood circulation

- Capillaries: permeable cell wall, 60,000 miles in human body
- Provide nutrients to cells
 - O₂, nutrients, hormones
 - \rightarrow diffuse to interstitial fluid through capillary walls
- Elimination of waste products
 - Waste products \rightarrow pass into capillaries

Blood pressure


- Low blood pressure:
 - problem in supplying nutrients to organs especially brain
- High blood pressure (Hypertension)
 - Weakening of blood vessel \rightarrow burst and bleed : stroke, blindness
 - Stiffening of arteries: heart attack, heart failure
 - Kidney problem
- Affected by blood volume and muscle tone in the artery walls

How Kidneys Work

Generation of urine during transport along the tubules of kidney

- 1. Diffusion of small molecules from capillaries to tubules of kidney through very leaky walls
 - Filtrate: the fluid in the tubules
- 2. Transporters to reabsorb nutrient
 - Tight junctions and microvilli
 - Isotonic filtrate: osmotic balance between filtrate and extracellular fluid
- 3. Water impermeable, active transport of ions
 - Dilute urine
- 4. Tubule with aquaporin channel and salt channels
 - Concentrated urine
- 5. Bladder

Solute Transport in the Kidney

